

CEIBO 8051C++ Compiler

User's Manual

 COPYRIGHT BY CEIBO

Rev. 10/2017

contents

Preface
 8051C++ Software P-1

Chapter 1 - The Embedded C++ language overview
 The Embedded C++ language overview 1-1
 Mutable specifier 1-2
 Exception handling 1-2
 Runtime type identification 1-3
 Namespace 1-3
 Template 1-4
 Multiple inheritance and virtual inheritance 1-4
 Library 1-4

Chapter 2 - Installation
 Introduction 2-1
 Software and Hardware Requirements 2-1
 Directories structure 2-1

Chapter 3 - EC++ Projects
 Creating EC++ Projects 3-1
 Creating Custom EC++ Libraries 3-1
 EC++ language extensions for 8051 3-2

Chapter 4 - Keywords
 List of Keywords
 Auto 4-3
 Bool 4-3
 Break 4-4
 Case 4-6
 Char 4-6
 Class 4-7
 Const 4-12
 Continue 4-14
 Default 4-15
 Delete 4-15
 Do 4-19
 Double 4-20
 Else 4-20
 Enum 4-21
 Extern 4-22

 False 4-24
 Float 4-24
 For 4-25
 Friend 4-27
 Goto 4-29
 If 4-31
 Inline 4-32
 Int 4-33
 Long 4-34
 New 4-34
 Operator 4-35
 Private 4-38
 Protected 4-41
 Public 4-44
 Register 4-45
 Return 4-46
 Short 4-47
 Signed 4-47
 sizeof 4-48
 Static 4-49
 Struct 4-50
 Switch 4-52
 This 4-54
 True 4-56
 Typedef 4-56
 Union 4-57
 Unsigned 4-59
 Virtual 4-59
 Void 4-61
 Volatile 4-61
 While 4-62
 Support for RTX51 Tiny real-time multitasking

operating system
4-63

Chapter 5 - Errors and Warnings
 Warnings 5-1
 Errors 5-3
 Inline asm code 5-68

Chapter 6 - EC++ libraries
 List of EC++ libraries 6-1
 Double_complex and float_complex 6-2
 Abs 6-9

 Arg 6-10
 Conj 6-10
 Cos 6-10
 Cosh 6-11
 Exp 6-11
 Imag 6-11
 Log 6-11
 log10 6-12
 Norm 6-12
 Polar 6-13
 Pow 6-13
 Real 6-14
 Sin 6-14
 Sinh 6-14
 Sqrt 6-15
 operator!= 6-15
 operator* 6-15
 operator+ 6-16
 operator- 6-17
 operator/ 6-17
 operator<< 6-18
 operator== 6-18
 Operator>> 6-19
 String 6-20
 Swap 6-45
 Stdiobuf 6-46
 Streambuf 6-48
 Ios 6-63
 Istream 6-86
 Ostream 6-97
 Iostream 6-102
 Iomanip 6-103
 New 6-105

Index I-1

PREFACE

Preface P-1

PREFACE

8051C++ Software

This manual complements the information provided by Keil Software - 8051 User
Manual.

CEIBO C++ is an implementation of the Embedded C++ language as defined by the
ISO SC22/WG21 standard. It also defines some dedicated extensions to 8051
microcontroller families.

CEIBO C++ translates EC++ source programs into ANSI C instructions, which can
be further compiled by a Keil C51 compilers into object code according to the selected
target processor. The C compilers have been updated to support EC++ extensions.

A complete syntax and semantic analysis is performed, including error checking. The
generated code preserves source code information with the corresponding line
numbers, which is helpful in generating symbolic debugging information compatible
with most of the available debuggers, simulators and emulators.

Every compiled source file keeps the information about classes, attributes and
methods defined by these classes, including the original name, original type and
definition location. The debuggers create accurate source code browsers using this
information.

CHAPTER 1

The Embedded C++ language overview

 Chapter 1- Embedded C++ Language Overview 1-1

CHAPTER 1

The Embedded C++ language overview

Introduction

The goal of Embedded C++ is to provide embedded systems programmers with a
subset of C++ that is easy for the C programmer to understand and use. The subset
offers upward compatibility with the full version of Standard C++ and retains the
major advantages of C++. Meanwhile, the subset fulfills the particular requirements
of embedded systems designs.

The three major requirements of embedded system designs are:

- Avoiding excessive memory consumption

- Taking care not to produce unpredictable responses

- Making code ROMable

Embedded C++ is not a new language specification that competes with existing
Standard C++. Rather, it is a pure subset for the practical user of C++. It supports a
new methodology in embedded system designs, where a large number of
programmers are currently involved.

This compiler includes Embedded C++ libraries, which conforms to Embedded C++
syntax and semantics. The set is limited to the minimum requirements for embedded
applications.

 Chapter 1- Embedded C++ Language Overview 1-2

Mutable specifier

In embedded systems programming, an object that is specified 'const' is intended to
be located in ROM. However, any class members declared 'mutable' can be modified,
even if the object itself has been declared 'const'. Therefore, objects that belong to a
class that have a 'mutable' member does not fit into ROM.

Also, 'mutable' is specified for a class member. That means, it is specified in the class
definition and not in each object declaration. Looking only at the declaration, it is not
possible to assume whether or not it is really 'const'.

Therefore, the 'mutable' specifier is not included in the Embedded C++ specifications

Exception handling

Exception handling is useful for dealing with errors. However, there are some
drawbacks for embedded systems programmers.

It is difficult to estimate the time between when an exception has occurred and control
has passed to a corresponding exception handler, as well as the memory consumption
for exception handling.

As control passes from a throw point to a handler, destructors are invoked for all
automatic objects constructed since the try block was entered.

If an object has a destructor, then it has to be destroyed by calling the appropriate
destructor. That implies execution time to destroy automatic objects.
In general, the exception mechanism requires compiler-generated data structures and
runtime support. This sometimes adds unexpected oversize to the program.

In embedded systems it is important for a programmer to be able to easily estimate
processing time. Small code size is also a requirement. Therefore, the two drawbacks
mentioned previously cannot be ignored for embedded systems programming.

For these reasons, exception handling is not included in the Embedded C++
specifications.

 Chapter 1- Embedded C++ Language Overview 1-3

Runtime type identification

To support the runtime type identification (RTTI) facility, there is at least some
program size overhead, because type information for polymorph classes is needed.
The compiler automatically generates the information, and it would be included in
programs that do not use the RTTI facility.

For a program that uses polymorphism heavily, the RTTI facility can provide an
advantage. But in the case of programs that make little use of polymorphism and do
not need the RTTI facility, it has no merit. Program size is critical for embedded
systems applications. Also, programs such as the previously mentioned are advanced
and out of the range of the Embedded C++ specifications, which aim at easy
understandability and predictability of generated object code by C programmers.

Therefore, RTTI facility is not included in the Embedded C++ specifications.

Namespace

The typical target CPU for the Embedded C++ specifications does not have much
memory. Therefore, the size of application programs cannot be very large. Under such
conditions, names seldom, if ever, come into conflict. If name conflict becomes a
serious problem, it can avoided by using static member of a class. Namespace facility
is not essential for the Embedded C++ specifications.

Therefore, they are not included in the Embedded C++ specifications.

Template

Templates are useful for making generic classes or functions. However if used
carelessly, templates might cause unexpected code explosion. Furthermore, they may
increase the time of compilation. Therefore, the technical committee decided that
templates will not be included in Embedded C++ specifications.

 Chapter 1- Embedded C++ Language Overview 1-4

Multiple inheritance and virtual inheritance

It is difficult even for an expert programmer to design a class hierarchy using multiple
inheritances, or to recognize the overall hierarchy of it and use it correctly. Programs
that do not use multiple inheritances appropriately tend to be less readable, less re-
usable, and more difficult to maintain.

The Embedded C++ aims at providing specifications that are easy to learn and are
used in actual embedded systems programming. Multiple inheritances do not fit this
principle.

Therefore, the technical committee decided not to include multiple inheritances in the
Embedded C++ specifications.

Virtual inheritance makes sense only if multiple inheritances are used, so virtual
inheritance is also absent from the Embedded C++ specifications.

Library

Exception

Since the exception is out of Embedded C++ syntax and semantics, libraries with
exception are not supported as the Standard Embedded C++ library.

Template

Since the template is out of Embedded C++ syntax and semantics, libraries with
template (the Standard Template class Libraries) are not supported.

Therefore, the technical committee decided not to include the standard template class
libraries in the Embedded C++ specification.

Some classes are partly supported as non-template class libraries.

Classes 'string', 'complex', 'ios', 'streambuf', 'istream' and 'ostream' are supported in
the Embedded C++ specification. The reasons are given below.

Regarding string libraries, 'string' class which is equivalent to typedef
basic_string<char> string in C++, is only supported as a non-template class.

String libraries is used generally, useful for the embedded application and necessary
for the support in Embedded C++.

 Chapter 1- Embedded C++ Language Overview 1-5

Regarding complex libraries, 'float_complex' and 'double_complex' which are
equivalent to typedef complex<float> float_complex typedef complex<double>
double_complex in C++, are supported as non-template classes. The reason is that the
importance of the complex libraries is increasing for the embedded application and
necessary for the support in Embedded C++.

Regarding stream libraries, 'istream' and 'ostream' which are equivalent to typedef
basic_istream<char> istream typedef basic_ostream<char> ostream in C++, are
supported as non-template classes. The minimum stream library for input/output is
necessary for debugging.

wchar_t, long double

The libraries for type of wchar_t or long double are little used for the embedded
application and are almost not necessary in the present circumstances.

Therefore, the technical committee decided not to include libraries for type of wchar_t
or long double in the Embedded C++ specification.

For example, 'wstream', 'long_double_complex' are not supported.

File-operations

The libraries for file-operations are not supported because of dependence on OS.
Therefore, the technical committee decided not to include libraries for file-operations
in the Embedded C++ specification.

Localization libraries

The localization libraries need much memory, are inconvenient to users and have no
necessity for most embedded environment.
Therefore, the technical committee decided not to include localization libraries in the
Embedded C++ specification.

CHAPTER 2

INSTALLATION

Installation 2-1

CHAPTER 2

INSTALLATION

Introduction

1. Make sure PK51 Professional Developer Kit of Keil uVision is installed on your
PC.

2. Run "setup.exe".

Software and Hardware Requirements

Verify that your PC meets the minimum requirements listed below:

- Windows XP or higher (7/8/10)

- 16 MB RAM at least

3.2 Directories structure

The setup program copies files allowing Embedded C++ support into subfolders of
uVision installation folder. The default is "C:\KEIL".

The structure of EC++ installation is following:

Installation 2-2

Folder Description

C:\KEIL\C51\BIN C++ to C conversion tools

C:\KEIL\C51\EXAMPLES\ECPP EC++ sample applications

C:\KEIL\C51\INC\ECPP EC++ include files

C:\KEIL\C51\LIB\ECPP EC++ libraries

CHAPTER 3

EC++ Projects

Chapter 3 - EC++ Projects 3-1

CHAPTER 3

EC++ Projects
Creating EC++ Projects

Basically they are created like a regular uVision project with slightly differences.
Here they are:

- Always select the checkbox "Use extended linker (LX51) instead of BL51" in the
dialog "Select Device for Target".

- Select the option "File Extensions, Books and Environment" from the submenu
"Project" and enter under "File extensions - C Source Files": "*.c;*.cpp". Then you
can add ".cpp" files to your project using the standard uVision dialogs.

- One extra object file is always generated per EC++ project. For successful linkage
you should always add to your project the above object file. If you build an
executable, the name of this special object file is "project_lnk.obj". If you build an
EC++ library, its name is "X_lnk.obj", where X stands for the name of the library.
Add the above object to your project even if it yet does not exist - it will be generated
right before the linkage.

Creating Custom EC++ Libraries

Ceibo C++ supports creation of library files. Input modules may be EC++ source
files, C source files, object files or library files. The library manager is launched with
object files and libraries and produces the library file.
All of the above described in "Creating EC++ Projects" is also relevant here.
While creating EC++ libarary always start the library name with the prefix ECPP.

Chapter 3 - EC++ Projects 3-1

EC++ language extensions for 8051

Ceibo C++ provides a number of extensions for EC++ standard. Most of these provide
direct support for elements of the 8051 architecture.
The extensions included are for:

- Memory Types and Areas on the 8051

- Memory Models

- Memory Type Specifiers

- Variable Data Type Specifiers

- Bit variables and bit-addressable data

- Special Function Registers

- Pointers

- Function Attributes

Chapter 3 - EC++ Projects 3-1

CHAPTER 4

KEYWORDS

Chapter 3 - EC++ Projects 3-1

CHAPTER 4

KEYWORDS

To facilitate many of the features of the 8051, the EC++ front-end adds a number of
new keywords to the scope of the EC++ language. The following is a list of the
keywords available in Ceibo C++ :

at
alien
auto
bdata
bit
bool
break
case
char
class
code
compact
const
continue
data
default
delete
do
double
else
enum
extern
false
float
for
friend

Chapter 3 - EC++ Projects 3-1

goto
idata
if
inline
int
interrupt
large
long
new
operator
pdata
priority
private
protected
public
reentrant
register
return
sbit
sfr
sfr16
short
signed
sizeof
small
static
struct
switch
this
true
typedef
task
union
unsigned
using
virtual
void
volatile
while
xdata

Chapter 3 - EC++ Projects 3-1

auto

The auto keyword is the storage-class specifier indicating that the variable has local
(automatic) extent. It is the default storage-class specifier for block-scoped variable
declarations. Local objects explicitly declared auto or register or not explicitly
declared static or extern have automatic storage duration. The storage for these
objects lasts until the block in which they are created exits. Declarations of auto
variables can include initializers. Since variables with auto storage class are not
initialized automatically, you should either explicitly initialize them when you
declare them, or assign them initial values in statements within the block. The
values of uninitialized auto variables are undefined. (A local variable of auto or
register storage class is initialized each time it comes in scope if an initializer is
given.)

Example

{
auto int i; // Explicitly declared as auto.
int j; // Implicitly auto.
}

Example

int f(auto int n)
{
 return ++n;
}

bool

This keyword is an integral type. A variable of this type can have values true and
false. There are no signed, unsigned, short, or long bool types or values.
All conditional expressions now return a value of type bool. For example, i!=0
now returns true or false depending on the value of i.
The values true and false have the following relationship:
!false == true
!true == false

The value false is converted to zero and the value true is converted to one.
In the following statement:

if (expres1) statement1;

If expres1 is true, statement1 is always executed; if expres1 is false, statement1

is never executed.
When a postfix or prefix ++ operator is applied to a variable of type bool, the
variable is set to true. The postfix or prefix -- operator cannot be applied to a
variable of this type.

Chapter 3 - EC++ Projects 3-1

The bool type participates in integral promotions. An r-value of type bool can be
converted to an r-value of type int, with false becoming zero and true becoming
one.

Example

void main()
{
 bool a,b;
 a=true;
 b = false;
 if (a||b);
}

Example

void main()
{
 bool gata;
 char ch;
 gata=false;
 while(!gata)
 {
 ch=getchar();
 if (ch='$')
 {gata=true;continue;}
 putchar(ch+1);//take the next letter of alphabet
 }
}

break

The break statement shall occur only in an iteration-statement or a switch
statement and causes termination of the most tightly enclosing loop or switch
statement; control passes to the statement following the terminated statement, if any.
The following example illustrates the use of the break statement in a for loop:
Example
for(; ;) // No termination condition.
{
 if(List->AtEnd())
 break;
 List->Next();
}
cout << "Control transfers to here.\n";

Example
for (i = 0; i < LENGTH; i++) /* Execution returns here when */
{ /* break statement is executed */
 for (j = 0; j < WIDTH; j++)
 {
 if (lines[i][j] == '\0')

Chapter 3 - EC++ Projects 3-1

 {
 lengths[i] = j;
 break;
 }
 }
}

The example processes an array of variable-length strings stored in lines. The
break statement causes an exit from the interior for loop after the terminating null
character ('\0') of each string is found and its position is stored in lengths[i].

Example

#include <iostream.h>
void main()
{
 int t;
 for (t=0;t<100;t++)
 {
 cout<<t;
 if (t==10) break;
 }
}

The above code displays the first 10 numbers starting from 0. After the first ten
values the for loop terminates because of the break statement.
For an example of using the break statement within the body of a switch statement,
see the switch statement.
Example
void search(char *name)
{
 do
 {
 if (kbhit()) break;
 } while (!gasit)
}

In the above example a key stroke stops the execution of the search function.
Let's illustrate the situation when break causes the termination of the most inner loop:
Example
for (int t=0;t<100;t++)
{
 int contor=1;
 for (;;)
 {
 cout<<contor;
 contor++
 if (contor==10) break;
 }
}

The above code displays numbers from 1 to 10 hundred times. Whenever the compiler
encounters the break statement the control is passed to the extern for.

Chapter 3 - EC++ Projects 3-1

The following example illustrates the use of the break statement in a switch
statement:

Example

void menu()
{
 char ch;
 cout<<"1. Spelling check \n";
 cout<<"2. Correct the misspellings \n";
 cout<<"3. Display the misspellings \n";
 cout<<" Press a key for exiting the program\n";
 cout<<" Select an option: ";
 cin>>ch; // Read the selection from the keyboard
 switch(ch)
 {
 case '1':

 spell_check();
 break;
 case '2':

 correct_misspell();
 break;
 case '3':

 display_misspell();
 break;
 default:
 cout<<"You didn't select any option!";
 }
}

In a switch statement the break statement is optional; break terminates the block
of statement associated with a constant. If the break is omitted the execution is
going on with the statements from the next case until a break is encountered or
until the end of the switch.

Example

void manev_intr(int i)
{
 int mark;
 mark=-1;
 switch(i)
 {
 case 1:
 case 2:
 case 3: mark=0;break;
 case 4: mark=1;
 case 5: error(mark);break;
 default: processed(I)
 }
}

Chapter 3 - EC++ Projects 3-1

case

The case label is used by the switch statement. (see switch statement)

char

The char keyword represents a data type (one of the fundamental data types
recognized by C/C++). A variable of type char occupies 1 byte of memory.

Example

{
 char ch;
 unsigned char ch;//same as "char ch;"(unsigned is default)
 char c='1';
 char s=65;
 scanf("%c%c",&s,&c);
 printf("%c%c",s,c);
}
Example
{
 char sir[10]={'I',' ','l','i','k','e',' ','C','+','+'};
 char str[10]="I like C++";
}
Example
void main()
{
 char sir[80];
 gets(sir);
 printf("The length is %d",strlen(sir));
}
Example
void writestring(char *s)
{
 while (*s) putchar(*s++);
}
Example
search(char *p[],char *name)
{
 int i;
 for (int t=0;p[t];t++)
 if (!strcmp(p[t],nume))
 return t;
 return -1; //not found
}
Example
{
 const char ar2[] = "128";
 const char ae[34] = "gyugyugu ";
 const char ar5[2][2] = {2,5,6,7};
 char ar[4];

Chapter 3 - EC++ Projects 3-1

}
Example

int f(const char ars[] = "34"){
 printf("%s",ars);
 return 0;
void main()
{
 const char ar2[] = "128";
 f(ar2);
}

Example
void main()
{
 char ar3[] = (char * const) ar1; // ill-formed, initialize only
with

 //string literals or curly
braces;

 char ar6[6] = ar; //error;
 char ar[0]; // error, cannot have zero length array;
 char ar7[2] = "12"; // error, array out of bounds. not space for

 // trailing '\0'.}

class

Syntax
class [tag [: base-list]]
{
member-list
} [declarators];
[class] tag declarators;

The class keyword declares a class type or defines an object of a class type.
The elements of a class definition are as follows:
tag
Names the class type. The tag becomes a reserved word within the scope of the
class.
base-list
Specifies the class(es) from which the class is derived (its base classes). Each base
class's name can be preceded by an access specifier (public, private , protected)
and the virtual keyword.
member-list

Declares members or friends of the class. Members can include data,
functions, nested classes, enums, bit fields, and type names. Friends can
include functions or classes. Explicit data initialization is not allowed. A class
type cannot contain itself as a nonstatic member. It can contain a pointer or a
reference to itself.

declarators

Chapter 3 - EC++ Projects 3-1

Declares one or more objects of the class type.

Example

class myclass
{
 int i;//private member can be accessed only by members of class B
or by

 //a friend function
public:
 void Set_i(int n) {i=n;}
 int Get_i() {return i;}
}
void main()
{
 myclass ob1,ob2;
 ob1.Set_i(99);
 ob2=ob1;//copy data from ob1 to ob2
 cout<<This is i fom ob2: "<<ob2.Get_i();
}
Example
class A
{
protected:
 int i,j;
public:
 void Set_ij(int i, int j) {i=a;j=b;}
 void Display_ij() {cout<<i<<" "<<j<<endl;}
};

class B: public A //class B can access i,j members from class A
{
int k;//private member can be accessed only by members of class B
or by

//a friend function
public:
 void Setk() {k=i+j;}
 void Displayk() {cout<<k<<endl;}
};

void main()
{
 B ob;
 ob.Set_ij(2,3);//Set_ij(…) is still public in derived class
 ob.Display_ij();
 ob.Setk()
 ob.Displayk();
}
Example
class BaseClass
{
protected:
 int protectFunc();

Chapter 3 - EC++ Projects 3-1

};

class DerivedClass : public BaseClass
{
public:
 int useProtect()
 { protectFunc(); } // protectFunc accessible
 // from derived class
};

void main()
{
BaseClass aBase;
DerivedClass aDerived;
 aBase.protectFunc(); // Error: protectFunc not
 // accessible
 aDerived.protectFunc(); // Error: protectFunc not
 // accessible in derived class
}
Example
// Example of the private keyword
class BaseClass
{ public:
 // privMem accessible from member function
 int pubFunc() { return privMem; }
private:
 void privMem;
};

class DerivedClass : public BaseClass
{
public:
 void usePrivate(int i)
 { privMem = i; } // Error: privMem not accessible
 // from derived class
};

class DerivedClass2 : private BaseClass
{
public:
 // pubFunc() accessible from derived class
 int usePublic() { return pubFunc(); }
};

void main()
{
 BaseClass aBase;
 DerivedClass aDerived;
 DerivedClass2 aDerived2;
 aBase.privMem = 1; // Error: privMem not accessible
 aDerived.privMem = 1; // Error: privMem not accessible
 // in derived class

Chapter 3 - EC++ Projects 3-1

 aDerived2.pubFunc(); // Error: pubFunc() is private in
 // derived class
}

Example

class base
{
public:
 virtual void f()=0;
 virtual void g()=0;
};
base b; // error : cannot instantiate b because of f and g from base

class derived :public base
{
 void f(); // override f from base
};

derived* d = new derived(); // error : cannot instantiate d because
of g from base

class derived_derived: public derived
{
 void g();
};

derived_derived dd[2]; // Ok all pure functions have been overridden

Example

class point { /* ... */ };
class shape { // abstract class
 point center;
 // ...
public:
 point where() { return center; }
 void move(point p) { center=p; draw(); }
 virtual void rotate(int) = 0; // pure virtual
 virtual void draw() = 0; // pure virtual
 // ...
};

//An abstract class shall not be used as a parameter type, as a
function return type, or as the type of an
//explicit conversion. Pointers and references to an abstract class
can be declared. [Example:
shape x; // error: object of abstract class
shape* p; // OK
shape f(); // error
void g(shape); // error
shape& h(shape&); // OK

Chapter 3 - EC++ Projects 3-1

Example

class CLASS1{
public:
 class CLASS1_1{
 int a;
 int method1_1(){};
 public:
 static int m_si;
 };
 int a;
 static int m_si;
 CLASS1_1 ob1_1;
 int method1(){};
};

CLASS1 ob1;

void main(){
 CLASS1::m_si = 1;
 CLASS1::CLASS1_1::m_si = 2;
}

Example

#include <iostream.h>

void f();
void main()
{
 f();//myclass isn't known here
}
void f()
{
 class myclass
 {
 int i;
 public:
 void Set_i(int n) {i=n;}
 int get_i() {return i;}
 } ob;
 ob.Set_i(10);
 cout<<ob.Get_i();
}

Example

void f()
{
 {
 class local
 {
 public:
 int local_memb;

Chapter 3 - EC++ Projects 3-1

 void local_method(){
 int local_method_attr;
 class local_local
 {
 int local_local_memb;
 void local_local_method(){
 int local_local_method_attr;
 }
 };
 local_local ll;

 }
 class nested
 {
 int nested_memb;
 void nested_method(){
 int nested_method_attr;
 }
 };
 nested n;
 };
 local l;
 l.local_method();
 }
}

class D
{
 void functie(){}
};

Example

#include <iostream.h>
class common_class
{
 static int a;
 int b;
public:
 void Get_ij(int i,int j) {a=i;b=j;}
 void Show();
};
int common_class::a;//define a
void common_class::Show()
{
 cout<<This is static a: "<<a;
 cout<<This is b (non static): "<<b<,endl;
}

Chapter 3 - EC++ Projects 3-1

const

const declaration
member-function const
When modifying a data declaration, the const keyword specifies that the object or
variable is not modifiable (tells the compiler to prevent the programmer for
modifying it). A const variable can get an initial value.
const int i = 5;
i = 10; // Error
i++; // Error

The const keyword instead of the #define preprocessor directive to define constant
values.
You can specify the size of an array with a const variable as follows:
const int maxarray = 255;
char store_char[maxarray];

The const keyword can also be used in pointer declarations.
char *const aptr = mybuf; // Constant pointer
*aptr = 'a'; // Legal
aptr = yourbuf; // Error

A pointer to a variable declared as const can be assigned only to a pointer that is
also declared as const.
const char *bptr = mybuf; // Pointer to constant data
*bptr = 'a'; // Error
bptr = yourbuf; // Legal

When following a member function's parameter list, the const keyword specifies
that the function doesn't modify the object for which it is invoked.
char *strcpy(char *strDestination, const char *strSource);// the
//source string strSource cannot be modified.

When used in conjunction with a function return type, const keyword specifies that
the result of the function cannot be modified:
const char* sir()
{return "1234";}
void main()
{
 char *s1=sir();//Error, the returned value cannot be modified
 const char *s2=sir();//OK
}

Chapter 3 - EC++ Projects 3-1

Declaring a member function with the const keyword specifies that the function is a
"read-only" function that does not modify the object for which it is called.
To declare a constant member function, place the const keyword after the closing
parenthesis of the argument list. The const keyword is required in both the
declaration and the definition. A constant member function cannot modify any data
members or call any member functions that aren't constant. You cannot declare
constructors or destructors with the const keyword.
class Date
{
public:
 Date(int mn, int dy, int yr);
 int getMonth() const; // A read-only function
 void setMonth(int mn); // A write function;
 // cannot be const
private:
 int month;
};

int Date::getMonth() const
{
 return month; // Doesn't modify anything
}
void Date::setMonth(int mn)
{
 month = mn; // Modifies data member
}

You can call constant member functions only for a constant object. This
ensures that the object is never modified.

class BirthDay
{
 int mm,dd,yy;
public:
 BirthDay(int m,int d,int y) {mm=m;dd=d;yy=y;}
 int getMonth() const
 {return mm;}
 int getDay() const
 {return dd;}
 int getYear() const
 {return yy;}
 void setMonth(int m) {mm=m;}
 void setDay(int d) {dd=d;}
 void setYear(int y) {yy=y;}
};

void main()
{
 const BirthDay birthday(14,10,1970);
 birthday.getMonth(); // Okay
 birthday.setMonth(4); // Error

Chapter 3 - EC++ Projects 3-1

}

continue

The continue statement forces immediate transfer of control to the loop-
continuation statement of the smallest enclosing loop. (The "loop-continuation" is
the statement that contains the controlling expression for the loop.) Therefore, the
continue statement can appear only in the dependent statement of an iteration
statement (although it may be the sole statement in that statement).
The next iteration of a do, for, or while statement is determined as follows:
 Within a do or a while statement, the next iteration starts by reevaluating the

expression of the do or while statement.
 A continue statement in a for statement causes the first expression of the for

statement to be evaluated. Then the compiler reevaluates the conditional
expression and, depending on the result, either terminates or iterates the
statement body.

Example

while (i-- > 0)
{
 x = f(i);
 if (x == 1)
 continue;
 y += x * x;
}

The following example shows how the continue statement can be used to bypass
sections of code and skip to the next iteration of a loop:
#include <conio.h>
// Get a character that is a member of the zero-terminated
// string, szLegalString. Return the index of the character
// entered.
int GetLegalChar(char *szLegalString)
{
 char *pch;
 do
 {
 char ch = _getch();
 // Use strchr library function to determine if the
 // character read is in the string. If not, use the
 // continue statement to bypass the rest of the
 // statements in the loop.
 if((pch = strchr(szLegalString, ch)) == NULL)
 continue;
 // A character that was in the string szLegalString
 // was entered. Return its index.
 return (pch - szLegalString);
 // The continue statement transfers control to here.
 } while(1);

Chapter 3 - EC++ Projects 3-1

 return 0;
}

The following example displays the number of spaces contained in the string
introduced by the user:
#include <iostream.h>
void main()
{
 char s[80],*sir;
 int space;
 cout<<"Introduce a string: ";
 cin>>s;
 sir=s;
 for(space=0;*sir;sir++)
 {
 if(*sir!=' ') continue;
 space++;
 }
 cout<<space<<" spaces\n";
}

In the following example the continue statement forces the conditional test to be
executed faster:
void code()
{
 char gata,ch;
 gata=0;
 while(!gata)
 {
 ch=getchar();
 if (ch='$')
 {gata=1;continue;}
 putchar(ch+1);//take the next letter of alphabet
 }
}

default

The default keyword is used within the switch statement. For more information see
switch.

delete

Syntax

 delete pointer
 delete [] pointer

The delete keyword deallocates a block of memory. The argument pointer must
point to a block of memory previously allocated by the new operator. If pointer
points to an array, place empty brackets before pointer.

Chapter 3 - EC++ Projects 3-1

Example
void main()
{
 int *p;
 p=new int (87); // allocates an integer and initializes it
 if (!p)
 {cout<<"Allocation error!\n";exit(1);}
 cout<<"*p= "<<*p;
 delete p;
 }
Example
void main()
{
 int *p,i;
 p=new int[10]; //allocates memory for an array of 10 elements.
 if (!p)
 {cout<<"Allocation error!\n";exit(1);}
 for (i=0;i<10;i++)
 p[i]=2*i;
 for (i=0;i<10;i++)
 cou<<p[i]<<" ";
 delete []p; //the block of memory pointed to by p is deallocated
}

We use the same syntax for dynamically memory allocation/deallocation of objects:
Example
class account
{
 double val;
 char name[80];
public:
 void SetVal(double n, char* s) {val=n;strcpy(name,s);}
 void GetVal(double &n,char *s) {n=val;strcpy(s,name);}
};
void main()
{
 account *p;
 char s[80];
 double n;
 p=new account;
 if (!p) {cout<<Allocation error!\n;exit(1)}
 p->SetVal(12387.87,"Ralph Wilson");
 p->GetVal(n,s);
 cout<<s<<" has an account of: "<<n<<"$"<<endl;
 delete p;
}

The following example uses an initialization:
Example
class account
{
 double val;
 char name[80];
public:

Chapter 3 - EC++ Projects 3-1

 account(double n, char *s)
 {
 val=n;
 strcpy(name,s);
 }
 ~acount()
 {
 cout<<Destructor; cout<<name<<endl;
 }
 void GetVal(double &n,char *s) {n=val;strcpy(s,name);}
};
void main()
{
 account *p;
 char s[80];
 double n;
 p=new acount(12387.87,"Ralph Wilson");
 if (!p) {cout<<Allocation error!\n;exit(1)}
 p->GetVal(n,s);
 cout<<s<<" has an account of: "<<n<<"$"<<endl;
 delete p;
}

The following example illustrates the memory allocation/deallocation for an array of
objects:
class account
{
 double val;
 char name[80];
public:
 account() {} //a constructor without parameters
 account(double n, char *s)
 {
 val=n;
 strcpy(name,s);
 }
 ~acount()
 {
 cout<<Destructor; cout<<name<<endl;
 }
 void SetVal()
 {
 val=n; strcpy(name,s);
 }
 void GetVal(double &n,char *s) {n=val;strcpy(s,name);}
};
void main()
{
 account *p;
 char s[80];
 double n;
 int i;
 p=new account[3];//allocates memory for the whole array

Chapter 3 - EC++ Projects 3-1

 if (!p) {cout<<Allocation error!\n;exit(1)}
 p[0].SetVal(1238.87,"Ralph Wilson");
 p[1].SetVal(144.00,"A.C. Conners");
 p[2].SetVal(-11.23,"B.J. Huston");
 for (i=0;i<3;i++)
 {
 p[i].GetVal(n,s);
 cout<<s<<" has an account of: "<<n<<"$"<<endl;
 }
 delete []p;//the destructor is called for each object member of the
 //array
}

The delete operator can be overloaded in order to perform certain actions. The
following example illustrates the overloading of the delete operator relative to a class:
class place
{
 int longitude,latitude;
public:
 place() {}
 place(int lg,int lt)
 {
 longitude=lg;
 latitude=lt;
 }
 void show()
 {
 cout<<longitude<<" "<<latitude<<endl;
 }
 void *operator new(size_t dim);
 void operator delete(void *p);
};

void *place::operator new(size_t dim)
 {
 cout<<"In my new\n";
 return malloc(dim);
 }
void place::operator delete(void *p)
 {
 cout<<"In my delete\m";
 free(p);
 }
}
void main()
{
 place *p1,*p2;
 p1=new place(10,20);
 if(!p1) {cout<<"Allocation error!\n";exit(1);}
 p2=new place(-10,-20);
 if (!p2) {cout<<"Allocation error!\n";exit(1);}
 p1->show();
 p2->show();

Chapter 3 - EC++ Projects 3-1

 delete p1;
 delete p2;
}

The next example illustrates a global overloading of new and delete operators:
class place
{
 int longitude,latitude;
public:
 place() {}
 place(int lg,int lt)
 {
 longitude=lg;
 latitude=lt;
 }
 void show()
 {
 cout<<longitude<<" "<<latitude<<endl;
 }
};
//new global
void *operator new(size_t dim)
{
 return malloc(dim);
}
//delete global
void operator delete(void *p)
{
 free(p);
}
void main()
{
 place *p1,*p2;
 p1=new place(10,20);
 if(!p1) {cout<<"Allocation error!\n";exit(1);}
 p2=new place(-10,-20);
 if (!p2) {cout<<"Allocation error!\n";exit(1);}
 float *f=new float; //uses the overloaded new too
 if (!f) {cout<<"Allocation error!\n";exit(1);}
 *f=10.10;
 cout<<*f<<endl;
 p1->show();
 p2->show();
 delete p1;
 delete p2;
 delete f; //uses the overloaded delete too
}

do

The do statement executes a statement repeatedly until the specified termination
condition (the expression) evaluates to zero. The test of the termination condition is

Chapter 3 - EC++ Projects 3-1

made after each execution of the loop; therefore, a do loop executes one or more
times, depending on the value of the termination expression. The do-while statement
can also terminate when a break, goto, or return statement is executed within the
statement body.

Syntax

do
statement
while(expression);

The following function uses the do statement to wait for the user to press a number
less or equal to 100:
Example
do
{
 scanf("%d",&num)
}while (num>100);

The following example shows the use of the do-while loop to create a menu
selection function.
void menu()
{
 char ch;
 cout<<"1. Spelling check \n";
 cout<<"2. Correct the misspellings \n";
 cout<<"3. Display the misspellings \n";
 cout<<" Press a key for exiting the program\n";
 cout<<" Select an option: ";
 do {
 cin>>ch; // Read the selection from the keyboard
 switch(ch)
 {
 case '1':

 spell_check();
 break;
 case '2':

 correct_misspell();
 break;
 case '3':

 display_misspell();
 break;
 }
 }while (ch!='1' && ch!='2' &&ch!='3');
}

The following example prompts users for a password and continued to prompt
them until they enter one that matches the value stored in checkword.

#include <stdio.h>
#include <string.h>
void main ()
{
 char checkword[80] = "password";
 char password[80] = "";

Chapter 3 - EC++ Projects 3-1

 do {
 printf ("Enter password: ");
 scanf("%s", password);
 } while (strcmp(password, checkword));
}

double

The double keyword keyword represents a data type (one of the fundamental data
types recognized by C/C++). A variable of type double occupies 8 bytes of memory.
The value representation of floating-point types is implementation-defined.

Example

double d;
long double dl;
double f(double i);
double g(int j);

else

See the if keyword.

Enum

The enum keyword specifies an enumerated type.
Syntax

enum [tag] {enum-list} [declarator];
An enumerated type is a user-defined type consisting of a set of named constants
called enumerators. By default, the first enumerator has a value of 0, and each
successive enumerator is one larger than the value of the previous one, unless you
explicitly specify a value for a particular enumerator. Enumerators needn't have
unique values. The name of each enumerator is treated as a constant and must be
unique within the scope where the enum is defined. An enumerator can be
promoted to an integer value. However, converting an integer to an enumerator
requires an explicit cast, and the results are not defined. Enumerators defined within
a class are accessible only to member functions of that class unless qualified with
the class name (for example, class_name::enumerator). You can use the same
syntax for explicit access to the type name (class_name::tag).

Example

enum { a, b, c=0 };

Chapter 3 - EC++ Projects 3-1

enum { d, e, f=e+2 };

The above example defines a, c, and d to be zero, b and e to be 1, and f to be
3.

Example

enum Days
{

saturday, // saturday = 0 by default
sunday = 0, // sunday = 0 as well
monday, // monday = 1
tuesday, // tuesday = 2
wednesday, // wednesday = 3
thursday, // thursday = 4
friday // friday = 5

 }today // Variable today has type Days

int tuesday; // Error, redefinition of tuesday

enum Days yesterday;
Days tomorrow;

yesterday = monday;

int i = tuesday; // Legal; i = 2
yesterday = 0; // Error; no conversion
yesterday = (Days)0; // Legal, but results undefined
Example
enum coins {penny,nickel,dime,quarter,dolar,half_dolar};
enum coins money;
money=dime;//OK
if (money==quarter)
 printf("Money is a quarter.\n");
printf("%d %d",penny,dime);//displays 0 2

The value of the enumeration can be used like an index:
Example
char
name[][15]={"penny","nickel","dime","quarter","dolar","half_dolar"}
;
money=dolar;
printf("%s",name[money]);

The value of an enumerator or an object of an enumeration type is converted
to an integer by integral promotion.

Example

enum color { red, yellow, green=20, blue };
color col = red;
color* cp = &col;
if (*cp == blue) // ...

makes color a type describing various colors, and then declares col as an object
of that type, and cp as a

Chapter 3 - EC++ Projects 3-1

pointer to an object of that type. The possible values of an object of type color are
red, yellow, green, blue; these values can be converted to the integral

values 0, 1, 20, and 21. Since enumerations are distinct types, objects of type

color can be assigned only values of type color.
color c = 1; // error: type mismatch,

 // no conversion from int to color
int i = yellow; // OK: yellow converted to integral value 1

 // integral promotion

Example

class X {
public:
enum direction { left='l', right='r' };
int f(int i)
{ return i==left ? 0 : i==right ? 1 : 2; }
};
void g(X* p)
{
direction d; // error: direction not in scope
int i;
i = p->f(left); // error: left not in scope
i = p->f(X::right); // OK
i = p->f(p->left); // OK
// ...
}

extern

extern declarator // used when variable or function has external linkage
extern string-literal declarator // used when linkage conventions of another
 // language are being used for the declarator
extern string-literal { declarator-list } // used when linkage conventions of another
 // language are being used for the declarators
The extern keyword declares a variable or function and specifies that it has external
linkage (its name is visible from files other than the one in which it's defined).
When modifying a variable, extern specifies that the variable has static duration (it
is allocated when the program begins and deallocated when the program ends). The
variable or function may be defined in another source file, or later in the same file.
If a function definition does not include a storage-class-specifier, the storage class
defaults to extern. You can explicitly declare a function as extern, but it is not
required.
If the declaration of a function contains the storage-class-specifier extern, the
identifier has the same linkage as any visible declaration of the identifier with file
scope. If there is no visible declaration with file scope, the identifier has external
linkage. If an identifier has file scope and no storage-class-specifier, the identifier
has external linkage. External linkage means that each instance of the identifier
denotes the same object or function.

Chapter 3 - EC++ Projects 3-1

When used with a string, extern specifies that the linkage conventions of another
language are being used for the declarator(s).
string-literal is the name of a language. The language specifier "C++" is the default.
"C" is the only other language specifier currently supported by this compiler. This
allows you to use functions or variables defined in a C module.
Example
// Example of the extern keyword
extern "C" int printf(const char *, ...);

extern "C"
{
 int getchar(void);
 int putchar(int);
}

Example

/*** SOURCE FILE ONE ***/

extern int i; /* Reference to i, defined below */
void next(void); /* Function prototype */

void main()
{
 i++;
 printf("%d\n", i); /* i equals 4 */
 next();
}

int i = 3; /* Definition of i */
void next(void)
{
 i++;
 printf("%d\n", i); /* i equals 5 */
 other();
}

/*** SOURCE FILE TWO ***/

extern int i; /* Reference to i in */
 /* first source file */
void other(void)
{
 i++;
 printf("%d\n", i); /* i equals 6 */
}

The two source files in this example contain a total of three external declarations of

i. Only one declaration is a "defining declaration." That declaration, int i = 3;
defines the global variable i and initializes it with initial value 3. The "referencing"
declaration of i at the top of the first source file using extern makes the global
variable visible prior to its defining declaration in the file. The referencing

Chapter 3 - EC++ Projects 3-1

declaration of i in the second source file also makes the variable visible in that
source file. If a defining instance for a variable is not provided in the translation
unit, the compiler assumes there is an
extern int x;

referencing declaration and that a defining reference
int x = 0;

appears in another translation unit of the program.
All three functions, main, next, and other, perform the same task: they
increase i and print it. The values 4, 5, and 6 are printed.

If the variable i had not been initialized, it would have been set to 0 automatically.
In this case, the values 1, 2, and 3 would have been printed.
There is another use (an optional use) for extern keyword: when you use a global
variable within the body of a function you can declare it as extern like in the
following example:
int first,last; //first and last are defined like global variables
void main()
{
extern int first; //optional use of the extern declaration;

//it isn't necessary
}

false

This keyword is one of the two values that a variable of type bool can have. If i is
of type bool, then the statement i=false; assigns false to i. See the bool keyword.

float

The float keyword keyword represents a data type (one of the fundamental data
types recognized by C/C++). A variable of type float occupies 4 bytes of memory.
The value representation of floating-point types is implementation-defined.

Example

float f=1.2;
float myFunction(float i);
float g(int j);

for

for statement lets you repeat a statement or compound statement a specified number
of times. The body of a for statement is executed zero or more times until an optional

Chapter 3 - EC++ Projects 3-1

condition becomes false. You can use optional expressions within for statement to
initialize and change values during the for statement's execution.
Syntax
iteration-statement :
for ([init-expression] ; [cond-expression] ; [loop-expression])
statement

Execution of a for statement proceeds as follows:
1. The init-expression, if any, is evaluated. This specifies the initialization for

the loop. There is no restriction on the type of init-expression.

2. The cond-expression, if any, is evaluated. This expression must have
arithmetic or pointer type. It is evaluated before each iteration. Three results
are possible:

 If cond-expression is true (nonzero), statement is executed; then loop-
expression, if any, is evaluated. The loop-expression is evaluated after
each iteration. There is no restriction on its type. Side effects will
execute in order. The process then begins again with the evaluation of
cond-expression.

 If cond-expression is omitted, cond-expression is considered true, and
execution proceeds exactly as described in the previous paragraph. A
for statement without a cond-expression argument terminates only
when a break or return statement within the statement body is
executed, or when a goto (to a labeled statement outside the for
statement body) is executed.

 If cond-expression is false (0), execution of the for statement

terminates and control passes to the next statement in the program.
A for statement also terminates when a break, goto, or return statement within the
statement body is executed. A continue statement in a for loop causes loop-
expression to be evaluated. When a break statement is executed inside a for loop,
loop-expression is not evaluated or executed. This statement
for(;;);

is the customary way to produce an infinite loop which can only be exited with a
break, goto, or return statement.
The following example waits for the user to press key 'A':
char ch='\0';
for(;;)
{
 ch=getchar(); //read a character
 if (ch=='A') break; //terminates the for loop
}
printf("You pressed A");

The following example counts space (' ') and tab ('\t') characters in the array
of characters named line and replaces each tab character with a space.

Chapter 3 - EC++ Projects 3-1

Example

for (i = space = tab = 0; i < MAX; i++)
{
 if (line[i] == ' ')
 space++;
 if (line[i] == '\t')
 {
 tab++;
 line[i] = ' ';
 }
}

The following example removes spaces from the beginning of the string str. It uses
a for loop without body:
for(;*str==' ';str++);

You can use the for loop to generate a delay:
for(int t=0;t<SOME_VALUES;t++);

If you want to control the for loop by more than one variable you will use the ,
operator:
for(x=0,y=0;x+y,10;++x)
{
 y=getchar();
 y=y-'0';
 .
 .
 .
}

Other examples:
void message(int line,char *msg)
{
 int i,j;
 for (i=1,j=strlen(msg);i<j;i++,j--)
 {
 _settextposition(line,i);printf("%c",msg[i-1]);
 _settextposition(line,j);printf("%c",msg[j-1]);
 }
}

For example, you can use the following function to enter a user in a remote system.
The user can try three times to enter the password. The for loop ends when all the
trials ended or when the user enters the correct password:
void sign()
{
 char sir[20];
 int x;
 for (x=0;x<3 && strcmp(sir,"parola");++x)
 {printf("Enter the password: ");gets(sir);}
 if (x==3) return;
/*else login the user to … */
}

Chapter 3 - EC++ Projects 3-1

The following for loop uses the initialization and incrementation sequences in an
unusual but perfect valid manner:
int numsquare(int num);
int numread();
int prompt();
void main()
{
 int t;
 for (prompt();t=numread();prompt()) //if the number=0 the for loop

numsquare(t); //terminates.
}

int prompt()
{
 printf("Enter a number: ");
 return 0;
}
int numread()
{
 int t;
 scanf("%d",&t);
 return t;
}
int numsquare(int num)
{
 printf("%d",num*num);
 return num*num;
}

friend

friend class-name;
friend function-declarator;

The friend keyword allows a function or class to gain access to the private and
protected members of a class. The name of a friend is not in the scope of the class,
and the friend is

not called with the member access operators unless it is a member of another
class.
The following example illustrates the differences between members and
friends:

class X {
int a;
friend void friend_set(X*, int);
public:
void member_set(int);
};
void friend_set(X* p, int i) { p->a = i; }
void X::member_set(int i) { a = i; }
void f()
{
X obj;

Chapter 3 - EC++ Projects 3-1

friend_set(&obj,10);
obj.member_set(10);
}
Example
class A {
typedef int I; // private member
I f();
friend I g(I);
static I x;
};
A::I A::f() { return 0; }
A::I g(A::I p = A::x);
A::I g(A::I p) { return 0; }
A::I A::x = 0;
Example of a friend class
class YourClass
{
friend class YourOtherClass; // Declare a friend class
private:
 int topSecret;
};

class YourOtherClass
{
public:
 void change(YourClass yc);
};

void YourOtherClass::change(YourClass yc)
{ yc.topSecret++; }// Can access private data

Example

class A {
class B { };
friend class X;
};
class X : A::B { // ill-formed: A::B cannot be accessed
// in the base-clause for X
A::B mx; // OK: A::B used to declare member of X
class Y : A::B { // OK: A::B used to declare member of X
A::B my; // ill-formed: A::B cannot be accessed
// to declare members of nested class of X
};
};
Example
class X {
enum { a=100 };
friend class Y;
};
class Y {
int v[X::a]; // OK, Y is a friend of X
};

Chapter 3 - EC++ Projects 3-1

class Z {
int v[X::a]; // error: X::a is private
};
Example of a friend function
class Complex
{
public:
 Complex(float re, float im);
 friend Complex operator+(Complex first, Complex second);
private:
 float real, imag;
};

Complex operator+(Complex first, Complex second)
{
 return Complex(first.real + second.real,
 first.imag + second.imag);
}

Friendship is neither inherited nor transitive.
Example
class A {
friend class B;
int a;
};
class B {
friend class C;
};
class C {
void f(A* p)
{
p->a++; //error: C is not a friend of A
// despite being a friend of a friend
}
};
class D : public B {
void f(A* p)
{
p->a++; //error: D is not a friend of A
// despite being derived from a friend
}

goto

The goto statement performs an unconditional transfer of control to the named label.
The label must be in the current function and can appear before only one statement
in the same function.

Syntax

statement :
labeled-statement
jump-statement

Chapter 3 - EC++ Projects 3-1

jump-statement :
goto identifier ;
labeled-statement :
identifier : statement

A statement label is meaningful only to a goto statement; in any other context, a
labeled statement is executed without regard to the label.
A jump-statement must reside in the same function and can appear before only one
statement in the same function. The set of identifier names following a goto has its
own name space so the names do not interfere with other identifiers. Labels cannot
be redeclared.
Example
void main()
{
 int i, j;

 for (i = 0; i < 10; i++)
 {
 printf("Outer loop executing. i = %d\n", i);
 for (j = 0; j < 3; j++)
 {
 printf(" Inner loop executing. j = %d\n", j);
 if (i == 5)
 goto stop;
 }
 }
 /* This message does not print: */
 printf("Loop exited. i = %d\n", i);
 stop: printf("Jumped to stop. i = %d\n", i);
}

The following code fragment illustrates use of the goto statement and an identifier
label to escape a tightly nested loop:
for(p = 0; p < NUM_PATHS; ++p)
{
 NumFiles = FillArray(pFileArray, pszFNames)
 for(i = 0; i < NumFiles; ++i)
 {
 if((pFileArray[i] = fopen(pszFNames[i], "r")) == NULL)
 goto FileOpenError;
 // Process the files that were opened.
 }
}
FileOpenError:
 cout << "Fatal file open error. Processing interrupted.\n");

It is illegal to jump past a declaration with an initializer unless: the declaration
is enclosed in a block that is not entered or the jump is from a point where the
variable has already been initialized.

The following is an example of this error:
void func()
{
 goto label1;

Chapter 3 - EC++ Projects 3-1

 int i = 1; // error, initialization skipped
 {
 int j = 1; // OK, this block is never entered
 }
label1:;
}

Here is another example of this error:
void f()
{
// ...
goto lx; // ill-formed: jump into scope of a
// ...
ly:
X a = 1;
// ...
lx:
goto ly; // OK, jump implies destructor
// call for a followed by construction
// again immediately following label ly
}

if

The if statement controls conditional branching. The body of an if statement is
executed if the value of the expression is nonzero.
Syntax
if(expression)
statement1
[else
statement2]

The if keyword executes statement1 if expression is true (nonzero); if else is present
and expression is false (zero), it executes statement2. After executing statement1 or
statement2, control passes to the next statement.
Example
if (i > 0)
 y = x / i;
else
{
 x = i;
 y = f(x);
}

In this example, the statement y = x/i; is executed if i is greater than 0. If i is less
than or equal to 0, i is assigned to x and f(x) is assigned to y. Note that the
statement forming the if clause ends with a semicolon.
When nesting if statements and else clauses, use braces to group the statements and
clauses into compound statements that clarify your intent. If no braces are present,
the compiler resolves ambiguities by associating each else with the closest if that
lacks an else.

Chapter 3 - EC++ Projects 3-1

Example

if (i > 0) /* Without braces */
 if (j > i)
 x = j;
 else
 x = i;

The else clause is associated with the inner if statement in this example. If i is less
than or equal to 0, no value is assigned to x.

Example

if (i > 0) /* With braces */
{
 if (j > i)
 x = j;
}
else
 x = i;

The braces surrounding the inner if statement in this example make the else clause
part of the outer if statement. If i is less than or equal to 0, i is assigned to x.

A name introduced by a declaration in a condition (either introduced by the type-
specifier-seq or the declarator of the condition) is in scope from its point of
declaration until the end of the substatements controlled by the condition. If the
name is redeclared in the outermost block of a substatement controlled by the
condition, the declaration that re-declares the name is ill-formed:

Example

if (int x = f()) {
int x; // ill-formed, redeclaration of x
}
else {
int x; // ill-formed, redeclaration of x
}

A usual programming construction is if-else-if. The syntax is:
if (expression)
 statement1;
else if (expression)
 statement2;
else if (expression)
 statement3;
 .
 .
 .
else
 statementN;

The conditions are evaluated from bottom to top. As soon as a true condition is
encountered, the associated statement will be executed and the rest of the
construction will be ignored. If none of the conditions is true, the final else will be
executed. That means that if all other conditions fail, the last else statement will be

Chapter 3 - EC++ Projects 3-1

executed. If there is no final else there will be no action, in case that other
conditions are false.

Example

void main()
{
 int magic,guess;
 magic=rand();//generates the magic number
 printf("Guess the number: ");
 scanf("%d",&guess);
 if (guess==magic)
 {
 printf("**Correct**");
 printf(" %d is the magic number",magic);
 }
 else if (guess>magic)
 printf("Error, too big!");
 else printf("Error, too small!");
}

inline

The inline specifier instructs the compiler to replace function calls with the code of
the function body. This substitution is "inline expansion" (sometimes called
"inlining"). Inline expansion alleviates the function-call overhead at the potential
cost of larger code size. A function defined within a class definition is an inline
function. The inline specifier shall not appear on a block scope function declaration.
As with normal functions, there is no defined order of evaluation of the arguments
to an inline function. In fact, it could be different from the order in which the
arguments are evaluated when passed using normal function call protocol.

Chapter 3 - EC++ Projects 3-1

An inline function shall be defined in every translation unit in which it is used
and shall have exactly the same definition in every case. If a function with
external linkage is declared inline in one translation unit, it shall be declared
inline in all translation units in which it appears. No diagnostic is required. An
inline function with external linkage shall have the same address in all
translation units.
Example
#include <iostream.h>
inline int max(int a, int b)
{
 return a>b ? a : b;
}
void main()
{
 cout<<max(10,20);
 cout<<" "<<max(99,88);
 return 0;
}

In the above example max() function is expanded inline instead of being
called.

A class's member functions can be declared inline either by using the inline
keyword or by placing the function definition within the class definition.

Example

class MyClass
{
public:
 void print() { cout << i << ''; } // Implicitly inline
private:
 int i;
};

Example

class myclass
{
 int a,b;
public:
 void init(int i,int j);
 void show();
};
inline void clasamea::init(int i,int j)
{
 a=i;b=j;
}
inline void show()
{
 cout<<a<<" "<<b<<endl;
}

Chapter 3 - EC++ Projects 3-1

int

The int keyword represents a data type (one of the fundamental data types
recognized by C/C++). The size of a signed or unsigned int item is the standard size
of an integer on a particular machine. For example, in 16-bit operating systems, the
int type is usually 16 bits, or 2 bytes. In 32-bit operating systems, the int type is
usually 32 bits, or 4 bytes. Thus, the int type is equivalent to either the short int or
the long int type, and the unsigned int type is equivalent to either the unsigned
short or the unsigned long type, depending on the target environment. The int
types all represent signed values unless specified otherwise.

Example

int i, j, n;
short int si;
unsigned int ui;
void f(int i);
float g(int i);

long

The long keyword is a conversion specifier. For more information about conversion
specifiers see signed.
If the long keyword is used alone or together with int it designates a 32-bit integer.
The long keyword can be preceded by either the keyword signed or the keyword
unsigned. The int keyword is optional and can be omitted.
[signed | unsigned] long [int] declarator-list

The long keyword can also be used together with double type. In this case it
designates a 80 bits double.
long double declarator-list

Example

long int i;
long i;//same as "long int i;"
long double d;
unsigned long int l;

new

Syntax

 new [placement] type-name [initializer]
 new [placement] (type-name) [initializer]

The new keyword allocates memory for an object of type-name from the free store
and returns a suitably typed, nonzero pointer to an object. If unsuccessful, by default
new returns zero.

Chapter 3 - EC++ Projects 3-1

The following list describes the elements of new:
placement
Provides a way of passing additional arguments if you overload new.
type-name
Specifies type to be allocated. If the type specification is complicated, it can be
surrounded by parentheses to force the order of binding.
initializer
Provides a value for the initialized object. Initializers cannot be specified for arrays.
The new operator will create arrays of objects only if the class has a default
constructor.
The new operator cannot be used to allocate a function; however, it can be used to
allocate a pointer to a function.
When new is used to allocate a single object, it yields a pointer to that object; the
resultant type is new-type-name * or type-name *. When new is used to allocate a
singly dimensioned array of objects, it yields a pointer to the first element of the
array, and the resultant type is new-type-name * or type-name *. When new is used
to allocate a multidimensional array of objects, it yields a pointer to the first element
of the array, and the resultant type preserves the size of all but the leftmost array
dimension. For example
new float[10][25][10]

yields type float (*)[25][10]. Therefore, the following code will not work
because it attempts to assign a pointer to an array of float with the dimensions

[25][10] to a pointer to type float:
float *fp;
fp = new float[10][25][10];

The correct expression is:
float (*cp)[25][10];
cp = new float[10][25][10];

The definition of cp allocates a pointer to an array of type float with dimensions

[25][10] - it does not allocate an array of pointers.
All but the leftmost array dimensions must be constant expressions that evaluate to
positive values; the leftmost array dimension can be any expression that evaluates to
a positive value. When allocating an array using the new operator, the first
dimension can be zero - the new operator returns a unique pointer.
The type-specifier-list cannot contain const, volatile, class declarations, or
enumeration declarations. Therefore, the following expression is illegal:
volatile char *vch = new volatile char[20];

The new operator does not allocate reference types because they are not objects.
If there is insufficient memory for the allocation request, by default operator new
returns NULL.
For more examples see the delete operator.

Chapter 3 - EC++ Projects 3-1

operator

Syntax

type operator operator-symbol (parameter-list)

The operator keyword declares a function specifying what operator-symbol means
when applied to instances of a class. This gives the operator more than one
meaning, or "overloads" it. The compiler distinguishes between the different
meanings of an operator by examining the types of its operands.
You can overload the following operators: + - * / % ^ ! = < > += -= ^= &= |= <<
>> <<= <= >= && || ++ -- () [] new delete & | ~ *= /= %= >>= == != , -> ->*
If an operator can be used as either a unary or a binary operator, you can overload
each use separately.
You can overload an operator using either a nonstatic member function or a global
function that's a friend of a class. A global function must have at least one parameter
that is of class type or a reference to class type.
If a unary operator is overloaded using a member function, it takes no arguments. If
it is overloaded using a global function, it takes one argument.
If a binary operator is overloaded using a member function, it takes one argument. If
it is overloaded using a global function, it takes two arguments.
You cannot define new operators, such as **.
You cannot change the precedence or grouping of an operator, nor can you change
the numbers of operands it accepts.
You cannot redefine the meaning of an operator when applied to built-in data types.
Overloaded operators cannot take default arguments.
You cannot overload any preprocessor symbol, nor can you overload the following
operators: . .* :: ?:

The assignment operator has some additional restrictions. It can be overloaded only
as a nonstatic member function, not as a friend function. It is the only operator that
cannot be inherited; a derived class cannot use a base class's assignment operator.
Example
class Complex
{
public:
 Complex(float re, float im);
 Complex operator+(Complex &other);
 friend Complex operator+(int first, Complex &second);
private:
 float real, imag;
};

// Operator overloaded using a member function
Complex Complex::operator+(Complex &other)
{
return Complex(real + other.real, imag + other.imag);

Chapter 3 - EC++ Projects 3-1

};

// Operator overloaded using a friend function
Complex operator+(int first, Complex &second)
{
return Complex(first + second.real, second.imag);
}
Example for [] operator
class myclass
{
 int a[3];
public:
 myclass(int i,int j,int k)
 {a[0]=i;a[1]=j;a[2]=k;}
 int &operator[](int i)
 {return a[i];}
};
void main()
{
 myclass ob(1,2,3);
 cout<<ob[1];//displays 2
 cout<<" ";
 ob[1]=25;//[]is in the left of =
 cout<<ob[1];//displays 25
}
Example for () operator
class place
{
 int longitude,latitude;
public:
 place() {}
 place(int lg,int lt)
 {
 longitude=lg;
 latitude=lt;
 }
 void show()
 {
 cout<<longitude<<" "<<latitude<<endl;
 }
 place operator+(place op2);
 place operator ()(int i,int j);
};
place place::operator+(place op2)
{
 place temp;
 place.longitude=op2.longitude+ longitude;
 place.latitude=op2. Latitude+ latitude;
 return temp;
}
place place::operator()(int i,int j)
{

Chapter 3 - EC++ Projects 3-1

 longitude=i;
 latitude=j;
 return *this;
}
void main()
{
 place ob1(10,20),ob2(1,1);
 ob1.show();
 ob1(7,8);//can be executed alone
 ob1.show();
 ob1=ob2+ob1(10,10);//can be used in expressions
 ob1.show();
}
Example for -> operator
class myclass
{
 public:
 int i;
 myclass operator->() {return this;}
};
void main()
{
 myclass ob;
 ob->i;//it's the same with ob.i
}
Example for << operator
class PhoneBook
{
 char name[80];
 int zipcode;
 int prefix;
 int number;
public:
 PhoneBook() {}
 PhoneBook(char *n,int a,int p,int num)
 {
 strcpy(name,n);
 zipcode=a;
 prefix=p;
 number=num;
 }
friend ostream &operator<<(ostream &os,PhoneBook &pb);
friend istream &operator<<(istream &is,PhoneBook &pb);
};
ostream &operator<<(ostream &os,PhoneBook &pb)
{
 os<<pb.name<<" ";
 os<<"("<<pb.zipcode<<")";
 os<<pb.prefix<<"-"<<pb.number<<endl;
 return os;
}
istream &operator<<(istream &is,PhoneBook &pb)

Chapter 3 - EC++ Projects 3-1

{
 cout<<"Enter the name:";
 is>>pb.name;
 cout<<"Enter the zipcode";
 is>>pb.zipcode;
 cout<<"Enter the prefix";
 is>>pb.prefix;
 cout<<"Enter the number";
 is>>pb.number;
 return is;
}
void main()
{
 PhoneBook pb;
 cin>>a;
 cout<<a;
}

For examples about overloading the delete and new operators see the delete
operator.

private

Syntax
private: [member-list]
private base-class

When preceding a list of class members, the private keyword specifies that those
members are accessible only from member functions and friends of the class. This
applies to all members declared up to the next access specifier or the end of the class.
When preceding the name of a base class, the private keyword specifies that the
public and protected members of the base class are private members of the derived
class.
Default access of members in a class is private. Default access of members in a
structure or union is public.
Default access of a base class is private for classes and public for structures. Unions
cannot have base classes.

Example

class X
{
 int a; // X::a is private by default
};

Example

class C
{

private:

Chapter 3 - EC++ Projects 3-1

 C(){} // private constructor
public:

 C(int a, int b)

 {}

};

void main ()

{

 C c; // no access

 C c2(1, 2); // Ok

 C* pc = new C; // no access to private constructor

 C* pc2 = new C(1,2); // Ok : public constructor

}

Example

class BaseClass
{
private:
 int priv_b;
public:
 int Geti() {return i;}
};

class Derived1: public BaseClass
{
public:
usePrivate(int i) {priv_b=i;} //Error: priv_b not accessible

//from derived class
};

class Derived2: private BaseClass
{
public:
// pubFunc() accessible from derived class
int usePublic() { return pubFunc(); }

Chapter 3 - EC++ Projects 3-1

};

void main()
{
 BaseClass aBase;
 Derived1 aDerived;
 Derived2 aDerived2;
 aBase.priv_b = 1; //Error:priv_b not accessible
 aDerived.priv_b = 1; //Error:priv_b not accessible in derived
class
 aDerived2.pubFunc(); //Error:pubFunc() is private in derived
class
}
Example
class B; // forward declaration
class A
{
friend void both_friend(A& ra, B& rb);
private:
 int private_mA;
 friend void Afriend(A a);
public:
 int public_mA;
};

void Afriend(A a)
{
 a.private_mA = 3; // Ok: private_m is private in class
}

class B: private A
{
 friend void both_friend(A& ra, B& rb);
private:
 int private_mB;
public:
 friend void Bfriend()
 {
 B b;
 b.public_mA=1; // Ok: m is private in class B
 b.A::public_mA=4; // Ok: same as above
 b.private_mA = 2; // Wrong: private_m is inherited in B with no
acces
 // rights
 }
};

void both_friend(A& ra, B& rb)
{
 ra.private_mA = 10; // Ok: friend of A
 rb.private_mB = 11; // Ok: friend of B
}

Chapter 3 - EC++ Projects 3-1

protected

Syntax
protected: [member-list]
protected base-class

When preceding a list of class members, the protected keyword specifies that those
members are accessible only from member functions and friends of the class and its
derived classes. This applies to all members declared up to the next access specifier
or the end of the class.
When preceding the name of a base class, the protected keyword specifies that the
public and protected members of the base class are protected members of the derived
class.
Default access of members in a class is private. Default access of members in a
structure or union is public.
Default access of a base class is private for classes and public for structures. Unions
cannot have base classes.

Example

class BaseClass
{
protected:
 int protectFunc();
};

class DerivedClass : public BaseClass
{
public:
 int useProtect()
 { protectFunc(); } // protectFunc accessible
 // from derived class
};

void main()
{
BaseClass aBase;
DerivedClass aDerived;
aBase.protectFunc(); // Error: protectFunc not accessible
aDerived.protectFunc(); // Error: protectFunc not
 // accessible in derived class
}
Example
class Base
{
 protected:
 int i,j;
 public:
 void Set_ij(int a,int b) {i=a;j=b;}

Chapter 3 - EC++ Projects 3-1

 void Show_ij()(cout<<i<<" "<<j<<endl;}
};
class Derived1: protected Base
{
 int k;
 public:
 void Set_k(){Set_ij(10,12);k=i*j;}
 void ShowAll() {cout<<k<<" ";Show_ij();}
};
void main()
{
 Derived1 ob;
 ob.Set_ij(2,3);// illegal; Set_ij() is a protected member of
Derived1
 ob.Set_k(); // OK, public member of Derived1
 ob.ShowAll(); // OK, public member of Derived1
 ob.Show_ij(); // illegal; Show_ij() is a protected member of
Derived1
}

Example
class C
{
private:
 C(){} // private constructor
protected:
 C(int a){}
public:
 C(int a, int b)
 {}
};

void main ()
{
 C c; // no access
 C c1(1); // no access
 C c2(1, 2); // Ok
 C* pc = new C; // no access to private constructor
 C* pc1 = new C(1); // no access to protected constructor
 C* pc2 = new C(1,2); // Ok : public constructor
}
Example
class C
{
public:
 void publicFC()
 {
 }
protected:
 void protectedFC()
 {
 }

Chapter 3 - EC++ Projects 3-1

private:
 void privateFC()
 {
 }
};

class D: public C
{
public:
 void privateFC() // overrided method from base class
 {
 }
};

void main()
{
 C c;
 c.publicFC(); // Ok
 c.protectedFC(); // no access to protected method
 c.privateFC(); // no access to private method
 D d;
 d.C::publicFC(); // Ok
 d.C::protectedFC(); // no access to protected method from base
class
 d.C::privateFC(); // no access to private method from base class
 d.privateFC(); // Ok: call to overrided method from class D
}

public

Syntax
public: [member-list]
public base-class

When preceding a list of class members, the public keyword specifies that those
members are accessible from any function. This applies to all members declared up
to the next access specifier or the end of the class.
When preceding the name of a base class, the public keyword specifies that the public
and protected members of the base class are public and protected members,
respectively, of the derived class.
Default access of members in a class is private. Default access of members in a
structure or union is public.
Default access of a base class is private for classes and public for structures. Unions
cannot have base classes.

Example

class BaseClass
{
public:
 int pubFunc();

Chapter 3 - EC++ Projects 3-1

};

class DerivedClass : public BaseClass
{
};
void main()
{
 BaseClass aBase;
 DerivedClass aDerived;
 aBase.pubFunc(); // pubFunc() is accessible from any
function
 aDerived.pubFunc(); // pubFunc() is still public in derived
class
}
Example
class C
{
private:
 C(){} // private constructor
protected:
 C(int a){}
public:
 C(int a, int b)
 {}
};

void main ()
{
 C c; // no access
 C c1(1); // no access
 C c2(1, 2); // Ok
 C* pc = new C; // no access to private constructor
 C* pc1 = new C(1); // no access to protected constructor
 C* pc2 = new C(1,2); // Ok : public constructor
}
Example
class Base
{
 int i,j;
public:
 void Set_ij(int a, int b) {i=a;j=b;}
 void Show() {cout<<i<<" "<<j<<"\n";}
};
class Derived: public Base
{
 int k;
public:
 Derived(int x) {k=x;}
 void Show_k() {cout<<k<<"\n";}
};
void main()
{

Chapter 3 - EC++ Projects 3-1

 Derived ob(3);
 ob.Set_ij(1,2);//access to the base member
 ob.Show(); //access to the base member
 ob.Show_k(); //uses the derived class member
}

register

The register keyword specifies that the variable is to be stored in a machine register,
if possible.
The register specifier like the auto specifier can be applied only to names of objects
declared in a block or to function parameters. They specify that the named object has
automatic storage duration. An object declared without a storage-class-specifier at
block scope or declared as a function parameter has automatic storage duration by
default.
The register specifier can be applied only to names of objects declared in a block
(local variables) or to function parameters. The register variables are ideal for loop
control; it is recommended to use a register variable in places where that variable is
referred many times. Usually there can be kept at least two register variables of type
char or int in the CPU registers.
Example
int powerint(register int m, register int e)
{

register int temp; //m, e, temp are declared as register
//variables

temp=1; //for speed optimization.
for (;e;e--) temp*=m;
return temp;

}

Example

void back_display(char *s);
void main()
{
 back_display("I like C++");
}
void back_display(char *s)
{ register int t;
 for (t=strlen(s)-1;t>0;t--) putchar(s[t]);
}

return

Syntax
return [expression];

The return statement allows a function to immediately transfer control back to the
calling function (or, in the case of the main function, transfer control back to the

Chapter 3 - EC++ Projects 3-1

operating system). The return statement accepts an expression, which is the value
passed back to the calling function. Functions of type void, constructors, and
destructors cannot specify expressions in the return statement; functions of all other
types must specify an expression in the return statement.
When the flow of control exits the block enclosing the function definition, the result
is the same as it would be if a return statement with no expression had been executed.
This is illegal for functions that are declared as returning a value.
A function can have any number of return statements.

Example

double fMultip()
{
 double a;
 a = 4.87 * 3;
 return (a);
}

Example

void draw(int I, long L);
long sq(int s);
int main()
{
 long y;
 int x;
 y = sq(x);
 draw(x, y);
}

long sq(int s)
{
 return(s * s);
}

void draw(int i, long L)
{
 /* Statements defining the draw function here */
 return;
}

In this example, the main function calls two functions: sq and draw. The sq
function returns the value of x * x to main, where the return value is assigned to
y. The draw function is declared as a void function and does not return a value.
The following function returns a pointer to the first occurrence of character c in the
string s.

Example

char *find(char c,char *s)
{
 while(c!=*s && *s) s++;

Chapter 3 - EC++ Projects 3-1

 return (s);
}

When an object is returned by a function, a temporary object is created to store the
return value. After the value is returned the object is destroyed.

Example

class myclass
{
 int i;
public:
 void Set_i(int n) {i=n;}
 int Get_i(return i;}
};
myclass f();
void main()
{
 myclass o;
 o=f();
 cout<<o.Get_i()<<endl;
}
myclass f()
{
 myclass x;
 x.Set_i(1);
 return x;
}

short

The short keyword is a conversion specifier. For more information about conversion
specifiers see signed.
The short keyword designates a 16-bit integer. The short keyword can be preceded
by either the keyword signed or the keyword unsigned. The int keyword is optional
and can be omitted.
[signed | unsigned] short [int] declarator-list;
Example
short int i;
short i;//same as "short int i;"

signed

The signed keyword is a conversion specifier.
All fundamental types excepted void can be preceded by several conversion
specifiers. A conversion specifier is used for the fundamental type modifying in order
to adapt to many different cases. Here is the list of conversion specifiers: signed,
unsigned, long, short.

Chapter 3 - EC++ Projects 3-1

The signed keyword indicates that the most significant bit of an integer variable
represents a sign bit rather than a data bit. This keyword is optional and can be used
with any of the character and integer types.
[signed] type-qualifier[int]identifier-name;

Example

signed int i; //signed is default;
signed i; //same as "signed int i;"
signed char ch;//unsigned is default for char

sizeof

Syntax
sizeof expression

The sizeof keyword gives the amount of storage, in bytes, associated with a variable
or a type (including aggregate types). This keyword returns a value of type size_t.
The expression is either an identifier or a type-cast expression (a type specifier
enclosed in parentheses).
When applied to a structure type or variable, sizeof returns the actual size, which
may include padding bytes inserted for alignment. When applied to a statically
dimensioned array, sizeof returns the size of the entire array. The sizeof operator
cannot return the size of dynamically allocated arrays or external arrays.

Examples

size_t i = sizeof(int);

struct s{
 char c;
 int i;
};
size_t size = sizeof(s);

int array[] = { 1, 2, 3, 4, 5 }; // sizeof(array) is 20
 // sizeof(array[0]) is 4
size_t sizearr = sizeof(array)/sizeof(array[0]);
 // Count of items in array
union u
{
 char ch;
 int i;
 float f;
 char sir[10];
};
size_t size_u=sizeof(sir); //sizeof(u)=size of the biggest

element //of the union; in this case
sir occupies //the largest amount of
memory

Chapter 3 - EC++ Projects 3-1

static

The keyword static can be used to declare a local variable with static storage
duration.
(the variable is allocated when the program begins and deallocated when the
program ends) and initializes it to 0 unless another value is specified.
When modifying a variable or function at file scope, the static keyword specifies
that the variable or function has internal linkage (its name is not visible from outside
the file in which it is declared).
The keyword static applied to a class data member in a class definition gives the
data member static storage duration.
EXAMPLE

static int i; // Variable accessible only from this file

static void func(); // Function accessible only from this file
EXAMPLE

int max_so_far(int crt)
{
 static int maxim; // Variable whose value is retained
 // between each function call
 if(crt > maxim)
 maxim = crt;
 return maxim;
}
Example
class Account
{
public:
 static void setInterest(float newValue) // Member function
 { currentRate = newValue; } // that accesses
 // only static
 // members
private:
 char name[30];
 float total;
 static float currentRate; // One copy of this member is
 // shared among all instances
 // of Account
};

// Static data members must be initialized at file scope, even
// if private.
float Account::currentRate = 0.3;

Chapter 3 - EC++ Projects 3-1

When you specify a base class as private, it affects only nonstatic members. Public
static members are still accessible in the derived classes. However, accessing
members of the base class using pointers, references, or objects can require a
conversion, at which time access control is again applied.
Example
class Base
{
public:
 int Print(); // Nonstatic member.
 static int CountOf(); // Static member.
};
// Derived1 declares Base as a private base class.
class Derived1 : private Base
{
};
// Derived2 declares Derived1 as a public base class.
class Derived2 : public Derived1
{
 int ShowCount(); // Nonstatic member.
};
// Define ShowCount function for Derived2.
int Derived2::ShowCount()
{
 // Call static member function CountOf explicitly.
 int cCount = Base::CountOf(); // OK.

 // Call static member function CountOf using pointer.
 cCount = this->CountOf(); // Error. Conversion of
 // Derived2 * to Base * not
 // permitted.
 return cCount;
}

struct

Syntax
struct [tag] { member-list } [declarators];
[struct] tag declarators;

The struct keyword defines a structure type and/or a variable of a structure type.
A structure type is a user-defined composite type. It is composed of "fields" or
"members" that can have different types.
A structure is the same as a class except that its members are public by default.

Structure variables can be initialized. The initialization for each variable must
be enclosed in braces.

Example

struct PERSON // Declare PERSON struct type
{
 int age; // Declare member types

Chapter 3 - EC++ Projects 3-1

 long ss;
 float weight;
 char name[25];
} family_member; // Define object of type PERSON

 struct PERSON sister;
 PERSON brother;

 sister.age = 13; // assign values to members
 brother.age = 7;

Example

struct POINT // Declare POINT structure
{ int x; // Define members x and y
 int y;
} spot = { 20, 40 }; // Variable spot has // values x=20,
y=40

Example

struct CELL // Declare CELL bit field
{
 unsigned character : 8; // 00000000 ????????
 unsigned foreground : 3; // 00000??? 00000000
 unsigned intensity : 1; // 0000?000 00000000
 unsigned background : 3; // 0???0000 00000000
 unsigned blink : 1; // ?0000000 00000000
} screen[25][80]; // Array of bit fields

Example

#define DELAY 128000
struct my_hour
{
 int hour,min,sec;
};
void delay()
{long int t;
 for(t=0;t<DELAY;++t);
}
void match(my_hour *t)
{
 t->sec++;
 if(t->sec==60)
 {t->sec=0;t->min++};
 if(t->min==60)
 {t->min=0;t->hour++};
 if(t->hour==24)
 t->hour=0;
 delay();
}
void show(my_hour *t)

Chapter 3 - EC++ Projects 3-1

{
 print("%02d:",t->hour);
 print("%02d:",t->min);
 print("%02d:",t->sec);
}
void main()
{
 my_hour systhour;
 systhour.hour= systhour.min= systhour.sec=0;
 for(;;)
 {
 match(&systhour);
 show(&systhour);
 }
}

Example

struct phone_address
{
 char street[40];
 char city[20];
 unsigned long int zip_code;
 char phonenr[10];
};
struct employee
{
 char name[20];
 phone_address pa;
 float salary;
};
void main()
{
 employee worker;
 worker.pa.zip_code=93546;
}

switch

The C++ switch statement allows selection among multiple sections of code,
depending on the value of an expression.
The expression enclosed in parentheses, the "controlling expression" shall be of
integral type, enumeration type, or of a class type for which a single conversion
function to integral or enumeration type exists. If the condition is of class type, the
condition is converted by calling that conversion function, and the result of the
conversion is used in place of the original condition for the remainder of this
section. Integral promotions are performed. Any statement within the switch
statement can be labeled with one or more case labels as follows:
case constant-expression : statement

Chapter 3 - EC++ Projects 3-1

where the constant-expression shall be an integral constant-expression. The integral
constant-expression is implicitly converted to the promoted type of the switch
condition. No two of the case constants in the same switch shall have the same
value after conversion to the promoted type of the switch condition.
 There shall be at most one label of the form
default : statement
within a switch statement.
When the switch statement is executed, its condition is evaluated and compared
with each case constant.
If one of the case constants is equal to the value of the condition, control is passed
to the statement following the matched case label. If no case constant matches the
condition and if there is a default label control passes to the statement labeled by
the default label. If no case matches and if there is no default then none of the
statements in the switch is executed.
An inner block of a switch statement can contain definitions with initializations as
long as they are reachable - that is, not bypassed by all possible execution paths.
Names introduced using these declarations have local scope. The following code
fragment shows how the switch statement works:
Example
switch(tolower(*argv[1]))
{
 // Error. Unreachable declaration.
 char szChEntered[] = "Character entered was: ";
case 'a' :
 {
 // Declaration of szChEntered OK. Local scope.
 char szChEntered[] = "Character entered was: ";
 cout << szChEntered << "a\n";
 }
 break;
case 'b' :
 // Value of szChEntered undefined.
 cout << szChEntered << "b\n";
 break;
default:
 // Value of szChEntered undefined.
 cout << szChEntered << "neither a nor b\n";
 break;
}

Switch statements can be nested; in such cases, case or default labels associate with
the most deeply nested switch statements that enclose them.
Example
switch(x)
{
case 1 :
 switch (y)
 {
 case 0: printf("Division by 0, error!");

Chapter 3 - EC++ Projects 3-1

 break;
 case 1: processed(x,y);
 }
 break;
case 2 :
.
.
.
}

case and default labels in themselves do not alter the flow of control, which
continues unimpeded across such labels. To stop execution at the end of a part of
the compound statement, insert a break statement. This transfers control to the
statement after the switch statement. This example demonstrates how control "drops
through" unless a break statement is used:
Example
BOOL fClosing = FALSE;

...

switch(wParam)
{
case IDM_F_CLOSE: // File close command.
 fClosing = TRUE;
 // fall through
case IDM_F_SAVE: // File save command.
 if(document->IsDirty())
 if(document->Name() == "UNTITLED")
 FileSaveAs(document);
 else
 FileSave(document);
 if(fClosing)
 document->Close();
 break;
}

The preceding code shows how to take advantage of the fact that case labels do not
impede the flow of control. If the switch statement transfers control to
IDM_F_SAVE, fClosing is FALSE. Therefore, after the file is saved, the
document is not closed. However, if the switch statement transfers control to
IDM_F_CLOSE, fClosing is set to TRUE, and the code to save a file is executed.
As we've seen in the preceding example, the break statement is optional in a
switch statement; break terminates the block of statement associated with a
constant. If the break is omitted the execution is going on with the statements from
the next case until a break is encountered or until the end of the switch.

Example

switch(c)
{
 case 'A':
 capa++;

Chapter 3 - EC++ Projects 3-1

 case 'a':
 lettera++;
 default :
 total++;
}

All three statements of the switch body in this example are executed if c is equal to

'A' since a break statement does not appear before the following case. Execution
control is transferred to the first statement (capa++;) and continues in order
through the rest of the body. If c is equal to 'a', lettera and total are
incremented. Only total is incremented if c is not equal to 'A' or 'a'.

A single statement can carry multiple case labels, as the following example shows:

Example

case 'a' :
case 'b' :
case 'c' :
case 'd' :
case 'e' :
case 'f' : hexcvt(c);

In this example, if constant-expression equals any letter between 'a' and 'f', the

hexcvt function is called.

this

The this pointer is a pointer accessible only within the member functions of a class,
struct, or union type. It points to the object for which the member function is
called. Static member functions do not have a this pointer.
When a nonstatic member function is called for an object, the address of the object
is passed as a hidden argument to the function. For example, the following function
call
myDate.setMonth(3);

can be interpreted this way:
setMonth(&myDate, 3);

The object's address is available from within the member function as the this
pointer. It is legal, though unnecessary, to use the this pointer when referring to
members of the class.
The expression (*this) is commonly used to return the current object from a
member function.

Example

class Date
{
 int month, day, year;
public:
 void setMonth(int mn);
 void setDay(int dy);

Chapter 3 - EC++ Projects 3-1

 void setYear(int yr);
 int getMonth() {return month;}
 int getDay() {return day;}
 int getYear() {return year;}
};

void Date::setMonth(int mn)
{
 month = mn; // These three statements
 this->month = mn; // are equivalent
 (*this).month = mn;
}

In the following example the overloaded operator () returns the object that called it
(the () operator).
Example
class place
{
 int longitude,latitude;
public:
 place() {}
 place(int lg,int lt)
 {
 longitude=lg;
 latitude=lt;
 }
 void show()
 {
 cout<<longitude<<" "<<latitude<<endl;
 }
 place operator+(place op2);
 place operator ()(int i,int j);
};
place place::operator+(place op2)
{
 place temp;
 place.longitude=op2.longitude+ longitude;
 place.latitude=op2. Latitude+ latitude;
 return temp;
}
place place::operator()(int i,int j)
{
 longitude=i;
 latitude=j;
 return *this;
}
Example for -> operator
class myclass
{
 public:
 int i;
 myclass operator->() {return this;}
};

Chapter 3 - EC++ Projects 3-1

void main()
{
 myclass ob;
 ob->i;//it's the same with ob.i
}

true

This keyword is one of the two values that a variable of type bool can have. If i is
of type bool, then the statement i=true; assigns true to i. See the bool keyword.

typedef

typedef type-declaration synonym;
The typedef keyword defines a synonym for the specified type-declaration. The
identifier in the type-declaration becomes another name for the type, instead of
naming an instance of the type. You cannot use the typedef specifier inside a
function definition.
A typedef declaration introduces a name that, within its scope, becomes a synonym
for the type given by the decl-specifiers portion of the declaration. typedef
declarations do not introduce new types , they introduce new names for existing
types.

Example

typedef unsigned long ulong;

ulong ul; // Equivalent to "unsigned long ul;"

typedef struct mystructtag
{
 int i;
 float f;
 char c;
} mystruct;

mystruct ms; // Equivalent to "struct mystructtag ms;"

In a given scope, a typedef specifier can be used to redefine the name of any type
declared in that scope to refer to the type to which it already refers.
Example:
typedef struct s { /* ... */ } s;
typedef int I;
typedef int I;
typedef I I;

Chapter 3 - EC++ Projects 3-1

In a given scope, a typedef specifier shall not be used to redefine the name of
any type declared in that
scope to refer to a different type.
Example:
class complex { /* ... */ };
typedef int complex; // error: redefinition

Similarly, in a given scope, a class or enumeration shall not be declared with the
same
name as a typedef-name that is declared in that scope and refers to a type other than
the class or enumeration itself.
Example:
typedef int complex;
class complex { /* ... */ }; // error: redefinition

If the typedef declaration defines an unnamed class (or enum), the first typedef-
name declared by the declaration to be that class type (or enum type) is used to
denote the class type (or enum type) for linkage purposes only.
Example:
typedef struct { } *ps, S; // S is the class name for linkage
purposes

If the typedef-name is used where a class-name (or enum-name) is required, the
program is ill-formed. For example:

typedef struct
{
 S(); //error: requires a return type because S is

// an ordinary member function, not a constructor
} S;

union

Syntax
union [tag] { member-list } [declarators];
[union] tag declarators;

The union keyword declares a union type and/or a variable of a union type.
A union is a user-defined data type that can hold values of different types at
different times. It is similar to a structure except that all of its members start at the
same location in memory. A union variable can contain only one of its members at a
time. The size of the union is at least the size of the largest member.

Chapter 3 - EC++ Projects 3-1

A union is a limited form of the class type. It can contain access specifiers (public,
protected, private), member data, and member functions, including constructors and
destructors. It cannot contain virtual functions or static data members. It cannot be
used as a base class, nor can it have base classes. Default access of members in a
union is public.

Example

union UNKNOWN // Declare union type
{ char ch;
int i;
long l;
float f;
double d;
}var1; // Optional declaration of union variable

union UNKNOWN var1;
UNKNOWN var2;

A variable of a union type can hold one value of any type declared in the union. Use
the member-selection operator (.) to access a member of a union:
var1.i = 6; // Use variable as integer
var2.d = 5.327; // Use variable as double

A union of the form union { member-list }; is called an anonymous union; it
defines an unnamed object of unnamed type. A global anonymous union must be
static. A local anonymous union must be either static or automatic, not external.
The member-list of an anonymous union shall only define non-static data members
(nested types and functions cannot be declared within an anonymous union). The
names of the members of an anonymous union shall be distinct from the names of
any other entity in the scope in which the anonymous union is declared. For the
purpose of name lookup, after the anonymous union definition, the members of the
anonymous union are considered to have been defined in the scope in which the
anonymous union is declared.
Example:
void f()
{
union { int a; char* p; };
a = 1;
// ...
p = "Jennifer";
// ...
}

Here a and p are used like ordinary (nonmember) variables, but since they are
union members they have the same address.

Chapter 3 - EC++ Projects 3-1

Anonymous unions declared in a named namespace or in the global namespace shall
be declared static.
Anonymous unions declared at block scope shall be declared with any storage class
allowed for a block-scope variable, or with no storage class. A storage class is not
allowed in a declaration of an anonymous union in a class scope. An anonymous
union shall not have private or protected members. An anonymous union shall not
have function members.
A union for which objects or pointers are declared is not an anonymous union.
Example:
union { int aa; char* p; } obj, *ptr = &obj;
aa = 1; // error
ptr->aa = 1; // OK

The assignment to plain aa is ill formed since the member name is not visible
outside the union, and even if it were visible, it is not associated with any particular
object.

unsigned

The unsigned keyword is a conversion specifier. For more information about
conversion specifiers see signed.
The unsigned keyword indicates that the most significant bit of an integer variable
represents a data bit rather than a signed bit.
This keyword is optional and can be used with any of the character and integer
types.
[unsigned] type-qualifier[int]identifier-name;

Example

void f(unsigned Pc); // void f(unsigned int)
void g(unsigned int Pc); // void g(unsigned int)
unsigned int i;
unsigned i;//same as "unsigned int i;"
unsigned long int l;//int OK, not needed
unsigned char ch;//unsigned is default for char

virtual

The virtual keyword declares a virtual function.

Syntax

virtual member-function-declarator

member-function-declarator
Declares a member function.

Chapter 3 - EC++ Projects 3-1

A virtual function is a member function that you expect to be redefined in
derived classes. When you refer to a derived class object using a pointer or a
reference to the base class, you can call a virtual function for that object and
execute the derived class's version of the function.

Example

class BaseClass
{
public:
 virtual void vfunc() {cout<<"This is vfunc() from
BaseClass"<<endl;}
};
class Derived1: public BaseClass
{
public:
 void vfunc(){cout<<"This is vfunc() from Derived1"<<endl;}
};
class Derived2: public BaseClass
{
public:
 void vfunc(){cout<<"This is vfunc() from Derived2"<<endl;}
};

You can execute different versions of vfunc() depending on the type of object
you're calling it for.
void main()
{
 BaseClass *p,b;
 Derived1 d1;
 Derived2 d2;
 P=&b; //points to BaseClass
 p->vfunc(); //call BaseClass:: vfunc()
 p=&d1; //points to Derived1
 p->vfunc(); //call Derived1:: vfunc()
 p=&d2; //points to Derived2
 p->vfunc(); //call Derived2:: vfunc()
}

The virtual keyword is needed only in the base class's declaration of the function;
any subsequent declarations in derived classes are virtual by default.
A derived class's version of a virtual function must have the same parameter list and
return type as those of the base class. If these are different, the function is not
considered a redefinition of the virtual function. A redefined virtual function cannot
differ from the original only by return type.
A virtual member function does not have to be visible to be overridden, for example:
struct B {
virtual void f();
};
struct D : B {
void f(int);
};

Chapter 3 - EC++ Projects 3-1

struct D2 : D {
void f();
};

the function f(int) in class D hides the virtual function f() in its base class B;
D::f(int) is not a virtual function. However, f() declared in class D2 has the
same name and the same parameter list as B::f(), and therefore is a virtual
function that overrides the function B::f()even though B::f()is not visible in
class D2.
Even though destructors are not inherited, a destructor in a derived class overrides a
base class destructor declared virtual. The virtual specifier implies
membership, so a virtual function cannot be a nonmember function. Nor can a
virtual function be a static member, since a virtual function call relies on a specific
object for determining which function to invoke. A virtual function declared in a
class shall be defined, or declared pure in that class, or both, but no diagnostic is
required. A class with alt least one pure virtual function is an abstract class.
The access rules for a virtual function are determined by its declaration and are not
affected by the rules for a function that later overrides it.
Example:
class B {
public:
virtual int f();
};
class D : public B {
private:
int f();
};
void f()
{
D d;
B* pb = &d;
D* pd = &d;
pb->f(); //OK: B::f() is public,
// D::f() is invoked
pd->f(); //error: D::f() is private
}

Access is checked at the call point using the type of the expression used to denote the
object for which the member function is called (B* in the example above). The
access of the member function in the class in which it was defined (D in the
example above) is in general not known.

void

When used as a function return type, the void keyword specifies that the function
does not return a value. When used for a function's parameter list, void specifies that

Chapter 3 - EC++ Projects 3-1

the function takes no parameters. When used in the declaration of a pointer, void
specifies that the pointer is "universal".
If a pointer's type is void *, the pointer can point to any variable that is not declared
with the const or volatile keyword. A void pointer cannot be dereferenced unless it
is cast to another type. A void pointer can be converted into any other type of data
pointer.
A void pointer can point to a function, but not to a class member in C++.
You cannot declare a variable of type void.
Example
void vobject; // Error
void *pv; // OK
int *pint; int i;
void main() // main has no return value
{
pv = &i;
pint = (int *)pv; // Cast optional in C
 // required in C++
}

volatile

The volatile keyword is a type qualifier used to declare that an object can be
modified in the program by something other than statements, such as the operating
system, the hardware, or a concurrently executing thread.
The following example declares a volatile integer nVint whose value can be
modified by external processes:
int volatile nVint;

Objects declared as volatile are not used in optimizations because their value can
change at any time. The system always reads the current value of a volatile object at
the point it is requested, even if the previous instruction asked for a value from the
same object. Also, the value of the object is written immediately on assignment.
One use of the volatile qualifier is to provide access to memory locations used by
asynchronous processes such as interrupt handlers.
The two type qualifiers, const and volatile, can appear only once in a declaration.
Type qualifiers can appear with any type specifier; however, they cannot appear
after the first comma in a multiple item declaration. For example, the following
declarations are legal:
typedef volatile int VI;
const int ci;

These declarations are not legal:
typedef int *i, volatile *vi;

Chapter 3 - EC++ Projects 3-1

float f, const cf;

The const and volatile specifiers can be used together. For example, we assume that
0x30 is a port value that is modified only by the external conditions; the following
declaration will prevent any occurrence of secondary accidentally effects:
const volatile unsigned char *port=0x30;

while

The while keyword is used either with do keyword representing the do-while
statement, either alone representing the while statement.
The while statement executes a statement repeatedly until the termination condition
(the expression) specified evaluates to zero. The test of the termination condition
takes place before each execution of the loop; therefore, a while loop executes zero
or more times, depending on the value of the termination expression.

Syntax

while(expression)
statement;

The following code (a keyboard input function) uses a while loop to wait for the
user to press 'A':
char wait_char()
{
 char ch='\0';
 while (ch!='A')
 ch=getchar();
 return ch;
}

The following example copies characters from string2 to string1. If i is
greater than or equal to 0, string2[i] is assigned to string1[i] and i is
decremented. When i reaches or falls below 0, execution of the while statement
terminates.
Example
while (i >= 0)
{
 string1[i] = string2[i];
 i--;
}

The following function uses the do statement to wait for the user to press a specific
key:
void WaitKey(char ASCIICode)
{
 char chTemp;

 do
 {
 chTemp = _getch();
 }
 while(chTemp != ASCIICode);

Chapter 3 - EC++ Projects 3-1

}

A do loop rather than a while loop is used in the preceding code - with the do loop,
the _getch function is called to get a keystroke before the termination condition is
evaluated. This function can be written using a while loop, but not as concisely:
void WaitKey(char ASCIICode)
{
 char chTemp;

 chTemp = _getch();

 while(chTemp != ASCIICode)
 {
 chTemp = _getch();
 }
}

The expression must be of an integral type, a pointer type, or a class type with
an unambiguous conversion to an integral or pointer type.

Support for RTX51 Tiny real-time multitasking operating system

 When -ECKRTX command line directive is used, Ceibo C++ defines the main
function of EC++ program as:

 void _main_task(void) _task_ 0

Task 0 (main task) is reserved by Ceibo C++, such as the user can use only the tasks
with id > 0.

To do this type "-ECKRTX" under Project - Options for Target - C51 - Misc Controls.

 Limitations when using 8051 extensions

Virtual functions suppose an indirect call through a pointers table. Keil C compiler
also has some restrictions regarding the number and the type of arguments for
functions which are called using pointers to them. Therefore, for these back-ends the
virtual functions must be declared with reentrant keyword.

Chapter 5 – Errors and Warnings

CHAPTER 5

ERRORS AND WARNINGS

Chapter 5 – Errors and Warnings

CHAPTER 5

ERRORS AND WARNINGS

Chapter 5 - Errors and Warnings 5-1

CHAPTER 5

ERRORS AND WARNINGS

Warnings

T13: "PROTECTION PLUG IS MISSING OR SERIAL NUMBER IS INVALID"

T100: "Pragma directive '%s' was discarded: must have parameter between
%i

and %i";

The compiler ignored a pragma because its parameter was out of range.
These are examples of this warning:

#pragma FF(9) // error - parameter must be in the range 0..7
#pragma PW(21) // error - parameter must be in the range 78..132

T101: "Pragma directive '%s' was discarded : must have first parameter

between %i and %i";

The compiler ignored a pragma because its first parameter was out of range.
This is an example of this warning:

#pragma OT(89, sIZe) // error - the first parameter must be in

the
 range 0..9

T102: "Pragma directive '%s'is unknown or not well-formed: Will be

discarded";

Chapter 5 - Errors and Warnings 5-2

The compiler did not recognize a pragma and ignored it.
Make sure that the pragma is allowed by the type of compiler being used or the
pragma is well formed.

T103: "Couldn't find a destructor for object of type: '%s'";

The compiler couldn't find a destructor for the specified object.

T104: "'%s' is not a pointer-to-object type. Destructor will not be called";

You tried to delete a void pointer.
The following is an example of this warning:

void main()
{
 void *p;
 delete p; // warning
}

T105: "Embedded C++ does not accept virtual inheritance: 'virtual' not
 considered";

A base class was specified as a virtual base. Since embedded C++ does not accept
virtual inheritance, virtual is ignored.

T106: "Embedded C++ does not support multiple inheritance: only the first

base class considered";

The given derived class has two or more direct base classes. Since embedded C++
does not support multiple inheritance, the compiler assumes that only the first base
class is valid.

T107: "function '%s' should return a value. Value '0' will be returned";

The main function with a return type of int didn't return a value. The compiler
assumed that the returned value was 0.

T108: "Type mismatch in function '%s' redeclaration; the first declaration

used";

Chapter 5 - Errors and Warnings 5-3

You redeclared the function with a different header. This warning is caused by having
one of the following specifiers: interrupt, register bank, priority, systemuser,
saveregbank, saveregs, memorymodel only once (in one declaration of the
function)
The following is an example of this error:

void f();
void f() interrupt(9); // warning
void main()
{
}

Errors

T200: "'#pragma C' directive cannot be used out of global scope";

The #pragma C directive that must be specified at a global level (that is, outside a
function body) occurred within a function.
The following is an example of this error:

void main()
{
 #pragma C // error
}

T201: "Name '%s' is undefined";

The specified name was not declared.
A variable's type must be specified in a declaration before it can be used. The
parameters that a function uses must be specified in a declaration, or protoype, before
the function can be used.

Tips
 Make sure any include file containing the required declaration is not omitted.
 Make sure the identifier name is spelled correctly.
 Make sure the identifier is using the correct upper- and lowercase letters.

T202: "%s '%s' is inaccessible";

The specified private or protected member of a class, structure, or union was accessed.

Tips
This error can be caused by attempting to access a member that is declared as
private or protected, or by accessing a public member of a base class that is

Chapter 5 - Errors and Warnings 5-4

inherited with private or protected access. The member should be accessed through
a member function with public access or should be declared with public access.

T203: "'%s' cannot instantiate abstract class due to following virtual pure

functions:";

An object of the specified abstract class or structure was declared.
A class (or structure) with one or more pure virtual functions cannot be instantiated.
Each pure virtual function must be overridden in a derived class before objects of
the derived class can be instantiated.

T204: "'%s': array initialization needs curly braces";

The given array requires values enclosed in curly braces for initialization.
The following is an example of this error:

void main()
{
 int s[3]=(1,3,5);//error
 int v[3]={1,3,5};//OK
}

T205: "'%s' is already defined";

The given identifier was defined more than once, or a subsequent declaration differed
from a previous one.
The following are examples of this error:

int a;
char a;
void main()
{
}
void main()
{
 int a;
 int a;
}
void main()
{
 int a;
 float a;
}

Chapter 5 - Errors and Warnings 5-5

T206: "Function '%s' is already defined";

The specified member function was defined or declared earlier.
This error can be caused by repeating the same formal parameter list in more than
one function definition or declaration.

T207: "Function '%s' already has a body";

The function has already been defined.
The following is an example of this error:

class C {
 void f() {}
 void f() {} // error
};

T208: "cannot convert parameters types or the call is ambiguous for function
'%s'";

The specified parameter of the specified function could not be converted to
the required type or the specified overloaded function call could not be
resolved.

Tips
In case of a conversion type error recheck the prototype for the given function and
correct the argument noted in the error message. If necessary, an explicit conversion
may need to be supplied.
The following are examples of this error:

#include<iostream.h>
class A {} a;
func(int, A);
int g(int i);
int g(int i, int j=1); void main()
{
 func(1, 1); // error, no conversion from int to A
 cout<<g(3,5)<<endl; // not ambiguous call
 cout<<g(10)<<endl; // ambiguous call
}

int g(int i)
{return i;}
int g(int i, int j)
{return i*j;}

T209: "Class name '%s' cannot be redefined inside class";

Chapter 5 - Errors and Warnings 5-6

The specified class, structure, or union was already defined.
A class, structure, or union can be defined only once.
The following is an example of this error:

class C
{
 class C {
 }; // error, class C is already defined
};

T210 :"'%s': return type or storage class specified for constructor/destructor is

illegal";

A constructor/destructor in the specified class, structure, or union was declared with
a return type or a storage class was illegally specified for the
constructor/destructor.
A constructor/destructor cannot be declared with a return type.
inline is the only legal storage class for constructors/destructors.
The following are examples of this error:

class C
{
 int ~C(); // error, returns int
 void ~C(); // error, returns void
 extern C(); // error, only 'inline' can be applied
 ~C(); // OK
};

T211 :"'%s': storage 'static' for constructor/destructor is illegal";

The specified constructor/destructor was declared as static.
Constructors/Destructors cannot be declared as static.
The following is an example of this error:

class C
{
 static C(); //error
};

T212 :"'extern' storage-class specifier illegal on members";

A storage class was illegally specified for the given identifier.
The following is an example of this error:

class C

Chapter 5 - Errors and Warnings 5-7

{
 extern C(); //error
 extern int i; //error
};

T213 :"Invalid constructor definition";

The specified constructor was declared with a return type or the first parameter in
the specified constructor was the same type as the class, structure, or union for
which it was defined.
A constructor cannot be declared with a return type and the first parameter cannot
be of the same type as the class/struct for wich it was defined.

T214 :"The constructor definition '%s' is not allowed.";

The first parameter in the specified copy constructor was the same type as the class,
structure, or union for which it was defined.
A copy constructor for a type can take a reference to the type as the first parameter
but not the type itself.
The following is an example of this error:

class A
{
 A(A); // error, takes an A
};
class B
{
 B(B&); // OK, reference to B
};

T215 :"Invalid destructor definition";

The specified destructor had a nonvoid formal parameter list or was declared with a
return type.
A destructor can take only a void parameter and cannot be declared with a return
type.

The following is an example of this error:

class C
{
public:
 int i;
 C() {i=0;}
 ~C(int a); // error
};

Chapter 5 - Errors and Warnings 5-8

T216 :"Destructors cannot have arguments";

The specified destructor had a nonvoid formal parameter list.
A destructor can take only a void parameter. Other parameter types are not allowed.
The following is an example of this error:

class D
{
 ~D(int i);//error
 ~D(); //OK
};

T217 :"'%s': overriding virtual function differs from '%s' only by return type
or calling convention";

The specified virtual function and a derived overriding function had identical
parameter lists but different return types.
An overriding function in a derived class cannot be redefined to differ only by its
return type from a virtual function in a base class.
A function in a derived class or structure overrides a virtual function in a base class
only if their names, parameters, and return values are all identical. (If the functions
have different parameters, the compiler treats them as different functions and does
not override the virtual function.)
It may be necessary to cast the return value after the virtual function has been called.
The following is an example of this error:

class C
{
public:
 virtual int f();
};
class D : public C
{
public:
 void f();
};

T218 :"'%s': overloaded function differs from '%s' only by return type";

The indicated overloaded functions had different return types but the same
parameter list.
Each overloaded function must have a distinctly different formal parameter list.
The following is an example of this error:

double g(int i);

Chapter 5 - Errors and Warnings 5-9

void g(int i);
void main()
{
}

T219 :"Multiple initializations given for argument '%d' of function '%s'";

The specified default parameter in a member function was redefined.
A default parameter cannot be redefined. If another value for the parameter is
required, then the default parameter should be left undefined.
The following is an example of this error:

void g(int i, int j=2);
void main()
{
}

void g(int i, int j=2)
{
}

T220 :"'%s' : missing default parameter for parameter '%d'";

A parameter was missing in a default parameter list.
If a default parameter is supplied anywhere in a parameter list, then all subsequent
parameters on the right side of the default parameter must also be defined.
The following is an example of this error:

void func(int = 1, int, int = 3); // error
void func(int, int, int = 3); // OK
void func(int, int = 2, int = 3); // OK

T221 :"Storage classes do not match for function '%s'";

A function was declared both extern (global) and static at a given scope.
The following is an example of this error:

char* g(); // g() has external linkage
static char* g() // error: inconsistent linkage
{ /* ... */ }

T222 :"%s pure specifier only applies to virtual function - specifier ignored";

The specified nonvirtual function was specified as pure virtual.

Chapter 5 - Errors and Warnings 5-10

The specifier was ignored.
The following is an example of this error:

class A
{
public:
 void f1() = 0; // error, not virtual
 virtual void f2() = 0; // OK
};

T223 :"Attempt to grant or reduce access to '%s'";

A derived class can modify the access rights of a base class member, but only by
restoring it to the rights in the base class.
It can't add or reduce access rights.
The following is an example of this error:
class C
{
 int i;
public:
 int j,k;
 int f();
};
class D : private C
{
public:
 C::i; // error - attempt to grant access to C::i
 C::j; // OK - restores the public access for C::j

}

T224 :"Access can be only changed to public or protected";

A derived class can modify the access rights of a base class member, but only to
public or protected.
A base class member can't be made private.

class C
{
 int i;
public:
 int j;
};
class D : public C
{
 C::j;
};

Chapter 5 - Errors and Warnings 5-11

T225 :"'%s' is not a base class for '%s'";

An access declaration was made for the specified identifier, but it is not a member
of a base class.
A member of a class or structure cannot be accessed in another class that is not
derived from the member's class.
The following is an example of this error:

class X
{
public:
 int x;
};
class A
{
public:
 int a;
};
class B : public A
{
public:
 X::x; // error, B is not derived from X
 A::a; // OK
};

T226 :"Overloaded operator '%s' cannot have default parameters";

Default parameters cannot be specified for the given operator.
It is illegal for overloaded operators to have default argument values.
The following is an example of this error:

class C
{
 int i;
friend C operator+(C c, int i=1); // error
};

T227 :"Overloaded binary operator '%s' must be declared with '%s'
parameters";

The specified binary operator (declared as a member function) was declared with
too few or too more parameters.
The following is an example of this error:

class C
{

Chapter 5 - Errors and Warnings 5-12

public:
 int i;
 C(int n) {i=n;}
 C operator[](); // error
 C operator[](int i); // OK
};

T228 :"Overloaded operator '%s' must have the last parameter of type 'int'";

When a postfix operator ++ or operator -- is overloaded, the last parameter must be
declared with the type int.
The following is an example of this error:

class X
{
public:
 X operator++ (X); // error, nonvoid parameter
 X operator++ (int); // OK, int parameter
};

T229 :"Overloaded operator '%s' must be declared with one or two
parameters";
The specified overloaded operator was declared with none parameters or with more
than two parameters.
The following is an example of this error:

class X
{
public:
 X operator++ (int, inr, int); // error - too many parameters
};

T230 :"Overloaded unary operator '%s' must be declared with '%s'
parameters";

The specified overloaded unary operator was incorrectly declared with a nonvoid
parameter list.
The following is an example of this error:

class X
{
public:
 X operator! (X); // error, nonvoid parameter list
 X operator! (void); // OK
};

Chapter 5 - Errors and Warnings 5-13

T231 :"Overloaded operator '%s' must be a method or must have at least one

argument of type class or enumeration";

The specified overloaded operator was declared outside a class and does not have an
explicit parameter of class type.
The following is an example of this error:

class C
{
public:
 int i;
 C(int n) {i=n;}
};
int operator+(int, int); // error

T232 :"Overloaded operator '%s' must be a non-static member function";

The specified overloaded operator was not a member of a class, structure, or union.
The following operators can only be overloaded in class scope as nonstatic
members: assignment operator '=', class member access operator '->', subscripting
operator '[]', and function call operator '().
The following is an example of this error:

class C;
C operator ->(); // error
int operator[](); // error

class C
{
public:
 int i;
 C(int n) {i=n;}
C operator ->(); // OK
int operator[](int i); // OK
};

T233 :"Overloaded operator '%s' cannot be static member";

Only ordinary member functions and the operators new and delete can be declared
static.
Constructors, destructors and other operators must not be static.
This is an example of this error:

class C
{
public:

Chapter 5 - Errors and Warnings 5-14

 int i;
 C(int n) {i=n;}
 static C operator +(C c);
};

T234 :"Overloaded operator '%s' must have the return type 'void'";

A redefinition of the operator delete contained a return statement that returned a
type other than void. The return value for the operator delete must be void.
This is an example of this error:

class C
{
public:
 C operator delete(void *p); // error, return type isn't
void
 void operator delete(void *p);// OK
};

T235 :"Overloaded operator '%s' must have the first parameter of type
'void*'";

The first formal parameter for an overridden based operator delete must be of type
void*.
The following is an example of this error:

class C
{
public:
 void operator delete(int *p);//error
 void operator delete(void *p);//OK
};

T236 :"Overloaded operator '%s' must have the return type 'void*'";

A redefinition of the nonbased form of the operator new contained a return
statement that returned a type that was not a void pointer. The return value for the
operator new must be void *.
The following is an example of this error:

class C
{
public:
 int *operator new(size_t m);//error
 void *operator new(size_t m);//OK
};

Chapter 5 - Errors and Warnings 5-15

T237 :"Overloaded operator '%s' must have the first parameter of type'size_t'";

The first formal parameter of the near or far forms of the operator new must be an
unsigned int.

The following is an example of this error:

class C
{
public:
 void *operator new(char m); //error
 void *operator new(size_t m); //OK
};

T238 :"Allocation and deallocation functions cannot be declared static in global

scope.";

The new /delete operator was declared static at global scope.
The following is an example of this error:

class C
{
public:
 int i;
 C(int n) {i=n;}
};

static void* operator new(size_t m); // error

T239 :"Operator '%s' cannot be overloaded";

The specified operator was overloaded.
The following operators cannot be overloaded: class member access operator (.),
pointer to member operator (.*), scope resolution operator (::), conditional
expression operator (? :), and sizeof operator.
The following is an example of this error:

class C
{
public:
 int operator .*();// error
};

T240 :"Illegal expression: '%s' cannot be resolved";

Chapter 5 - Errors and Warnings 5-16

The specified operator was not defined for the specified types.
The following is an example of this error:

class C {
 int i;
public:
 C(int n) {i=n;}
 operator int() {return i;}
};
class D
{
 int i;
public:
 D(int n) {i=n;}
};

void main()
{
 int i=1;
 C c(3);
 D d(2);
 i>>d; //error
 i>>c; //OK, operator int() defined
}

T241 :"Illegal expression: '%s' is ambiguous";

Both of the named overloaded functions could be used with the supplied parameters.
This ambiguity is not allowed. An explicit cast of one or more of the actual
parameters can resolve the ambiguity.
The following is an example of this error:

class C
{
 int i;
public:
 C(int n) {i=n;}
 C operator+(char i) {this->i+=i;return *this;}
 C operator+(unsigned char i){this->i-=i;return *this;}
};

void main()
{
 C c1(3),c2(1);
 c2=c1+32; // error - ambiguity!
 c2=c1+(char)32; // OK
}

Chapter 5 - Errors and Warnings 5-17

T242 :"'%s': Illegal use of type 'void'";

The given variable was declared with the keyword void, which can be used only in
function declarations.
The following is an example of this error:

void main()
{
 void i; // error
}

T243 :"Type of bit field too small for number of bits";

The number of bits specified in the bit-field declaration exceeded the number of bits
in the given base type.
The following is an example of this error:

struct S
{
 unsigned i:1;
 int j:17; //error
 int j:3; //OK
};

T244 :"cannot evaluate expression to a constant";

The context requires a constant expression.
The specified array bound was not a constant expression.
An array must be declared with a constant bound.
The following example shows an illegal way to declare an array:

int i;
int A[i]; // error, i is nonconstant

and legal ways to declare an array:

const j = 20;
int A[j]; // OK, j is constant
int B[32]; // OK, 32 is a literal

T245 :"'%s' : references must be initialized";

A reference was not initialized when it was declared.

Chapter 5 - Errors and Warnings 5-18

The following cases are the only times a reference can be declared without
initialization:
 It is declared with the keyword extern.
 It is a member of a class, structure, or union and is initialized in the class's

constructor function.
 It is declared as a parameter in a function declaration or definition.
 It is declared as the return type of a function.
The following is an example of this error:

void main()
{
 int a;
 int &ref; //error
 int &ref=a; //OK
}

T246 :"'%s' : const object must be initialized if not extern";

The specified identifier was declared as const but was not initialized.
An identifier must be initialized when declared as const unless it is declared as
extern.
The following is an example of this error:

const int j; // error
extern const int i; // OK, declared as extern

T247 :"Illegal declaration: '%s' specified twice";

The specified modifier was repeated in statement.
The following example causes this error:

inline inline void func (); // error

T248 :"Illegal declaration: '%s' outside of class";

The given function specfier is not allowed here. Either the specified function was
declared with the friend specifier outside of a class, structure, or union, or the
specified global function or class was declared as virtual (the keyword virtual refers
only to members of a class or structure).
The following are examples of this error:

class A
{
private:

Chapter 5 - Errors and Warnings 5-19

 void func1();
 friend void func2();
 virtual void f(); // OK
};
friend void func1() {}; // error
void func2() {}; // OK
virtual void f(); // error

T249 :"Illegal declaration: virtual used for static";

A static member function was declared as virtual.
The virtual function mechanism relies on the specific object that calls the function
to determine which virtual function is used. Since this is not possible for static
functions, they cannot be declared as virtual.
The following is an example of this error:

class C
{
 int i;
public:
 C(int n) {i=n;}
 static virtual void f(); // error
 virtual void f(); // OK
};

T250 :"Illegal declaration: multiple storage classes";

A declaration contained more than one storage class, as in:

extern static int i; // error

A declaration can never have more than one storage class, either auto, register,
static, or extern.

T251 :"Illegal declaration: multiple types specified";

A declaration can never have more than one of these basic types: char, class, int,
float, double, struct, union, enum, typedef name.
The following is an example of this error:

int float i; // error

T252 :"'%s' : 'friend' cannot be used during type definition";

A complete class declaration was given in a friend declaration.

Chapter 5 - Errors and Warnings 5-20

A friend declaration can specify a member function or an elaborated type specifier,
but not a complete class declaration.
The following is an example of this error:

class D { void func(int); };

class A {
 friend class B { int i; }; // error
 friend class C; // OK
 friend void D::func(int); // OK
};

T253 :"A reference that is not to 'const' cannot be bound to a non-lvalue";

A reference cannot be initialized from a non-lvalue function return.
A nonconst reference must be initialized with an l-value, which makes the reference
a name for that l-value. A function call is only an l-value if the return type of the
function is a reference.
This is an example of this error:

struct X
{
 int i;
 X(int n) {i=n;}
};

X f() {X x(3);return x;}

void main()
{
 X& r = f(); // error
}

T254 :"user-defined conversion '%s' takes no formal parameters";

A user-defined type conversion was declared as having one or more formal
parameters. User-defined type conversions cannot take formal parameters.
Remove the formal parameters or choose an operator to overload.
This is an example of this error:

class C
{
 int i;
public:
 C(int n) {i=n;}
 operator int(char i);// error
 operator int(); // OK};

Chapter 5 - Errors and Warnings 5-21

T255 :"user-defined conversion cannot specify a return type";

A user-defined conversion cannot specify a return type.
The following is an example of this error:

class X
{
public:
 int operator int() { return value; } // error
 operator int() { return value; } // OK
private:
 int value;
};

T256 :"user-defined conversion '%s' must be a non-static member function";

The specified user-defined conversion function was not a member of a class,
structure, or union, and/or was declared as static.
Type conversions are required to be members of classes:
The following is an example of this error:

class X
public:
 static operator int() { return value; } // error
 operator int() { return value; } // OK
private:
 int value;
};
operator int() ;// error, not a member-function

T257 :"Cannot find a %s '%s'";

The formal parameter list of a function or pointer to a function did not match those
of another function or pointer to a member function, respectively.
The assignment of the functions or pointers could not be made because of
incompatible declarations.
The following are examples of this error:

int f(char a);
void main()
{
 int (*fp)(float a);
 fp=f; //error
}
//-------------------------------
class C

Chapter 5 - Errors and Warnings 5-22

{
 int i;
public:
 C(int n) {i=n;}
 void f() {}
};

void main()
{
 C c(1);
 void (C::*func)(int);
 func=&C::f; // error
}

T258 :"Functions cannot return arrays";

A function cannot return an array. It can return a pointer to an array.
The following is an example of this error:

typedef int (m)[5];
m f(); // error
m *f(); // OK

T259 :"Functions cannot return functions";

A function cannot return a function. It can return a pointer to a function.
The following is an example of this error:

typedef int (funcptr)();
funcptr f(); // error
funcptr *f(); // OK

T260 :"Array size must be a positive integer constant";

Arrays must be declared with positive integral constant size.
The following is an example of this error:

void main()
{
 int m[8.5]; //error
 int m[-8]; //error
 int m[8]; //OK
}

Chapter 5 - Errors and Warnings 5-23

T261 :"'%s' : array bounds overflow";

Too many initializers were present for the given array.
Make sure that the array elements and initializers match in size and quantity.
This error can be caused by not leaving space for the null terminator in a string.
The following is an example of this error:

char abc[4] = "abcd"; // error, array contains 5 members

T262 :"Cannot have an array of '%s'";

You are not allowed to declare arrays of: functions, references, bit fields,
undimensioned array, void, bit, sbit, sfr, sfr16.
This is an example of this error:

typedef int (funcptr)();
funcptr f[3]; // error - array of functions
typedef int (m)[];
void main()
{
 void a[3];//aerror - array of void type
 int i;
 int &ref[3];//error - array of references
 m n[3];//error - array of undimensioned array
}

T263 :"Cannot have a reference to a '%s'";

You cannot refer to another reference or to a bit field.
This is an example of this error:

struct S
{
 int i:1;
};

void main()
{
 S s;
 int &ref=s.i; // error
}

T264 :"Cannot have a pointer to a '%s'";

Chapter 5 - Errors and Warnings 5-24

An attempt was made to use the address of a bit field, or a reference or a bit, sbit, sfr,
sfr16 type.
The following is an example of this error:

struct S
{
 int i:1;
};
void main()
{
 S s;
 &s.i;// error - pointer to a bit field
}

T265 :"'%s': bit field must have type 'int', 'signed int', or 'unsigned int'";

Bit fields must have an integral type. This includes enumerations.
The following is an example of this error:

struct S
{
 float i:1; // error
 int i:1; // OK
};

T266 :"'%s': named bit field cannot have zero width";

The given named bit field had zero width. Only unnamed bit fields are allowed to
have zero width.
The following is an example of this error:

struct S
{
 char i:0; // error
 char i:2; // OK
};

T267 :"Illegal primitive type";

Two type specifiers had missing code between them.
You are not allowed to combine the two type specifiers.
The following is an example of this error:

int float i; // error
unsigned signed b;
short long l;

Chapter 5 - Errors and Warnings 5-25

short float a;

T268 :"Return outside of function";

A return statement wasn't placed elsewhere than in a function body or the return
type of the function is undefined.

T269 :"Function '%s' must return a value";

The specified function was declared as returning a value, but the function definition
did not contain a return statement or contained the return command without an
accompanying return value.
The following is an example of this error:

int f(int a) {;} // error
int f(int a) {return ;} // error
int f(int a) {return 2*a;} // OK
void main()
{
}

T270 :"'%s': 'void' function returning a value";

The indicated function was declared as a void function but returned a value.
This error can be caused by an incorrect function prototype. If the function returns a
value, the return type must be specified in the function declaration.
The following is an example of this error:

void f() {return 1;} // error
void f() {;} // OK
void main()
{
}

T271 :"return of value in constructor/destructor is illegal";

The specified constructor/destructor returned a value.
A constructor/destructor cannot return a value of any type. This error is caused by
defining a constructor/destructor that returns a value of any type, including a void
return type.
This error can be eliminated by removing the return statement from the
constructor/destructor definition.
The following is an example of this error:

class C
{

Chapter 5 - Errors and Warnings 5-26

 int i;
public:
 C(int n) {i=n;return i;}
 ~C() {return i;}
};

T272 :"more than one default";

A switch statement contained more than one default label.
The following is an example of this error:

void main()
{
 int mark;
 char ch;
 mark=-1;
 ch=getchar();
 switch (ch)
 {
 case '1': mark=0;break;
 case '2': mark=1;break;
 default: processed(ch);
 default:mark=-1; // error
 }
}

T273 :"default outside of switch";

The keyword default can appear only within a switch statement.
The following is an example of this error:

void main()
{
 int mark=-1;
 char ch;
 switch (ch)
 {
 case '1': mark=0;break;
 case '2': mark=1;break;
 }
 default: mark=3; // error
}

T274 :"case label outside of switch";

The keyword case can appear only within a switch statement.
The following is an example of this error:

Chapter 5 - Errors and Warnings 5-27

void main()
{
 int mark=-1;
 char ch;
 switch (ch)
 {
 case '1': mark=0;break; // OK
 default: mark=3;break;
 }
 case '2': mark=1;break; // error
}

T275 :"initialization of '%s' is skipped by 'default' label'";

The specified identifier initialization can be skipped in a switch statement.
It is illegal to jump past a declaration with an initializer unless the declaration is
enclosed in a block.
The scope of the initialized variable lasts until the end of the switch statement
unless it is declared in an enclosed block within the switch statement.
The following is an example of this error:

void func(void)
{
 int x;
 switch (x)
 {
 case 0 :
 int i = 1; // error, skipped by default
 { int j = 1; } // OK, initialized in enclosing block
 default :
 int k = 1; // OK, initialization not skipped
 }
}

T276 :"initialization of '%s' is skipped by 'case' label'";

The specified identifier initialization can be skipped in a switch statement.
It is illegal to jump past a declaration with an initializer unless the declaration is
enclosed in a block.
The scope of the initialized variable lasts until the end of the switch statement
unless it is declared in an enclosed block within the switch statement.
The following is an example of this error:

void func(void)
{
 int x;

Chapter 5 - Errors and Warnings 5-28

 switch (x)
 {
 case 0 :
 int i = 1; // error, skipped by case 1
 { int j = 1; } // OK, initialized in enclosing block
 case 1 :
 int k = 1; // OK, initialization not skipped
 }
}

T277 :"case expression not constant";

Case expressions must be integral constants.
The following is an example of this error:

void main()
{
 int mark=-1;
 char ch,i;
 switch (ch)
 {
 case '0': mark=0;break; // OK
 case i: mark=i;break; // error
 default: mark=3;break;
 }
}

T278 :"case value '%d' already used";

A case value in a switch statement can be used only once.
The following is an example of this error:

void f()
{
 int i;
 switch(i)
 {
 case 0:
 break;
 case 0: // error, case value '0' already used
 break;
 }
}

T279 :"'%s' : too many initializers for %s";

Chapter 5 - Errors and Warnings 5-29

The number of initializers exceeded the number of objects to be initialized.
The following is an example of this error:

void main()
{
 int i[3][3]={{0,0,1},{0,1,0},{1,0,0,3}}; // error
 int i[3][3]={{0,0,1},{0,1,0},{1,0,0},{1,1,1}}; // error
 int i[3][3]={{0,0,1},{0,1,0},{1,0,0}}; // OK
 int i={0,0,1}; // error
 int i=9; // OK
}

T280 :"'%s' : initializer for scalar variable requires one element";

You used an empty list to initialize a scalar variable. A scalar variable requires only
one element.
The following is an example of this error:

void main()
{
 int i={}; // error
}

T281 :"Multiple values given for simple initialization";

The number of initializers exceeded the number of objects to be initialized.
The following is an example of this error:

void main()
{
 int i(0,9); // error
}

T282 :"'%s' : must be initialized by constructor, not by '{}'";

The specified identifier was incorrectly initialized.
An initializer list is needed to initialize the following types:
 An array
 A class, structure or union that doesn't have constructors, private or protected

members, base classes or virtual functions.
These types are known as "aggregates."
The following are examples of this error:

class C
{
public:
 int i;
};

Chapter 5 - Errors and Warnings 5-30

class B: public C
{
 int j;
};

void main()
{
 B oc[3]={{1},{2},{3}}; // error
}

T283 :"'%s' : array of unknown bound cannot be initialized with empty
initializer list";

An empty initializer list was used to initialize an array of unknown size.
The initializer list must have at least one value.
The following is an example of this error:

void main()
{
 char s[]={}; // error;
 char s[]={'p'}; // OK
}

T284 :"'%s' : can not be initialized by '{...}'";

The specified identifier was incorrectly initialized.
An initializer list is needed to initialize the following types:
 An array
 A class, structure or union that doesn't have constructors, private or protected

members, base classes or virtual functions.
These types are known as "aggregates."

The following are examples of this error:

class C
{
 int i;
public:
 C(int n) {i=n;}
};

void main()
{
 C c={1}; // error
 C c(8); // OK
}

Chapter 5 - Errors and Warnings 5-31

T285 :"Illegal expression: pointer required for operator delete";

The delete operator was used on an object that was not a pointer.
The delete operator can only be used on pointers.
The following is an example of this error:

void main()
{
 int i;
 delete i; // error, i is not a pointer
 int *ip = new int;
 delete ip; // OK
}

T286 :"Illegal expression: can't find operator delete";

The delete operator was called to delete the given type, which was declared but not
defined.
Make sure that the class, structure, or union is defined before using the delete
operator.
The following example generates this error:

class B;
void main()
{
 B *pb;
 delete pb; //error
}

T287 :"delete on <UNKNOWN> type";

The delete operator was used on an object (pointer) of an undeclared type.
The folowing is an example of this error:

void main()
{
 B *pb; // error
 delete pb; // error
}

T288 :"New initializer for non-class must be a single expression";

It was used an initializer containing more than one values for a non-class variable.

Chapter 5 - Errors and Warnings 5-32

Only when you allocate space for an object you can specify more than one values
for initializing, according to the defined constructor.
The following is an example of this error:

class C
{
 int i,j;
public:
 C(int m,int n) {i=m;j=n;}
};

void main()
{
 int *pi=new int(1,2); // error
 int *pi=new int(87); // OK
 C *pc=new C(2,3); // OK
}

T289 :"size in array new must have integral type";

An array of non integral constant size was allocated.
The constant expression used to allocate or declare an array must be an integral type
greater than zero.
The following is an example of this error:

void main()
{
 int *pi=new int[3.5];
}

T290 :" no match for function '%s'";

The specified function was not declared for the given parameters. In all the versions
of the overloaded function, none of them had the same parameters in the same order
as specified in the erroneous function call.
This error can be caused by a mismatch in the parameter list of the specified
function.

Tips
 Ensure that the correct arguments are being passed when calling the function.
 Make sure the arguments are in the correct order when calling the function.
 Make sure the argument names are spelled correctly.

The following is an example of this error:

Chapter 5 - Errors and Warnings 5-33

class C
{
public:
 int i;
 C(int a) {i=a;}
 void f(int a, char *s);
};

void C::f(char *s, int a)
{
}

T291 :" no match for function expression";

A call to a function with a prototype (via a function pointer) had too few arguments.
Prototypes require that all parameters be given.
Make certain that your call to a function has the same parameters as the function
prototype.
The following are examples of this error:

struct C
{
 int i;
 void f(unsigned char c) {}
 void f(char c) {}
};
void main()
{
 void (C::*func)(unsigned char);
 C c;
 char s=10;
 (c.*func)();// error
}
//-------------------
void func(int, int) {}
void main()
{
 func(1); // error
}

T292 :"Illegal expression: call to non-function";

A call was made to a function through an expression that did not evaluate to a
function pointer.
This error is probably caused by attempting to call a nonfunction.
The following is an example of this error:

class C

Chapter 5 - Errors and Warnings 5-34

{
 int i;
public:
 void f() {};

int i, j;
char* p;
void main()
{
 j = i(); // error, i is not a function
 p(); // error, p doesn't point to a function
 void (C::*func)(int*);
 C c;
 func=&C::f;
 c.*func(); // error
 (c.*func)();// OK
}

T293 :"Cannot call the function 'main'";

Recursive calls of main() are not allowed. Cannot call 'main' from within the
program.
The following is an example of this error:

void main()
{
 main(); // error
}

T294 :"Illegal expression: conditional components have incompatible types";

The types of the expressions on both sides of the colon in the conditional expression
operator (?:) must be the same, except for the usual conversions.
These are some examples of usual conversions
 char to int
 float to double
 void* to a particular pointer

In this expression, the two sides evaluate to different types that are incompatible.
The following is an example of this error:

class X
{
public:
 int i;
};

X x;
void f()

Chapter 5 - Errors and Warnings 5-35

{
 int i,j;
 j = i ? x : 1; // error
}

T295 :"Illegal expression: class type incompatible with pointer to member";

The right operand of a .*, ->*, or ::operator was not a pointer to a member of a class
that is either identical to (or an unambiguous accessible base class of) the left
operand's class type.
The following is an example of this error:

class C {};
class D {};

void main()
{
 D d, *pd;
 C c, *pc;
 int C::*pmc;

 pd->*pmc = 0; // error
 d.*pmc = 0; // error
 pc->*pmc = 0; // OK
 c.*pmc = 0; // OK
}

T296 :"Illegal expression: pointer to member expected";

The right side of a dot-star (.*) or an arrow star (->*) operator must be declared as a
pointer to a member of the class specified by the left side of the operator.
In this case, the right side is not a member pointer.

The following is an example of this error:

class C
{
public:
 int i;
 void f() {}
};

void main()
{
 void (C::*func)();
 int C::*date;
 C c;
 int f;

Chapter 5 - Errors and Warnings 5-36

 func=&C::f;
 date=&C::i;
 c.*f; // error
 (c.*f)(); // error
 c.*date; // OK
 (c.*func)(); // OK
}

T297 :"Illegal expression: left of '.%s' must have class/struct/union type";

The left side of the specified class member access operator (.) was not a class (or
structure or union) type.
The following is an example of this error:

struct S
{
public:
 int member;
} s, *ps;
void main()
{
 int i;
 i.member = 0; // error, i is not a class type
 ps.member = 0; // error, ps is a pointer to a structure
 s.member = 0; // OK, s is a structure type
 ps->member = 0; // OK, ps points to a structure S
}

T298 :"Illegal expression: left of '->%s' must point to class/struct/union type";

The left side of the specified class member access operator (->) was not a pointer to
a class, structure, or union.
The following is an example of this error:

struct S
{
public:
 int member;
} *pS;
void main()
{
 int *pInt;
 pInt->member = 0; // error, pInt points to an int
 pS->member = 0; // OK, pS points to a structure S
}

T299 :"'type cast' : conversion from %s to %s exists, but is inaccessible";

Chapter 5 - Errors and Warnings 5-37

The specified private or protected member of a class, structure was accessed.

Tips
This error can be caused by accessing a public member of a base class that is
inherited with private or protected access. The member should be accessed through
a member function with public access or should be declared with public access.
The following is an example of this error:

class C
{
public:
 int i;
 C() {i=0;}
 void f() {}
};
class D: protected C {};
void main()
{
 D *pd;
 pd->C::i=0; // error
}

T300 :"'type cast' : cannot convert from '%s'(type1) to '%s'(type2)";

The compiler was unable to cast from 'type1' to 'type2.'
The following example illustrates this error.

void f() {}
int& g(int &i) {return i;}
void main()
{
 int m;
 g(m)=f(); // error
 void *ptr;
 int *pi;
 pi=ptr; // error
}

T301 :"Illegal expression: ambiguous cast from type '%s' to type '%s'";

Both of the named overloaded functions could be used with the supplied parameters.
The conversion was ambiguous because it could be done with either the specified
constructor or the specifed conversion operator. This ambiguity is not allowed.
The following is an example of this error:

struct A;

Chapter 5 - Errors and Warnings 5-38

struct B
{
 B(A);
 B();
};
struct A
{
 operator B();
};
A a;
B b = B(a); // error

T302 :"Illegal expression: illegal cast from type 'type1' to type 'type2'";

A cast from type 'type1' to type 'type2' is not allowed.
The following example illustrates this error.

class C
{
 int i,j;
public:
 C() {i=j=0;}
};
void main()
{
 C c;
 if ((int)c); // error
}

T303 :"Attempt to take the address of a non-lvalue";

Your source file used the address-of operator (&) with an expression that can't be
used that way.
The following is an example of this error:

int g(int &i) {return i;}
void main()
{
 &(g(1)); // error
}

T304 :"Illegal expression: index must be integer type";

A nonintegral expression was used in an array subscript.
The following is an example of this error:

void main()
{

Chapter 5 - Errors and Warnings 5-39

 int a[10];
 int *pi;
 a[pi]=0; // error
}

T305 :"Illegal expression: attempt to index non-array or non-pointer";

A subscript was used on a variable that was not an array.
The following is an example of this error:

void main()
{
 int a,i;
 a[i]=0; // error
}

T306 :"Illegal expression: expression incompatible with Boolean";

The expression couldn't be evaluated to a Boolean type, because it contains one ore
more members of type struct, class or union.
The following is an example of this error:

class C
{
public:
 int i;
 C() {i=0;}
 void f() {}
};

void main()
{
 C c;
 int i;
 if (c && i) // error
 i++;
}

T307 :"use of type 'bool' in operation is restricted.";

This error is generated when you use a bool variable or value in an unexpected way.
For example, if you use bool variable in conjunction with operators such as: +=,-
=,*=,/=.
The following is an example of this error:

Chapter 5 - Errors and Warnings 5-40

void main()
{
 bool b=false;
 int a;
 b+=b;

b-=a;
}

T308 :"indirection to different types.";

The pointer expressions used with the given operator had different base types.
The pointer expressions were used without conversion.
The following is an example of this error:

class C
{
public:
 int i;
 C() {i=0;}
 void f() {}
};

class D
{
};
void main()
{
 C c,*pc;
 D d,*pd;
 pc=&c;
 pd=&d;
 pc=pc-pd; // error
}

T309 :"l-value must specify non-const object";

An attempt was made to modify an item declared with const type or the left operand
of the given operator was not an l-value.
The following is an example of this error:

int f(int i) {return i;}
void main()
{
 const int a=0;
 int b;
 a=9; // error
 f(b)=a; // error
}

Chapter 5 - Errors and Warnings 5-41

T310 :"left operand must be a non-const l-value";

An attempt was made to modify an item declared with const type or the left operand
of the given operator was not an l-value.
The following is an example of this error:

int f(int i) {return i;}
void main()
{
 const int a=0;
 int b;
 a+=9; // error
 f(b)=a; // error
}

T311 :"'++' and '--' operators requires a l-value as operand";

The given operator did not have an l-value operand.
The following is an example of this error:

int f1(int i) {return i;}
int& f2(int i) {return i;}
void main()
{
 int b;
 f1(b)++; // error
 f2(b)++; // OK
}

T312 :"'%s': illegal on operands of type '%s'";

The given unary operator was used with an illegal operand type, as in the following
example:

void g(bool fFlag) {
 --fFlag; // error
 fFlag--; // error
}
void main()
{
 float f;
 ~f; // error
}

T313 :"Use of undefined type '%s'";

The specified type was not defined.

Chapter 5 - Errors and Warnings 5-42

A type cannot be used until it is defined.
The folowing is an example of this error:

class B;
void main()
{
 B::i=0;
}

314 :"Illegal declaration: type must be defined before being used";

The specified identifier was declared as a class, structure, or union that was not
defined.
The following is an example of this error:

class B;
void main()
{
 B b;
}

T315 :"Undefined qualifier '%s'";

The specified qualifier is not defined.

T316 :"Qualified name is not previously defined";

You are trying to reference a function or a variable as a member of a class/struct
specificated by the qualifier, but it is not a member.
Check your declarations.
The following is an example of this error:

class B
{
 int i;
};
int B::f(){return 0;} // error
static int B::j=0; // error

T317 :"Illegal use of non-static member";

Non-static members cannot be used without an object. This means that you have
written class::member where 'member' is an ordinary (non-static) member, and
there is no class to associate with that member.
The following is an example of this error:

class C

Chapter 5 - Errors and Warnings 5-43

{
public:
 int i;
 C() {i=0;}
 void f() {}
};

void main()
{
 C c;
 C::i=0; // error
 c.C::i=0; // OK
}

T318: "'%s' : illegal reference to data member in a static member function";

The identifier you specified is a member of the class. However, it is nonstatic and
the current function is a static member function. To access the member, an instance
of the class must be provided and accessed using the . or -> operators.
The following is an example of this error:

class C
{

public:
 int i;
 static int j;
 C() {i=0;}
 static void f();
};
void C::f()
{
 i++; // error
 j++; // OK
}

T319 :"'%s' : member from enclosing class is not a type name, static,
or
 enumerator";

From within a nested class, you attempted to access a member of the enclosing class
that was not a type name, a static member, or an enumerator.
The following is an example of this error:

int x;
class enclose
{
public:
 int x;
 static int s;
 class inner

Chapter 5 - Errors and Warnings 5-44

 {
 void f()
 {
 x = 1; // error; enclose::x is not static
 s = 1; // ok; enclose::s is static
 ::x = 1; // ok; ::x refers to global
 }
 };};

T320 :"local class cannot use local variables from enclosing function";

From within a nested class, you attempted to access a local variable of the enclosing
function. A local class can access/use only the static local variables declared in the
enclosing function.
The following is an example of this error:

void enclose ()
{
 int x;
 static int s;
 class inner
 {
 void f()
 {
 x = 1; // error; enclose::x is not static
 s = 1; // ok; enclose::s is static
 }
 };
};

T321 :"Illegal declaration: local class cannot have static members";

The specified member of a class, structure, or union with local scope was declared
as static.
The following is an example of this error:

void func(void)
{
 class A
 {
 static int i; // error, i is local to func
 };
};
class B
{
 static int i; // OK
};

Chapter 5 - Errors and Warnings 5-45

T322 :"'%s' : use of member as default parameter requires static member";

The specified nonstatic member was used as a default parameter.
The following is an example of this error:

class C
{
public:
 int i;
 static int j;
 void func1(int i = i); // error, i is not static
 void func2(int i = j); // OK, uses static j
};

T323 :"'%s' : illegal use of local variable as default parameter";

A local variable was illegally used as a default parameter.
The following is an example of this error:

int i;
void func();
{
 int j;
 extern void func2(int k = j); // error, local variable
 extern void func2(int k = i); // OK
}

T324 :"Cannot take address of function 'main'";

It is illegal to take the address of the main function.

T325 :"'main' function must return 'int' or 'void'";

You associated a return type to the main function, other than int or void.
The return type of the main function can be only int or void.
The following is an example of this error:

float main()
{
 return 1.2;
}

Chapter 5 - Errors and Warnings 5-46

T326 :"Name '%s' cannot be used in expression";

The specified name cannot be used in expression because it represents neither a
function nor a variable nor an enumerator.
The following is an example of this error:

class X
{
private:
 X& operator= (const Y&) { return *this;}
};

class Y
{
public:
 X x;
};

void main()
{
 int i;
 i = Y(1); // error
}

T327 :"cannot evaluate expression to a constant";

One of the enumerators of the enum type is not constant.
The enum type requires that all enumerators to be constant integer values.
The following is an example of this error:

void main()
{
 int i;
 enum colors {red=i,green,blue,yellow}; // error
 enum colors {red=0,green,blue,yellow}; // OK
}

T328 :"constant expression is not integral";

Chapter 5 - Errors and Warnings 5-47

One of the enumerators of the enum type is not an integral expression.
All the constant values of an enum type must be integral.
The following is an example of this error:

void main()
{
 int i;
 enum colors {red=0.5,green,blue,yellow}; // error
 enum colors {red=0,green,blue,yellow}; // OK
}

T329 :"Cannot define '%s' inside function argument list";

Class and enumeration types may not be defined in a a function argument type.
You must define the given type before using it in this context.
The following is an example of this error:

void f(class C {});
void g(enum days {l,ma,mi});
void main()
{
}

T330 :"Base type must be defined before it is used";

The specified base class was declared but never defined.
This error can be caused by a missing include file or an external base class that was
not declared with the extern specifier.
The following is an example of this error:

class A; // error, A is undefined
class A {}; // OK, A is defined
class B : public A {}; // the error is detected here

T331 :"Base type must be a class";

The specified class was derived from a type name defined by a typedef statement or
from an object of other type than class/struct.
The following is an example of this error:

int B;
typedef unsigned long ulong;
class C : public ulong {}; // error
class D : public B {}; // error - B is not a class

Chapter 5 - Errors and Warnings 5-48

T332 :"Unions cannot have base classes";

A union was derived from a class, structure, or union.
The derived user-defined type must be declared as a class or structure.
The following is an example of this error:

class D {};

union UN : public D // error
{
 char ch;
 int i;
 long l;
 float f;
 double d;
};

T333 :"member '%s' : has non trivial constructor";

The specified union member was declared with a default constructor.
A union member is not allowed to have a default constructor.
The following is an example of this error:

class A
{
 A(){} // A has a default constructor
};
union U
{
 A a; // error
};

T334 :"member '%s' : has non trivial copy constructor";

The specified union member was declared with a copy constructor.
A union member is not allowed to have a copy constructor.
The following is an example of this error:
class A
{

 A(const A&); // A has a copy constructor
};
union U
{
 A a; // error
};

Chapter 5 - Errors and Warnings 5-49

T335 :"member '%s' : has non trivial copy assignment";

The specified union member was declared with an assignment operator,
operator=().
A union member is not allowed to have an assignment operator.
The following is an example of this error:

class A
{
 A& operator= (const A&); // A's assignment operator
};
union U
{
 A a; // error
};

T336 :"member '%s' : has non trivial destructor";

The specified union member was declared with a destructor, which is not allowed.
The following is an example of this error:

class A
{
 ~A(); // A has a destructor
};
union U
{
 A a; // error
};

T337 :"Union '%s' : cannot have static member variable '%s'";

The specified union member was declared as static.
A union cannot have a static data member.
The following is an example of this error:

union UNN
{

 static int j; // error, j is static
 int i; // OK
};

T338 :"'%s' : union can't have virtual methods";

Chapter 5 - Errors and Warnings 5-50

The specified union was declared to have a virtual function.
Virtual functions can only be used with a class or structure but not with a union.
Change the specified union to a class or structure or make it a nonvirtual function.
The following is an example of this error:

union UN
{
 int i;
 virtual void f(); // error
 void f(); // OK
};

T339 :"'%s' 'identifier' was previously defined";

The specified identifier was already defined as type type.
The following is an example of this error:

struct S {};
class S {}; // error

T340 :"anonymous union defines non public member '%s'";

The specified member was declared with protected or private access.
A member of an anonymous union must have public access.
The following are an examples of this error:

void main()
{
 union
 {
 public:
 int i; // OK, i is public
 protected:
 int j; // error, j is protected
 private:
 int k; // error, k is private
 };
}

T341 :"anonymous union type cannot have member functions";

The specified function was declared in an anonymous union.
An anonymous union cannot have member functions.
The following is an example of this error:

void main()
{

Chapter 5 - Errors and Warnings 5-51

 union
 int i;
 void func(void); // error, union is anonymous
 };
 union U
 void func2(void); // OK
 };
}

T342 :"global anonymous unions must be declared static";

The anonymous union had global scope but was not declared as static.
The following is an example of this error:

union { int i; }; // error, not static
static union { int j; }; // OK
union U { int i; }; // OK, not anonymous

T343 :"anonymous class or struct: empty declaration";

The compiler detected an empty declaration using an untagged structure or class.
The following is an example of this error:

class C {}; // OK
class {}; // error

T344 :"Unable to define default destructor for class '%s'";

The compiler couldn't supply a default destructor for the specified class, because the
specifed class contains a member that cannot be destroyed (an object of a class with
a private destructor).
The following is an example of this error:

class X
{
 int i;
 ~X() {}
};
class Y // error
{
 X x;
};

T345 :"Unable to define default assignment operator for class '%s'";

Chapter 5 - Errors and Warnings 5-52

The compiler couldn't supply an assignment operator for the specified class, because
the specifed class contains an object of a class with private assignment operator or
because there is an assignment operator for the base class that is not accessible by
the derived class.
The following is an example of this error:

class X
{
 int i;
 X operator= (X &x){ i=x.i;return *this;}
};
class Y // error
{
 X x;
};

T346 :"Unable to define default constructor for class '%s'";

The compiler couldn't supply a default constructor for the specified class, because the
base class has only user-defined constructors, or the default constructor of the base
class has private access, or the specifed class contains a member that cannot be
intialized (an object of a class without a default constructor).
The following are examples of this error:

class C
{
public:
 int i;
 C(int a) {i=a;}
};

class B : public C // error
{
};

class D;
class E : public D //error
{
}

T347 :"Unable to define default copy constructor for class '%s'";

Chapter 5 - Errors and Warnings 5-53

The compiler couldn't supply a copy constructor for the specified class, because the
specified class contains an object of a class with private copy constructor or because
there is a copy constructor for the base class that is not accessible by the derived
class.
The following is an example of this error:

class X
{
 int i;
 X(X &x) {}
};
class Y // error
{
 X x;
};

T348 :"no assignment for '%s'";

No assignment operator was available for the specified class, structure, or union.
The following is an example of this error:

class X
{
public:
 X() {}
 X& operator=(X&){return *this;}
};

class Y // error
{
 const X x;
};

T349 :"no default constructor for '%s'";

Chapter 5 - Errors and Warnings 5-54

No default constructor was available for the specified class, structure, or union.
The following are examples of this error:

class C
{
public:
 int i;
 C(int a) {i=a;}
};

class B
{
 C c; // error
};

class D;
class E : public D //error
{
}

T350 :"no copy constructor for '%s'";

No copy constructor was available for the specified class, structure, or union.
The following is an example of this error:

class X
{
public:
 X() {}
private:
 X(X&) {}
 X(X&,int=0){}
};
class Y // error
{
 X x;
 Y() {}
};

T351 :"'%s' : must be initialized in constructor base/member initializer list";

The given constant was not initialized with an initializer list in the object
constructor. The compiler left the constant undefined.
If a const or reference member variable is not given a value when it is initialized, it
must be given a value in the object constructor.
The following is an example of this error:

Chapter 5 - Errors and Warnings 5-55

class C
{
public:
 const int i;
 const int &ref;
 C(){} // error
 C() :i(0),ref(i){} // OK
};

T352 :"Constructors, destructors and operators must be functions";

A constructor, destructor or an overloaded operator was declared with something
other than function type.
For example:

class A
{
 A& operator +; // error - note missing parenthesis
 ~A; // error - missing paranthesis
};

In the example, the function operator '()' is missing, so the operator does not have
function type and generates this error (the same for the destructor).

T353 :"Illegal declaration: nothing is defined";

This declaration doesn't declare anything.
This should be a variable in the declaration. C++ requires that something be
declared.
For example:

void main()
{
 int ; // error
 int i; // OK
}

T354 :"Illegal declaration: unknown specifier";

You used an unknown specifier. The specifier is none of the valid specifiers: auto,
register, static, const, volatile, friend, virtual, etc.

T355 :"Illegal specifier: functions cannot be located at an absolute address.";

Chapter 5 - Errors and Warnings 5-56

You tried to locate a function at an absolute address. Only global/static variables
(excepted bit variables) can be located at absolute memory location using the _at_
keyword.
Example:

int i _at_ 0x8000; // OK
void f() _at_ 0x7800; // error
void main()
{
 static int j _at_ 0xe000; // OK - i is static
 int k _at_ 0x5000; // error - j is not static
}

T356 :"Illegal parameters or return value types for function with extern alien

specifier";

The return value and/or parameters of the function have incorrect types.
Parameters and return values of functions with extern alien specifier may be any of
the following types: bit, char, unsigned char, int and unsigned int.

T357 :"A function definition with 'task' specifier must return void and must

have an empty parameters list";

The function was declared with a return type different from void and/or with one or
more arguments. Task functions must be declared with a void return type and a void
argument list.

T358 :"task ID must be a number from 0 to 255 for RTX51 Full or 0 to 15 for

RTX51 Tiny";

The task id wasn't in the required range of values. For the RTX51 Full operating
system task id must be in the range 0-255 and for the RTX51 Tiny operating system
it must be in the range 0-15.

T359 :"Register bank value must be in the range %d - %d";

The function uses a non-existing register bank (specifies an invalid value). There are
4 register banks, numbered from 0 to 3, so the register bank value specified after
using keyword must be in the range 0-3.

T360 : "Priority value must be in the range %d - %d";

Chapter 5 - Errors and Warnings 5-57

The priority value wasn't in the range 0-15.
The priority must be a value of type char/int/long in the range 0-15.

T361 :"Illegal return value type: function with register bank specifier cannot

return bit value";

The function having the register bank specifier returned a bit value.
Functions with register bank specifer cannot return a bit value or a variable in
registers.

T362 :"Illegal interrupt id must be in the range %d - %d ";

The interrupt id wasn't in the range 1-255.
Interrupt id must be a constant expression of type char/int/long in the range 1-255

T363 :"Illegal parameters or return value types for interrupt function";

The function was declared with a return type different from void and/or with one or
more arguments. Interrupt functions MUST not have any arguments and must not
return a value.

T364 :"Illegal parameter types (bit) for reentrant function";

One ore more arguments of the reentrant function have bit type.
The bit type for reentrant function arguments is not allowed.

T365 :"Illegal specifier: variables cannot have extern alien specifier";

The extern alien specifier was associated to a variable. Only PL/M-51 functions
can be declared with extern alien specifier.

T366 :"Illegal specifier: variables cannot have task specifier";

The task specifier was associated to a variable. Only functions (with no arguments
and void return type) can have task specifier.

T367 :"Illegal specifier: variables cannot have register bank specifier";

Chapter 5 - Errors and Warnings 5-58

The register bank specifier was associated to a variable. Only interrupt functions
and main function can have register bank specifier.

T368 :"Illegal specifier: variables cannot have interrupt specifier";

The interrupt specifier was associated to a variable. Only functions (with no
arguments and void return type) can have interrupt specifier.

T369 :"Illegal specifier: variables cannot have memory model specifier";

A memory model specifier (small, large, compact) was associated to a variable.
Only functions can have memory model specifier.

T370 :"Illegal specifier: variables cannot have reentrant specifier";

The reentrant specifier was associated to a variable. Only functions can have
reentrant specifier.

T371 :"Illegal specifier: variables of type bit cannot be located at an

absolute address.";

You tried to locate a variable of type bit at an absolute address.
Functions and variables of type bit cannot be located at an absolute address.

T372 :"Illegal specifier: variables with far memory type specifier cannot be

 located at an absolute address.";

You tried to locate a variable with far memory specifier at an absolute address.
The memory space far cannot be used together with the _at_ keyword.

T373 :"Illegal declaration: interrupt ID specified twice";

The interrupt specifier was used more than once in the same declaration or
definition.
For example:

void f() interrupt (1) interrupt (1); // error

Chapter 5 - Errors and Warnings 5-59

void main() {}

T374 :"Illegal declaration: register bank specified twice";

The register bank specifier was used more than once in the same declaration or
definition.
For example:

void f() interrupt (1) using(1) using(2); // error
void main()
{
}

T375 :"Illegal declaration: 'spec' specified twice";

The 'spec' specifier was used more than once in the same declaration or definition.
For example:

void f() interrupt (1) interrupt (1); // error
void g() reentrant reentrant; // error
void g() interrupt(2) saveregbank saveregbank; // error
void g() saveregs saveregs; // error
void main() user user // error
{}

T376 :"Illegal declaration: priority ID specified twice";

The priority specifier was used more than once in the same declaration or
definition.
For example:

void g() interrupt(3) priority(1) priority(3); // error

T377 :"Illegal declaration: task ID specified twice";

The task specifier was used more than once in the same declaration or definition.
For example:

void g() _task_ 1 _task_ 3; // error

T378 :"Illegal declaration: memory model specified twice";

The memory model was used more than once in the same declaration or definition.
For example:

Chapter 5 - Errors and Warnings 5-60

void g() small large; // error

T379 :"Illegal declaration: memory type specified twice";

The memory type specifier was used more than once in the same declaration or
definition.
For example:

far far int i; // error
bdata xdata int j;// error
near far int k; // error

T380 :"Argument '%d' must be initialized for function '%s'";

A parameter was missing in a default parameter list.
If a default parameter is supplied anywhere in a parameter list, then all subsequent
parameters on the right side of the default parameter must also be defined.
The following is an example of this error:

void func(int = 1, int); // error
void func(int=1, int = 3); // OK

T381 :"Complex constructors only valid for classes";

A function-style type cast of a built-in type can only take one argument. The error is
generated when multiple arguments are supplied. For example:

void main()
{
 int j= int(1,3);
}

T382 :"Call to '%s' is ambiguous";

Both of the named overloaded functions could be used with the supplied parameters.
This ambiguity is not allowed.
The following is an example of this error:

class C
{
public:
 int i;
 int operator() (int i) {return i;}

Chapter 5 - Errors and Warnings 5-61

 int operator() (int i, int j=0) {return i+j;}
};
void main()
{
 C c;
 c(0); // error
}

T383 :"Call to '%s' cannot be resolved";

A call was made to a function through an expression that did not evaluate to a
function pointer.
This error is probably caused by attempting to call a nonfunction (the name being
called is not declared as a function).
The following is an example of this error:

class C
{
public:
 int i;
};
void main()
{
 C c;
 c(0); // error - c is the name of an object
}

T384 :"Illegal expression: member access to non-structure";

The left side of the specified class member access operator (->) was not a pointer to
a class, structure, or union.

T385 :"Illegal expression: member access to undefined type";

You used class member access operator "->" on an object of an undefined
class/struct (the class/struct was declared, but not defined).
The following is an example of this error:

class B;
void main()
{
 B *pb;
 pb->i=90; // error (class is declared but not defined)
}

Chapter 5 - Errors and Warnings 5-62

T386 :"Wrong constructor init list";

A class in an initialization list was not a base class or member.
Only a member or base class can be in the initialization list for a class or structure.
The following is an example of this error:

class A
{
public:
 int i;
 A(int ia) : B(i) {}; // error, B is not a member of A
};

T387 :"Wrong initializer for '%s'";

A class member in an initialization list was initialized with more than one value.
Only a value can be assigned to a member in the initialization list for a class or
structure.
The following is an example of this error:

class X
{
 int i;
 X() : i(1,9) {} // error - you specified more than one value for
i
};

T388 :"No matching initializer for '%s'";

A class member in an initialization list was initialized with a value of a type that
couldn't be converted to that member type.
The following is an example of this error:

class Y {};
class X
{
 Y i;
 X():i(1){} // error - i expected a value of type Y
};

T389 :"Illegal declaration: must initialize address variable here";

A reference was not initialized when it was declared.

Chapter 5 - Errors and Warnings 5-63

The following cases are the only times a reference can be declared without
initialization:
 It is declared with the keyword extern.
 It is a member of a class, structure, or union and is initialized in the class's

constructor function.
 It is declared as a parameter in a function declaration or definition.
 It is declared as the return type of a function.
The following is an example of this error:

void main()
{
 int a;
 int &ref; //error
 int &ref=a; //OK
}

T390 :"Illegal declaration: bit fields cannot have storage static";

Only ordinary class data members can be declared static, not bit fields.
The following is an example of this error:

class C
{
 static int i:2; // error
};

T391 :"Illegal declaration: union members cannot have constructors,

destructors, or assignment";

The specified union member was declared with a default constructor or with a
destructor or with an assignment operator.
A union member is not allowed to have a default constructor or a destructor or an
assignment operator.

T392 :"Illegal declaration: illegal storage class for member";

The specified class member was declared with an illegal storage class. The auto and
register storage class are not allowed in a class/struct/union and static storage class
is not allowed in a union.
The following is an example of this error:

class C
{
 auto int i; // error

Chapter 5 - Errors and Warnings 5-64

 register int j; // error
 int k; // OK
};

T393 :"Illegal declaration: illegal storage class for function";

The specified function was declared with an illegal storage class.
Only the extern, static and extern alien storage class can be used in conjunction with
a function.

T394 :"Illegal declaration: cannot initialize class or union members";

Individual members of structs, unions, and classes can't have initializers.

T395 :"Illegal declaration: unbounded array member in class or union";

A class/structure or union contained an array with zero size.
The following is an example of this error:

class C { int a[]; }; // error

T396 :"Illegal declaration: can't specify storage class for typedef";

There was a storage class inside the typedef declaration.
The typedef declaration cannot include a storage class.
The following is an example of this error:

typedef extern unsigned int UINT; // error

T397 :"Illegal declaration: illegal typedef";

The typedef declaration was preceded by a storage class.
There cannot be a storage class in a typedef declaration.
The following is an example of this error:

extern typedef unsigned int UINT; // error

T398 :"Illegal declaration: function definition expected";

You used a modifier that request a function declaration/definition not a data
declaration.

Chapter 5 - Errors and Warnings 5-65

The virtual, pure specifier, inline, explicit modifiers cannot be used for data
declarations.
The following is an example of this error:

class C
{
public:
 int i;
 C(int a) {i=a;}
 int f1=0; // error
 explicit int f2; // error
 inline int f3; // error
};

T399 :"local class member functions must be defined within the class";

All members of classes declared local to a function must be entirely defined in the
class definition.
This means that local classes cannot contain any static data members, and all of their
member functions must have bodies defined within the class definition.
The following is an example of this error:

void f()
{
 class X
 {
 void f();
 };
}

T400 :"Cannot typedef a function type";

A typedef was used to define a function type.
For example:

typedef int functyp();
functyp func1 {}; // error

T401 :"Only non-static member functions can be const or volatile";

The specified static member function was declared with a const or volatile specifier.
The following is an example of this error:

class C
{
 public:

Chapter 5 - Errors and Warnings 5-66

 static void func1() const; // error, func1 is static
 void func2() const; // OK
};

T402 :"Methods can only be external";

A member function was defined at file scope. Member functions should be declared
with external linkage.
The following are examples of this error:

class C
{

 static void func();
};

static void C::func(){}; // error
//-----------------------
class D
{
 void f() ;
};

static void D::f() // error
{
}

T403 :"Illegal types for operator '%s'";

You used operands of type bit, sbit in conjunction with operators such as:
+=,-=,*=,/=,&,||,==,!=. These operators can't be used with operands of type bit or
sbit.
The following is an example of this error:

void main()
{
 sbit i,j;
 i+=2; // error
 if (i||j); // error
}

T404 :"Implicit constructor conversion is not allowed here because of 'explicit'
specifier";

Chapter 5 - Errors and Warnings 5-67

You tried to initialize an object having an explicit constructor, by using an assignment
statement.
Explicit specifier doesn't permit an implicit conversion.
The following is an example of this error:

class C
{
public:
 int i;
 explicit C(int a) {i=a;}
};
void main()
{
 C c=9; // error
 C c(9); // OK
}

T405 :"'explicit' specifier is allowed only for constructors";

The function was declared with an explicit specifier. Only constructors can be defined
with explicit specifier.
The following is an example of this error:

class C
{
public:
 int i;
 explicit C(int a) {i=a;}// OK
 explicit void f (); // error
};

explicit void g(); // error

T406 :"Name '%s' must be declared first in his enclosing scope";

You are trying to reference '%s' as a member of 'class/struct', but it is not a member.
You must declare it first in the specified class/structure:
The following is an example of this error:

class B;
int B::f(){return 0;} // error

T407 :"'%s': Structure members cannot be of type bit";

A class/structure member was declared of type bit.
Class/structures cannot have members of type bit.

Chapter 5 - Errors and Warnings 5-68

The following is an example of this error:

class C
{
public:
 int i;
 C(int a) {i=a;}
 bit a; // error
};

T408 :"'%s': Taking the address of a bit variable is illegal";

An attempt was made to take the address of a bit variable.
The following is an example of this error:

void main()
{
 bit a;
 void *pa=&a; // error
}

T409 :"'%s': Taking the address of a sfr variable is illegal";

An attempt was made to take the address of a sfr variable.
The following is an example of this error:

void main()
{
 sfr a;
 void *pa=&a; // error
}

T410 :"Enable use '%s' only for interrupt function ";

The priority (n), using (n) and saveregbank function modifiers were used in
association with non-interrupt functions.
The above modifiers are allowed only on interrupt or main functions
(saveregbank will be used only for an interrupt function).
The following is an example of this error:

void f() using(3); // error
void g() saveregbank; // error

T411 :"'system/user' modifier is allowed only on function 'main'";

Chapter 5 - Errors and Warnings 5-69

The system/user modifier was used in other function than main.
This modifier is allowed only on main function.
The following is an example of this error:

void f() system; // error
void main() system // OK
{
}

T412 :"'%s': Memory specifier must be used only in a global/static declaration";

Memory space (sfr, code, data, bdata, ddata, xdata) can only be used in a
global/static declaration.
The following is an example of this error:

void main() user
{
 char code ch; // error
 sfr int i; // error
}

T413 :"'%s': Address location must be used only in a global/static declaration";

You tried to locate a local or non-static variable at an absolute memory location.
Absolute variable location can be performed for global/static variables only;
The following is an example of this error:

char xdata c _at_ 0x5000; // OK
void main()
{
 char c _at_ 0x3000; // error
}

T414 :"Pointers to sfr space are illegal";

Sfr space can only be used in a global/static declaration of a simple type variable (bit.
char, int, long, float either signed or unsigned).
Every other usage is illegal including: structure, arrays, casting, pointers, typedef, etc.
Pointers to sfr space are illegal.
The following is an example of this error:

sfr int *a; // error
void main()
{
}

Chapter 5 - Errors and Warnings 5-70

T415 :"Sfr space must be used only for basic types";

Sfr space can only be used in a global/static declaration of a simple type variable (bit.
char, int, long, float either signed or unsigned).
Every other usage is illegal including: structure, arrays, casting, pointers, typedef, etc.
The following is an example of this error:

sfr int a[5]; // error
void main()
{
}

T416 :"'%s' : Sfr variables cannot be initialized";

A sfr variable was initialized.
Sfr variables cannot be initialized.
The following is an example of this error:

sfr int a=5; // error
void main() {}

T417 :"'%s' : Variable location out of adress space";

The variable was located at an address that isn't in the allowed range.
Here are the allowed ranges of addresses according to the memory space:
sfr = 0x400 - 0x7FF
data = 0 - 0xFFFFFF
code = 0 - 0xFFFFFF
xdata = 0 - 0xFFFF
ddata = 0 - 0x3FF, 0x10000 - 0x103FF ... (offset is 0 - 0x3FF)
bdata = offset is 0x20 - 0x3F
bit data/bdata = offset is 0x100 - 0x1FF
bit sfr = 0x200 - 0x3FF
The following is an example of this error:

sfr bit a _at_ 0x100; // error
void main() user
{
}

T500 :"'#pragma C' directive is not ended with '#pragma END_C' ";

Chapter 5 - Errors and Warnings 5-71

The #pragma C directive doesn't have its pair '#pragma END_C directive.
The above directives work only together.

T501 :"'#pragma END_C' directive was not begun with '#pragma C'";

The #pragma END_C directive doesn't have its pair '#pragma C directive.
The above directives work only together.
Pragma directives
#pragma PRAGMAC
#pragma ENDPRAGMAC
The code between PRAGMAC and ENDPRAGMAC is unchanged, and remains as
C code
#pragma CODE_PRAGMA
#pragma COMPACT_PRAGMA
NOOJ_PRAGMA
#pragma OT_PRAGMA
#pragma OR_PRAGMA
#pragma PL_#pragma DB_PRAGMA
#pragma DISABLE_PRAGMA
#pragma EJECT_PRAGMA
#pragma FF_PRAGMA
#pragma I2_PRAGMA
#pragma IV_PRAGMA

Chapter 5 - Errors and Warnings 5-72

- #pragma NOIV_PRAGMA
- #pragma LARGE_PRAGMA
- #pragma LISTINCLUDE_PRAGMA
- #pragma MAXARGS_PRAGMA
- #pragma NOAM_PRAGMA
- #pragma NOEXTEND_PRAGMA
- #pragma OJ_PRAGMA
- #pragma PRAGMA
- #pragma PW_PRAGMA
- #pragma PARM51_PRAGMA
- #pragma PARM251_PRAGMA
- #pragma PR_PRAGMA
- #pragma NOPR_PRAGMA
- #pragma REGFILE_PRAGMA
- #pragma ROM_PRAGMA
- #pragma SAVE_PRAGMA
- #pragma RESTORE_PRAGMA
- #pragma SMALL_PRAGMA
- #pragma SYMBOLS_PRAGMA
- #pragma WARNINGLEVEL_PRAGMA
- #pragma REGPARMS_PRAGMA
- #pragma NOREGPARMS_PRAGMA

Inline asm code

The syntax is as follows:

asm line:

 __asm assembly-language-instruction

asm block:

__asm {
 assembly-language-instructions
}

CHAPTER 6

EC++ LIBRARIES

Chapter 6- EC++ Libraries 6-1

CHAPTER 6

EC++ LIBRARIES

EC++ libraries

1. <cctype> - based on the standard C header file ctype.h
2. <cerrno> - based on the standard C header file errno.h
3. <cfloat> - based on the standard C header file float.h
4. <climits> - based on the standard C header file limits.h
5. <cmath> - based on the standard C header file math.h
6. <csetjmp> - based on the standard C header file setjmp.h
7. <cstdarg> - based on the standard C header file stdarg.h
8. <cstddef> - based on the standard C header file stddef.h
9. <cstdio> - based on the standard C header file stdio.h
10. <cstdlib> - based on the standard C header file string.h
11. <cstring>
12. <complex>
13. <string>
14. <streambuf>
15. <stdiobuf>
16. <ios>
17. <istream>
18. <ostream>
19. <iostream>
20. <iomanip>
21. <new>

Chapter 6- EC++ Libraries 6-2

<double_complex> and <float_complex>

class double_complex {
public:
 typedef double value_type;

 friend double_complex operator+(const double_complex&, const
double_complex&);
 friend double_complex operator+(const double_complex&, const double&);
 friend double_complex operator+(const double&, const double_complex&);
 friend double_complex operator-(const double_complex&, const
double_complex&);
 friend double_complex operator-(const double_complex&, const double&);
 friend double_complex operator-(const double&, const double_complex&);
 friend double_complex operator*(const double_complex&, const
double_complex&);
 friend double_complex operator*(const double_complex&, const double&);
 friend double_complex operator*(const double&, const double_complex&);
 friend double_complex operator/(const double_complex&, const
double_complex&);
 friend double_complex operator/(const double_complex&, const double&);
 friend double_complex operator/(const double&, const double_complex&);
 friend bool operator==(const double_complex&, const double_complex&);
 friend bool operator==(const double_complex&, const double&);
 friend bool operator==(const double& lhs, const double_complex& rhs);
 friend bool operator!=(const double_complex&, const double_complex&);
 friend bool operator!=(const double_complex&, const double&);
 friend bool operator!=(const double&, const double_complex&);
 friend istream& operator>>(istream&, double_complex&);
 friend ostream& operator<<(ostream&, const double_complex&);

 friend double real(const double_complex&);
 friend double imag(const double_complex&);
 friend double abs(const double_complex&);
 friend double arg(const double_complex&);
 friend double norm(const double_complex&);
 friend double_complex conj(const double_complex&);
 friend double_complex polar(const double&, const double&);
 friend double_complex cos (const double_complex&);
 friend double_complex cosh (const double_complex&);
 friend double_complex exp (const double_complex&);
 friend double_complex log (const double_complex&);
 friend double_complex log10(const double_complex&);

Chapter 6- EC++ Libraries 6-3

 friend double_complex pow(const double_complex&, int);
 friend double_complex pow(const double_complex&, const double&);
 friend double_complex pow(const double_complex&, const double_complex&);
 friend double_complex pow(const double&, const double_complex&);
 friend double_complex sin (const double_complex&);
 friend double_complex sinh (const double_complex&);
 friend double_complex sqrt (const double_complex&);
 friend double_complex tan (const double_complex&);
 friend double_complex tanh (const double_complex&);

 double_complex(double re = 0.0, double im = 0.0);
 double_complex(const float_complex& x);
 double real() const;
 double imag() const;

 double_complex& operator=(double);
 double_complex& operator+=(double);
 double_complex& operator-=(double);
 double_complex& operator*=(double);
 double_complex& operator/=(double);
 double_complex& operator=(const double_complex&);
 double_complex& operator+=(const double_complex&);
 double_complex& operator-=(const double_complex&);
 double_complex& operator*=(const double_complex&);
 double_complex& operator/=(const double_complex&);
private:
 double re, im;
};

The double_complex class describes an object that stores two objects
of type double, one that represents the real part of a complex number
and one that represents the imaginary part.
The first constructor initializes the stored real part to
re and the stored imaginary part to im. The remaining constructor
initializes the stored real part to x.real() and the stored imaginary
part to x.imag().

class float_complex {
public:
 typedef float value_type;

 friend float_complex operator+(const float_complex&, const float_complex&);
 friend float_complex operator+(const float_complex&, const float&);

Chapter 6- EC++ Libraries 6-4

 friend float_complex operator+(const float&, const float_complex&);
 friend float_complex operator-(const float_complex&, const float_complex&);
 friend float_complex operator-(const float_complex&, const float&);
 friend float_complex operator-(const float&, const float_complex&);
 friend float_complex operator*(const float_complex&, const float_complex&);
 friend float_complex operator*(const float_complex&, const float&);
 friend float_complex operator*(const float&, const float_complex&);
 friend float_complex operator/(const float_complex&, const float_complex&);
 friend float_complex operator/(const float_complex&, const float&);
 friend float_complex operator/(const float&, const float_complex&);
 friend bool operator==(const float_complex&, const float_complex&);
 friend bool operator==(const float_complex&, const float&);
 friend bool operator==(const float&, const float_complex&);
 friend bool operator!=(const float_complex&, const float_complex&);
 friend bool operator!=(const float_complex&, const float&);
 friend bool operator!=(const float&, const float_complex&);
 friend istream& operator>>(istream&, float_complex&);
 friend ostream& operator<<(ostream&, const float_complex&);

 friend float real(const float_complex&);
 friend float imag(const float_complex&);
 friend float abs(const float_complex&);
 friend float arg(const float_complex&);
 friend float norm(const float_complex&);
 friend float_complex conj(const float_complex&);
 friend float_complex polar(const float&, const float&);
 friend float_complex cos (const float_complex&);
 friend float_complex cosh (const float_complex&);
 friend float_complex exp (const float_complex&);
 friend float_complex log (const float_complex&);
 friend float_complex log10(const float_complex&);
 friend float_complex pow(const float_complex&, int);
 friend float_complex pow(const float_complex&, const float&);
 friend float_complex pow(const float_complex&, const float_complex&);
 friend float_complex pow(const float&, const float_complex&);
 friend float_complex sin (const float_complex&);
 friend float_complex sinh (const float_complex&);
 friend float_complex sqrt (const float_complex&);
 friend float_complex tan (const float_complex&);
 friend float_complex tanh (const float_complex&);

 float_complex(float re = 0.0f, float im = 0.0f);
 float_complex(const double_complex& x);
 float real() const;

Chapter 6- EC++ Libraries 6-5

 float imag() const;
 float_complex& operator=(float);
 float_complex& operator+=(float);
 float_complex& operator-=(float);
 float_complex& operator*=(float);
 float_complex& operator/=(float);
 float_complex& operator=(const float_complex&);
 float_complex& operator+=(const float_complex&);
 float_complex& operator-=(const float_complex&);
 float_complex& operator*=(const float_complex&);
 float_complex& operator/=(const float_complex&);
private:
 float re, im;
};

The float_complex class describes an object that stores two objects
of type float, one that represents the real part of a complex number
and one that represents the imaginary part.
The first constructor initializes the stored real part to re and the
stored imaginary part to im. The remaining constructor initializes
the stored real part to x.real() and the stored imaginary part to
x.imag().

double_complex:: double_complex
float_complex:: float_complex

 Syntax
double_complex(double re = 0.0, double im = 0.0);
float_complex(float re = 0.0f, float im = 0.0f);

 Description
The constructor initializes the stored real part to re and the imaginary part
to im.

 Example
#include <complex>
void main()
{
 double_complex dc(10,3);
double re=dc.imag();
double im=dc.real();
 }

double_complex:: double_complex
float_complex:: float_complex

 Syntax

Chapter 6- EC++ Libraries 6-6

double_complex(const float_complex& x);
float_complex(const double_complex& x);

 Description
The constructor initializes the stored real part to x.real() and the stored
imaginary part to x.imag().
 Example

#include <complex>
void main()
{
 double_complex dc(10,3);
float_complex fc(dc);
float re=fc.imag();
float im=fc.real();
 }

double_complex:: real
float_complex:: real

 Syntax
double real() const;
float real() const;

 Description
Returns the real part of the complex number.

 Example
#include <complex>
void main()
{
 double_complex dc(10,3);
double re=dc.imag();
double im=dc.real();
 }

double_complex:: imag
float_complex:: imag

 Syntax
double imag() const;
float imag() const;

 Description
Returns the imaginary part of the complex number.

 Example
#include <complex>
void main()

Chapter 6- EC++ Libraries 6-7

{
 double_complex dc(10,3);
double re=dc.imag();
double im=de.real();
 }

double_complex::operator=
float_complex::operator=

 Syntax
double_complex& operator=(const double _complex& rhs);
double _complex& operator=(double rhs);
float_complex& operator=(const float_complex& rhs);
float_complex& operator=(float rhs);

 Description
The first member function replaces the stored real part with rhs.real() and
the stored imaginary part with rhs.imag().
The second member function replaces the stored real part with rhs and the stored
imaginary part with zero.
 Return Value
Returns *this.
 Example

#include <complex>
void main()
{
 double_complex c1,c2(3,8);
c1=c2;
c1=3;
 }

double_complex::operator+=
float_complex::operator+=

 Syntax
double_complex& operator+=(const double_complex& rhs);
double_complex& operator+=(double rhs);
float_complex& operator+=(const float_complex& rhs);
float_complex& operator+=(float rhs);

 Description
The first member function replaces the stored real and imaginary parts with those
corresponding to the complex sum of *this and rhs.

Chapter 6- EC++ Libraries 6-8

The second member function adds rhs to the stored real part.
 Return Value

Returns *this.
 Example

#include <complex>
void main()
{
 double_complex c1(10,3),c2(0,1);
c2+=c1;
double x=9.5;
c1+=x;
 }

double_complex::operator-=
float_complex::operator-=

 Syntax
double_complex& operator-=(const double _complex& rhs);
double_complex& operator-=(double rhs);
float_complex& operator-=(const float_complex& rhs);
float_complex& operator-=(float rhs);

 Description
The first member function replaces the stored real and imaginary parts with those
corresponding to the complex difference of *this and rhs.
The second member function subtracts rhs from the stored real part.
 Return Value
Returns *this.
 Example

#include <complex>
void main()
{
 float_complex c1(10,3),c2(3.5,4.8);
c2==c1;
float x=9.5;
c1-=x;
 }

double_complex::operator*=
float_complex::operator*=

 Syntax
double_complex& operator*=(const double _complex& rhs);
double _complex& operator*=(double rhs);

Chapter 6- EC++ Libraries 6-9

float_complex& operator*=(const float_complex& rhs);
float_complex& operator*=(float rhs);

 Description
The first member function replaces the stored real and imaginary parts with
those corresponding to the complex product of *this and rhs.
The second member function multiplies both the stored real part and the stored
imaginary part with rhs.
 Return Value
Returns *this.
 Example

#include <complex>
void main()
{
 float_complex c1(10,3),c2(1,5);
c2*=c1;
float x=10;
c1*=x;
 }

double_complex::operator/=
float_complex::operator/=

 Syntax
double_complex& operator/=(const double _complex& rhs);
double _complex& operator/=(double rhs);
float_complex& operator/=(const float_complex& rhs);
float_complex& operator/=(float rhs);

 Description
The first member function replaces the stored real and imaginary parts with those
corresponding to the complex quotient of *this and rhs.
The second member function multiplies both the stored real part and the stored
imaginary part with rhs.
 Return Value
Returns *this.
 Example

#include <complex>
void main()
{
 float_complex c1(10,3),c2(1,5);
c2/=c1;
float x=10;
c1/=x;

Chapter 6- EC++ Libraries 6-10

 }

abs

 Syntax
double abs(const double_complex& x);
float abs(const float_complex& x);

 Description
The function returns the magnitude of x.

 Example
#include <complex>
void main()
{
 double_complex dc(10,3);
 double x;
 x=abs(dc);
 }

arg

 Syntax
double arg(const double_complex& x);
float arg(const float_complex& x);

 Description
The function returns the phase angle of x.

 Example
#include <complex>
void main()
{
 double_complex dc(10,3);
 double x;
 x=arg(dc);
 }

conj

 Syntax
double_complex conj(const double_complex& x);
float_complex conj(const float_complex& x);

 Description
The function returns the conjugate of x.

 Example
#include <complex>

Chapter 6- EC++ Libraries 6-11

void main()
{
 double_complex x(10,3),xc(0,0);
 xc=conj(x);
 }

cos

 Syntax
double_complex cos (const double_complex& x);
float_complex cos (const float_complex& x);

 Description
The function returns the cosine of x.

 Example
#include <complex>
void main()
{
 float_complex x(10,3),xc(0,0);
 xc=cos(x);
 }

cosh

 Syntax
double_complex cosh (const double_complex& x);
float_complex cosh (const float_complex& x);

 Description
The function returns the hyperbolic cosine of x.

 Example
#include <complex>
void main()
 {
 float_complex x(2,3),xc(0,0);
 xc=cosh(x);
 }

exp

 Syntax
double_complex exp (const double_complex& x);
float_complex exp (const float_complex& x);

 Description
The function returns the exponential of x.

Chapter 6- EC++ Libraries 6-12

 Example
#include <complex>
void main()
 {
 float_complex x(1,2),xexp(0,0);
 xexp=exp(x);
 }

imag

 Syntax
double imag(const double_complex& x);
float imag(const float_complex& x);

 Description
The function returns the imaginary part of x.

 Example
#include <complex>
void main()
 {
 float_complex x(3,8);
 float im;
 im=imag(x);
 }

log

 Syntax
double_complex log (const double_complex& x);
float_complex log (const float_complex& x);

 Description
The function returns the logarithm of x. The branch cuts are along the negative real
axis.

 Example
#include <complex>
void main()
 {
 double_complex x(2,3),xl(0,0);
 xl=log(x);
 }

log10

 Synatx

Chapter 6- EC++ Libraries 6-13

double_complex log10(const double_complex& x);
float_complex log10(const float_complex& x);

 Description
The function returns the base 10 logarithm of x. The branch cuts are along the
negative real axis.

 Example
#include <complex>
void main()
 {
 double_complex x(2,3),xl(0,0);
 xl=log10(x);
 }

norm

 Syntax
double norm(const double_complex& x);
float norm(const float_complex& x);

 Description
The function returns the squared magnitude of x.

 Example
#include <complex>
void main()
 {
 double_complex x(2,3);
 double n;
 n=norm(x);
 }

polar

 Syntax
double_complex polar(const double& rho, const double& theta);
float_complex polar(const float& rho, const float& theta);

 Description
The function returns the complex value whose magnitude is rho and whose phase
angle is theta.

 Example
#include <complex>
void main()
 {
 double_complex x(0,0);
 double rho=7;

Chapter 6- EC++ Libraries 6-14

 double theta=9;
 x=polar(rho,theta);
 }

pow

 Syntax
double_complex pow(const double_complex& x, int y);
double_complex pow(const double_complex& x, const double& y);
double_complex pow(const double_complex& x, const double_complex& y);
double_complex pow(const double& x, const double_complex& y);

float_complex pow(const float_complex& x, int y);
float_complex pow(const float_complex& x, const float& y);
float_complex pow(const float_complex& x, const float_complex& y);
float_complex pow(const float& x, const float_complex& y);

 Description
The functions each effectively convert both operands to the return type, then
return the converted x to the power y. The branch cut for x is along the negative
real axis.
 Return Value
Returns the converted x to the power y.
 Example

#include <complex>
void main()
 {
 float_complex x(2,3),y(1,2),r(0,0);
 float a=3.9;int n=8;
 r=pow(x,n);
 r=pow(x,a);
 r=pow(x,y);
 }

real

 Syntax
double real(const double_complex& x);
float real(const float_complex& x);

 Description
The function returns the real part of x.

 Example
#include <complex>
void main()
{

Chapter 6- EC++ Libraries 6-15

 float_complex x(3,8);
 float re;
 re=real(x);
 }

sin

 Syntax
double_complex sin (const double_complex& x);
float_complex sin (const float_complex& x);

 Description
The function returns the imaginary sine of x.

 Example

#include <complex>
void main()
{
 double_complex x(1,2),xsin(0,0);
 xsin=sin(x);
 }

sinh

 Syntax
double_complex sinh (const double_complex& x);
float_complex sinh (const float_complex& x);

 Description
The function returns the hyperbolic sine of x.

 Example
#include <complex>
void main()
{
 double_complex x(1,2),xsinh(0,0);
 xsinh=sinh(x);
 }

sqrt

 Syntax
double_complex sqrt (const double_complex& x);
float_complex sqrt (const float_complex& x);

 Description
The function returns the square root of x, with phase angle in the half-open
interval (-pi/2, pi/2]. The branch cuts are along the negative real axis.

Chapter 6- EC++ Libraries 6-16

 Example
#include <complex>
void main()
{
 double_complex x(1,2),xsqrt(0,0);
 xsqrt=sqrt(x);
 }

operator!=

 Syntax
bool operator!=(const double_complex& lhs, const double_complex& rhs);
bool operator!=(const double_complex& lhs, const double& rhs);
bool operator!=(const double& lhs, const double_complex& rhs);
bool operator!=(const float_complex& lhs, const float_complex& rhs);
bool operator!=(const float_complex& lhs, const float& rhs);
bool operator!=(const float& lhs, const float_complex& rhs);

 Description
The operators each return true only if real(lhs) != real(rhs) ||
imag(lhs) != imag(rhs).
 Example

#include <complex>
#include <iostream>
void main()
{
 double_complex lhs(1,2),rhs(1,5);
 if (lhs!=rhs)
 cout<<"Different"<<endl;
else
 cout<<"Equal"<<endl;

 }

operator*

 Syntax
double_complex operator*(const double_complex& lhs, const
double_complex& rhs);
double_complex operator*(const double_complex& lhs, const double& rhs);
double_complex operator*(const double& lhs, const double_complex& rhs);
float_complex operator*(const float_complex& lhs, const float_complex& rhs);
float_complex operator*(const float_complex& lhs, const float& rhs);
float_complex operator*(const float& lhs, const float_complex& rhs);

Chapter 6- EC++ Libraries 6-17

 Description
The operators each convert both operands to the return type, then return the
complex product of the converted lhs and rhs.
 Example

#include <complex>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78),p(0,0);
 double x=3.25;
 p=lhs*rhs;
 p=x*rhs;
 }

operator+

 Syntax
double_complex operator+(const double_complex& lhs, const
double_complex& rhs);
double_complex operator+(const double_complex& lhs, const double& rhs);
double_complex operator+(const double& lhs, const double_complex& rhs);
float_complex operator+(const float_complex& lhs, const float_complex& rhs);
float_complex operator+(const float_complex& lhs, const float& rhs);
float_complex operator+(const float& lhs, const float_complex& rhs);

 Description
The binary operators each convert both operands to the return type, then return
the complex sum of the converted lhs and rhs.

The unary operator returns lhs.
 Example

#include <complex>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78),s(0,0);
 double x=3.25;
 s=lhs+rhs;
 s=lhs+x;
 }

operator-

 Syntax
double_complex operator-(const double_complex& lhs, const double_complex&
rhs);
double_complex operator-(const double_complex& lhs, const double& rhs);

Chapter 6- EC++ Libraries 6-18

double_complex operator-(const double& lhs, const double_complex& rhs);
float_complex operator-(const float_complex& lhs, const float_complex& rhs);
float_complex operator-(const float_complex& lhs, const float& rhs);
float_complex operator-(const float& lhs, const float_complex& rhs);

 Description
The binary operators each convert both operands to the return type, then return
the complex difference of the converted lhs and rhs.
The unary operator returns a value whose real part is -real(lhs) and whose
imaginary part is -imag(lhs).
 Return Value
Returns the complex difference of lhs and rhs.
 Example

#include <complex>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78),d(0,0);
 double x=3.25;
 d=lhs-rhs;
 d=lhs-x;
 }

operator/

 Syntax
double_complex operator/(const double_complex& lhs, const double_complex&
rhs);
double_complex operator/(const double_complex& lhs, const double& rhs);
double_complex operator/(const double& lhs, const double_complex& rhs);
float_complex operator/(const float_complex& lhs, const float_complex& rhs);
float_complex operator/(const float_complex& lhs, const float& rhs);
float_complex operator/(const float& lhs, const float_complex& rhs);

 Description
The operators each convert both operands to the return type, then return the
complex quotient of the converted lhs and rhs.
 Return Value
Returns the complex quotient of lhs and rhs.
 Example

#include <complex>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78),r(0,0);
 double x=3.25;
 r=lhs/rhs;

Chapter 6- EC++ Libraries 6-19

 r=lhs/x;
r=x/rhs;
 }

operator<<

 Syntax
ostream& operator<<(ostream& os, const double_complex& x);
ostream& operator<<(ostream& os, const float_complex& x);

 Description
The template function inserts the complex value x into the output stream os,
effectively by executing:
 ostringstream ostr;
 ostr.flags(os.flags());
 ostr.imbue(os.imbue());
 ostr.precision(os.precision());
 ostr << '(' << real(x) << ','
 << imag(x) << ')';
 os << ostr.str().c_str();

Thus, if os.width() is greater than zero, any padding occurs either before
or after the parenthesized pair of values, which itself contains no padding.

 Return Value
The function returns os.

 Example
#include <complex>
#include <iostream>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78);
 cout<<"First complex number: "<<lhs<<endl;
cout<<"Second complex number:"<<rhs<<endl;
 }

operator==

 Syntax
bool operator==(const double_complex& lhs, const double_complex& rhs);
bool operator==(const double_complex& lhs, const double& rhs);
bool operator==(const double& lhs, const double_complex& rhs);
bool operator==(const float_complex& lhs, const float_complex& rhs);
bool operator==(const float_complex& lhs, const float& rhs);
bool operator==(const float& lhs, const float_complex& rhs);

 Description

Chapter 6- EC++ Libraries 6-20

The operators each return true only if real(lhs) == real(rhs) &&
imag(lhs) == imag(rhs).
 Example

#include <complex>
#include <iostream>
void main()
{
 double_complex lhs(1,2),rhs(3,5.78),s(1,0);
 double x=1;
 if (lhs==rhs)
 cout<<"lhs==rhs";
 if (s==x)
 cout<<Equality between s and x!";
 }

operator>>

 Syntax
istream& operator>>(istream& is, double_complex& x);
istream& operator>>(istream& is, double_complex& x);

 Description
The template function attempts to extract a complex value from the input stream
is, effectively by executing:

 is >> ch && ch == '('
 is >> re >> ch && ch == ','
 is >> im >> ch && ch == ')'
Here, ch is an object of type char, and re and im are objects of type
double/float.

If the result of this expression is true, the function stores re in the real part
and im in the imaginary part of x.

 Return Value
Returns is.

 Example
#include <complex>
#include <iostream>
void main()
{
 double_complex s(0,0);
 cout<<"Type in the complex number:"<<endl;
 cin>>s;
 cout<<"The complex number you typed is:"<<s;
 }

Chapter 6- EC++ Libraries 6-21

<string>

class string {
 friend string operator + (const string &lhs,const string &rhs);
 friend string operator + (const char *lhs,const string &rhs);
 friend string operator + (char lhs,const string &rhs);
 friend string operator + (const string &lhs,const char *rhs);
 friend string operator + (const string &lhs,char rhs);
 friend bool operator == (const string &lhs,const string &rhs);
 friend bool operator == (const char *lhs,const string &rhs);
 friend bool operator == (const string &lhs,const char *rhs);
 friend bool operator != (const string &lhs,const string &rhs);
 friend bool operator != (const char *lhs,const string &rhs);
 friend bool operator != (const string &lhs,const char *rhs);
 friend bool operator < (const string &lhs,const string &rhs);
 friend bool operator < (const char *lhs,const string &rhs);
 friend bool operator < (const string &lhs,const char *rhs);
 friend bool operator > (const string &lhs,const string &rhs);
 friend bool operator > (const char *lhs,const string &rhs);
 friend bool operator > (const string &lhs,const char *rhs);
 friend bool operator <= (const string &lhs,const string &rhs);
 friend bool operator <= (const char *lhs,const string &rhs);
 friend bool operator <= (const string &lhs,const char *rhs);
 friend bool operator >= (const string &lhs,const string &rhs);
 friend bool operator >= (const char *lhs,const string &rhs);
 friend bool operator >= (const string &lhs,const char *rhs);
 friend void swap(string &lhs, string &rhs);
 friend istream & operator >> (istream &is,string &str);
 friend ostream & operator << (ostream &os,const string &str);
 friend istream & getline (istream &is,string &str,char delim);
 friend istream & getline (istream &is,string &str);
private:
 char *string_ptr;
 size_t string_size;
public:
 typedef char* iterator;
 typedef const char* const_iterator;
 static const size_t npos;
 string();
 string(const string& str, size_t pos = 0, size_t n = npos);
 string(const char* s, size_t n);
 string(const char* s);
 string(size_t n, char c);

Chapter 6- EC++ Libraries 6-22

 ~string();
 string& operator=(const string& str);
 string& operator=(const char* s);
 string& operator=(char c);
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 size_t size() const;
 size_t length() const;
 size_t max_size() const;
 void resize(size_t n, char c);
 void resize(size_t n);
 size_t capacity() const;
 void reserve(size_t res_arg = 0);
 void clear();
 bool empty() const;
 const char & operator[](size_t pos) const;
 char & operator[](size_t pos);
 const char & at(size_t n) const;
 char & at(size_t n);
 string& operator+=(const string& str);
 string& operator+=(const char* s);
 string& operator+=(char c);
 string& append(const string& str);
 string& append(const string& str, size_t pos, size_t n);
 string& append(const char* s, size_t n);
 string& append(const char* s);
 string& append(size_t n, char c);
 string& assign(const string&);
 string& assign(const string& str, size_t pos, size_t n);
 string& assign(const char* s, size_t n);
 string& assign(const char* s);
 string& assign(size_t n, char c);
 string& insert(size_t pos1, const string& str);
 string& insert(size_t pos1, const string& str, size_t pos2, size_t n);
 string& insert(size_t pos, const char* s, size_t n);
 string& insert(size_t pos, const char* s);
 string& insert(size_t pos, size_t n, char c);
 iterator insert(iterator p, char c = char());
 void insert(iterator p, size_t n, char c);
 string& erase(size_t pos = 0, size_t n = npos);
 iterator erase(iterator position);
 iterator erase(iterator first, iterator last);

Chapter 6- EC++ Libraries 6-23

 string& replace(size_t pos1, size_t n1, const string& str);
 string& replace(size_t pos1, size_t n1, const string& str,size_t pos2,
 size_t n2);
 string& replace(size_t pos, size_t n1, const char* s, size_t n2);
 string& replace(size_t pos, size_t n1, const char* s);
 string& replace(size_t pos, size_t n1, size_t n2, char c);
 string& replace(iterator i1, iterator i2, const string& str);
 string& replace(iterator i1, iterator i2, const char* s, size_t n);
 string& replace(iterator i1, iterator i2, const char* s);
 string& replace(iterator i1, iterator i2, size_t n, char c);
 size_t copy(char* s, size_t n, size_t pos = 0) const;
 void swap(string&);
 const char* c_str() const; // explicit
 const char* data() const;
 size_t find (const string& str, size_t pos = 0) const;
 size_t find (const char* s, size_t pos, size_t n) const;
 size_t find (const char* s, size_t pos = 0) const;
 size_t find (char c, size_t pos = 0) const;
 size_t rfind(const string& str, size_t pos = npos) const;
 size_t rfind(const char* s, size_t pos, size_t n) const;
 size_t rfind(const char* s, size_t pos = npos) const;
 size_t rfind(char c, size_t pos = npos) const;
 size_t find_first_of(const string& str, size_t pos = 0) const;
 size_t find_first_of(const char* s, size_t pos, size_t n) const;
 size_t find_first_of(const char* s, size_t pos = 0) const;
 size_t find_first_of(char c, size_t pos = 0) const;
 size_t find_last_of (const string& str, size_t pos = npos) const;
 size_t find_last_of (const char* s, size_t pos, size_t n) const;
 size_t find_last_of (const char* s, size_t pos = npos) const;
 size_t find_last_of (char c, size_t pos = npos) const;
 size_t find_first_not_of(const string& str, size_t pos = 0) const;
 size_t find_first_not_of(const char* s, size_t pos, size_t n) const;
 size_t find_first_not_of(const char* s, size_t pos = 0) const;
 size_t find_first_not_of(char c, size_t pos = 0) const;
 size_t find_last_not_of (const string& str, size_t pos = npos) const;
 size_t find_last_not_of (const char* s, size_t pos, size_t n) const;
 size_t find_last_not_of (const char* s, size_t pos = npos) const;
 size_t find_last_not_of (char c, size_t pos = npos) const;
 string substr(size_t pos = 0, size_t n = npos) const;
 int compare(const string& str) const;
 int compare(size_t pos1, size_t n1, const string& str) const;
 int compare(size_t pos1, size_t n1, const string& str,size_t pos2, size_t
 n2) const;
 int compare(const char* s) const;

Chapter 6- EC++ Libraries 6-24

 int compare(size_t pos1, size_t n1,const char* s, size_t n2 = npos) const;
};

The string class describes an object that controls a varying-length sequence of
elements of type char.

string::string

 Syntax:
#include <string>
explicit string();

 Description:
Constructs an empty string.

 Example
#include <string>
void main()
{
 string s();
 }

string::string

 Syntax:
#include <string>
string(const string& str, size_t pos = 0, size_t n = npos);

 Description:
Constructs a string from n characters of the sequence specified by str, beginning
at position pos.

 Example
#include <string>
void main()
{
 string s1("abcdefg");
 string s2(s1,0,3);
 }

string::string

 Syntax:
#include <string>
string(const char* s, size_t n);

 Description:
Constructs a string from n characters of the sequence specified by *s.

Chapter 6- EC++ Libraries 6-25

 Example
#include <string>
void main()
{
 string s1("abcdefg",3);
 }

string::string

 Syntax:
#include <string>
string(const char* s);

 Description:
Constructs a string from the sequence specified by *s.

 Example
#include <string>
void main()
{
 string s1("ABCDEFG");
 }

string::string

 Syntax:
#include <string>
string(size_t n, char c);

 Description:
Constructs a string filled with n characters specified by c.

 Example
#include <string>
void main()
{
 string s1(3,'A');
 }

string::~string

 Syntax:
#include <string>
~string();

 Description:
Frees the memory allocated during the constructor call.

Chapter 6- EC++ Libraries 6-26

string::append
 Syntax:

#include <string>
string& append(const string& str);
string& append(const string& str, size_t pos, size_t n);
string& append(const char* s, size_t n);
string& append(const char* s);
string& append(size_t n, char c);

 Description:
The first function appends the sequence specified by str to the end of the
sequence controlled by *this, then returns *this.
The second function appends n characters of the sequence specified by str
starting at position pos to the end of the sequence controlled by *this, then
returns *this.
The third function appends n characters of the sequence specified by *s to the
end of the sequence controlled by *this, then returns *this.
The fourth function appends the sequence specified by *s to the end of the
sequence controlled by *this, then returns *this.
The fifth function appends n copies of the character specified by c to the end of
the sequence controlled by *this, then returns *this.
 Return Value
Returns *this.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2;
 s2.append(s1);
s1.append("Sample",4);
s2.append(5,'0');
 }

string::assign

 Syntax:
#include <string>
string& assign(const string&);
string& assign(const string& str, size_t pos, size_t n);
string& assign(const char* s, size_t n);
string& assign(const char* s);
string& assign(size_t n, char c);

 Description:

Chapter 6- EC++ Libraries 6-27

The first function replaces the sequence controlled by *this with the sequence
specified by str, then returns *this.
The second function replaces the sequence controlled by *this with n
characters of the sequence specified by str, starting at position pos, then returns
*this.
The third function replaces the sequence controlled by *this with n characters
of the sequence specified by *s, then returns *this.
The fourth function replaces the sequence controlled by *this with the
sequence specified by *s, then returns *this.
The fifth function replaces the sequence controlled by *this with n copies of the
character specified by c, then returns *this.
 Return Value
Returns *this.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2("123"),s3;
 s2.assign(s1);
s3.assign("Sample",4);
s1.assign(5,'0');}
string::at

 Syntax:
#include <string>
const char & at(size_t n) const;
char & at(size_t n);

 Description:
Each member function returns a reference to the element of the controlled
sequence at position pos, or reports an out-of-range error.
 Example

#include <string>
#include <iostream>
void main()
{
 string s1("ABCDEFG");
 char c=s1.at(3);
cout<<s1.at(5);
 }

string::begin

 Syntax:
#include <string>

Chapter 6- EC++ Libraries 6-28

iterator begin();
const_iterator begin() const;

 Description:
Each member function returns a random-access iterator that points at the first
element of the sequence (or just beyond the end of an empty sequence).
 Example

#include <string>
void main()
{
 string s1("ABCDEFG");
 char *s=s1.begin();

 }

string::c_str

 Syntax:
#include <string>
const char* c_str() const;

 Description:
The member function returns a pointer to a non-modifiable C string constructed
by adding a terminating null element (char(0)) to the controlled sequence.
Calling any non-const member function for *this can invalidate the pointer.
 Return Value
Returns a pointer to a non-modifiable C string.
 Example

#include <string>
#include <iostream>
void main()
{
 string s1("ABCDEFG");
cout<<s1.c_str();
 }
string::capacity

 Syntax:
#include <string>
size_t capacity() const;

 Description:
The member function returns the storage currently allocated to hold the controlled
sequence, a value at least as large as size().
 Example

#include <string>
void main()

Chapter 6- EC++ Libraries 6-29

{

 string s1("ABCDEFG");
 size_t n=s1.capacity();
 }

string::clear

 Syntax:
#include <string>
void clear();

 Description:
Actions like the destructor.

string::compare

 Syntax:
#include <string>
int compare(const string& str) const;
int compare(size_t pos1, size_t n1, const string& str) const;
int compare(size_t pos1, size_t n1, const string& str,size_t pos2, size_t n2) const;
int compare(const char* s) const;
int compare(size_t pos1, size_t n1,const char* s, size_t n2 = npos) const;

 Description:
The first function compares elements of the controlled sequence, if these
arguments are not supplied, to the sequence specified by str.
The second function compares up to n1 elements of the controlled sequence,
beginning with position p1, to the sequence specified by str.
The third function compares up to n1 elements of the controlled sequence
beginning with position p1, to n2 elements of str beginning with position
pos2.
The fourth function compares elements of the controlled sequence, if these
arguments are not supplied, to the sequence specified by *s.
The fifth function compares up to n1 elements of the controlled sequence
beginning with position p1, to n2 elements of *s beginning with position pos2.
 Return Value

Each function returns:
 A negative value if the first differing element in the controlled sequence
compares less than the corresponding element in operand sequence (str or
*s), or if the two have a common prefix but the operand sequence (str or
*s) is longer.
 Zero if the two compare equal element by element and are the same length.

Chapter 6- EC++ Libraries 6-30

 A positive value otherwise.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2("ABCD");
 int c=s1. compare(s2);
 if (c==0)
 cout <<"Equality!";
 else
 if (c<0)
 cout<<"s1<s2";
 else
 cout <<"s1>s2";
 }

string::copy

 Syntax:
#include <string>
size_t copy(char* s, size_t n, size_t pos = 0) const;

 Description:
The member function copies up to n elements from the controlled sequence,
beginning at position pos, to the array of char, beginning at s.
 Return Value:
Returns the number of elements actually copied
 Example:

#include <string>
void main()
{
 string s1("ABCDEFG");
 char s[10];
s1.copy(s,5,0);
 }

string::data

 Syntax:
#include <string>
const char* data() const;

 Description:
The member function returns a pointer to the first element of the sequence (or, for
an empty sequence, a non-null pointer that cannot be derefferenced).

Chapter 6- EC++ Libraries 6-31

 Example:
#include <string>
void main()
{
 string s1("ABCDEFG");
 const char* s=s1.data();
 }

string::empty

 Syntax:
#include <string>
bool empty() const;

 Description:
The member function returns true for an empty controlled sequence.

 Example:
#include <string>
#include <iostream>
void main()
{
 string s1;
 if (s1.empty())
 cout<<"Empty string!";
}

string::end

 Syntax:
#include <string>
iterator end();
const_iterator end() const;

 Description:
Each member function returns a random-access iterator that points just beyond the
end of the sequence.

 Example:
#include <string>
void main()
{
 string s1("ABCDEFG");
 char *s=s1.end();

 }

Chapter 6- EC++ Libraries 6-32

string::erase
 Syntax:

#include <string>
iterator erase(iterator first, iterator last);
iterator erase(iterator position);
string& erase(size_t pos = 0, size_t n = npos);

 Description:
The first member function removes the elements of the controlled sequence in the
range [first, last). The second member function removes the element of
the controlled sequence pointed to by it. Both return an iterator that designates
the first element remaining beyond any elements removed, or end() if no such
element exists.
The third member function removes up to n elements of the controlled sequence
beginning at position p, then returns *this.
 Example:

#include <string>
void main()
{
 string s1("ABCDEFG");
 s1.erase(1,2);
 }

string::find

 Syntax:
#include <string>
size_t find (const string& str, size_t pos = 0) const;
size_t find (const char* s, size_t pos, size_t n) const;
size_t find (const char* s, size_t pos = 0) const;
size_t find (char c, size_t pos = 0) const;

 Description:
The first function finds the first subsequence in the controlled sequence,
beginning on or after position pos, that matches the sequence specified by str.
The second function finds the first subsequence in the controlled sequence,
beginning on or after position pos, that matches the first n characters of
sequence *s.
The third function finds the first subsequence in the controlled sequence,
beginning on or after position pos, that matches the sequence specified by *s.
The fourth function finds the first character in the controlled sequence, beginning
on or after position pos, that matches the character specified by c.
 RETURN VALUE

Chapter 6- EC++ Libraries 6-33

If it succeeds, it returns the position where the matching character was found.
Otherwise, the function returns npos.
 Example:

#include <string>
void main()
{
 string s1("ABCDEFG");
 size_t pos;
 pos=s1.find("BCD",0);
 }

string::find_first_not_of

 Syntax:
#include <string>
size_t find_first_not_of(const string& str, size_t pos = 0) const;
size_t find_first_not_of(const char* s, size_t pos, size_t n) const;
size_t find_first_not_of(const char* s, size_t pos = 0) const;
size_t find_first_not_of(char c, size_t pos = 0) const;

 Description:
The first function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by str.
The second function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by the first n characters of *s.
The third function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by *s.
The fourth function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that does not match with the character c.
 RETURN VALUE

If it succeeds, it returns the position. Otherwise, the function returns npos.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG");
 size_t pos;
 pos=s1.find_first_not_of("CD",0);
 }

Chapter 6- EC++ Libraries 6-34

string::find_first_of
 Syntax:

#include <string>
size_t find_first_of(const string& str, size_t pos = 0) const;
size_t find_first_of(const char* s, size_t pos, size_t n) const;
size_t find_first_of(const char* s, size_t pos = 0) const;
size_t find_first_of(char c, size_t pos = 0) const;

 Description
The first function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by str.
The second function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by the first n characters of *s.
The third function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by *s.
The fourth function finds the first (lowest position) element of the controlled
sequence, at or after position pos, that does matches with the character c.
 RETURN VALUE

If it succeeds, it returns the position. Otherwise, the function returns npos.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG");
 size_t pos;
 pos=s1.find_first_not_of("CD",0);
 }

string::find_last_not_of

 Syntax:
#include <string>
size_t find_last_not_of (const string& str, size_t pos = npos) const;
size_t find_last_not_of (const char* s, size_t pos, size_t n) const;
size_t find_last_not_of (const char* s, size_t pos = npos) const;
size_t find_last_not_of (char c, size_t pos = npos) const;

 Description
The first function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by str.

Chapter 6- EC++ Libraries 6-35

The second function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by last n characters of *s.
The third function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches none of the elements in the
sequence specified by *s.
The fourth function finds the last (highest position) element of the controlled
sequence, at or after position pos, that does not match with the character c.
 RETURN VALUE

If it succeeds, it returns the position. Otherwise, the function returns npos.
 Example

See the find_first_of example.

string::find_last_of

 Syntax:
#include <string>
size_t find_last_of (const string& str, size_t pos = npos) const;
size_t find_last_of (const char* s, size_t pos, size_t n) const;
size_t find_last_of (const char* s, size_t pos = npos) const;
size_t find_last_of (char c, size_t pos = npos) const;

 Description
The first function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by str.
The second function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by the last n characters of *s.
The third function finds the last (highest position) element of the controlled
sequence, at or after position pos, that matches any of the elements in the
sequence specified by *s.
The fourth function finds the last (highest position) element of the controlled
sequence, at or after position pos, that does matches with the character c.
 RETURN VALUE

If it succeeds, it returns the position. Otherwise, the function returns npos.
 Example

See the find_first_of example.

string::insert

Chapter 6- EC++ Libraries 6-36

 Syntax:
#include <string>
string& insert(size_t pos, const string& str);
string& insert(size_t pos, const string& str, size_t pos2, size_t n);
string& insert(size_t pos, const char* s, size_t n);
string& insert(size_t pos, const char* s);
string& insert(size_t pos, size_t n, char c);
iterator insert(iterator p, char c = char());

 Description
The first function inserts, after position pos or after the element it points to in
the controlled sequence, the sequence specified by str.
The second function inserts, after position pos or after the element itpoints to in
the controlled sequence, n characters of the sequence specified by str, beginning
at position pos.
The third function inserts, after position pos or after the element it points to in
the controlled sequence, the first n characters of the sequence specified by *s.
The fourth function inserts, after position pos or after the element it points to in
the controlled sequence, the sequence specified by *s.
The fifth function inserts, after position pos or after the element it points to in
the controlled sequence, n copies of character c.

The sixth function inserts, after position p in the controlled sequence, the character
specified by c.

 RETURN VALUE

Returns *this.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2("OK");
 char* s="123";
 s1.insert(3,s2);
s2.insert(1,s,2);
s2.insert(2,3,'c');
 }

string::length

 Syntax:
#include <string>
size_t length() const;

 Description

Chapter 6- EC++ Libraries 6-37

The member function returns the length of the controlled sequence (same as
size()).

 Example
#include <string>
void main()
 {
 string s("ABCDEFG");
size_t n=s.length();
 }

string::max_size

 Syntax:
#include <string>
string::max_size
size_t max_size() const;

 Description
The member function returns the length of the longest sequence that the object can
control.

 Example
#include <string>
void main()
 {
 string s("ABCDEFG");
size_t maxsize=s.max_size();
 }

static const size_t npos = -1;
The constant is the largest representing value of type size_t. It is assuredly larger
than max_size(); hence it serves as either a very large value or as a special code.

string::operator+=

 Syntax:
#include <string>
string& operator+=(const string& str);
string& operator+=(const char* s);
string& operator+=(char c);

 Description

Chapter 6- EC++ Libraries 6-38

Each operator appends the operand sequence (the sequence specified by str, or
by *s, or by c) to the end of the sequence controlled by *this, then returns
*this.
 Example

#include <string>
void main()
 {
 string s("ABCDEFG");
s+='A';
s+="OK";
 }

string::operator=

 Syntax:
#include <string>
string& operator=(const string& str);
string& operator=(const char* s);
string& operator=(char c);

 Description
Each operator replaces the sequence controlled by *this with the operand
sequence (the sequence specified by str, or by *s, or by c), then returns *this.
 Example

#include <string>
void main()
 {
 string s("ABCDEFG");
s='A';
s="OK";
 }

string::operator[]

 Syntax:
#include <string>
onst char & operator[](size_t pos) const;
char & operator[](size_t pos);

 Description
Each member function returns a reference to the element of the controlled
sequence at position pos. If that position is invalid, the behavior is undefined.
 Example

#include <string>

Chapter 6- EC++ Libraries 6-39

#include <iostream>
void main()
{
 string s("ABCDEFG");
 for (int i=0;i<s.size();i++)
 cout<<s[i];
}

string::replace

 Syntax:
#include <string>
string& replace(size_t pos1, size_t n1, const string& str);
string& replace(size_t pos1, size_t n1, const string& str,size_t pos2, size_t n2);
string& replace(size_t pos1, size_t n1, const char* s, size_t n2);
string& replace(size_t pos, size_t n1, const char* s);
string& replace(size_t pos, size_t n1, size_t n2, char c);
string& replace(iterator i1, iterator i2, const string& str);
string& replace(iterator i1, iterator i2, const char* s, size_t n);
string& replace(iterator i1, iterator i2, const char* s);
string& replace(iterator i1, iterator i2, size_t n, char c);

 Description
The first function replaces up to n1 elements of the controlled sequence beginning
with position p1. The replacement is the first n1 characters of str.
The second function replaces up to n1 elements of the controlled sequence
beginning with position p1. The replacement is n2 characters of str, beginning
at position pos2.
The third function replaces up to n1 elements of the controlled sequence
beginning with position pos1. The replacement is the first n2 specified by *s.
The fourth function replaces up to n1 elements of the controlled sequence
beginning with position p1. The replacement is the sequence specified by *s.
The fifth function replaces up to n1 elements of the controlled sequence
beginning with position p1. The replacement is n2 copies of character c.
The sixth function replaces the elements of the controlled sequence beginning
with the one pointed to by i1, up to but not including i2. The replacement is the
sequence specified by str.
The seventh function replaces the elements of the controlled sequence beginning
with the one pointed to by i1, up to but not including i2. The replacement is first
n characters of the sequence specified by *s.
The eighth function replaces the elements of the controlled sequence beginning
with the one pointed to by i1, up to but not including i2. The replacement is the
sequence specified by *s.

Chapter 6- EC++ Libraries 6-40

The ninth function replaces the elements of the controlled sequence beginning
with the one pointed to by i1, up to but not including i2. The replacement is n
copies of the character c.
 RETURN VALUE

The function then returns *this.
 Example

#include <string>
void main()
 {
 string s1("ABCDEFG"),s2("Sample");
 s1.replace(2,3,"123");
 s1.replace(0,3,s2);
 }

string::reserve

 Syntax:
#include <string>
void reserve(size_t n = 0);

 Description
The member function ensures that capacity() henceforth returns at least n.

string::resize

 Syntax:
#include <string>
void resize(size_t n, char c);

 Description
The member function ensures that size() henceforth returns n. If it must
lengthen the controlled sequence, it appends elements with value c.
 Example

#include <string>
void main()
 {
 string s1("ABCDEFG");
 s1.resize(20,"c");
 }

string::rfind

 Syntax:
#include <string>

Chapter 6- EC++ Libraries 6-41

size_t rfind(const string& str, size_t pos = npos) const;
size_t rfind(const char* s, size_t pos, size_t n) const;
size_t rfind(const char* s, size_t pos = npos) const;
size_t rfind(char c, size_t pos = npos) const;

 Description
The first function finds the last subsequence in the controlled sequence, beginning
on or after position pos, that matches the sequence specified by str.
The second function finds the last subsequence in the controlled sequence,
beginning on or after position pos, that matches the first n characters of sequence
*s.
The third function finds the last subsequence in the controlled sequence,
beginning on or after position pos, that matches the sequence specified by *s.
The fourth function finds the last character in the controlled sequence, beginning
on or after position pos, that matches the character specified by c.
 RETURN VALUE

If it succeeds, it returns the position where the matching subsequence begins or
the matching character was found. Otherwise, the function returns npos.
 Example

#include <string>
void main()
{
 string s1("ABCABFG");
 size_t pos=s1.rfind("AB",0);
 }

string::size

 Syntax:
#include <string>
size_t size() const;

 Description
The member function returns the length of the controlled sequence.

 Example
#include <string>
void main()
{
 string s1("ABCDEFG");
 size_t ln=s1.size();
 }

string::substr

Chapter 6- EC++ Libraries 6-42

 Syntax:
#include <string>
string substr(size_t pos = 0, size_t n = npos) const;

 Description
The member function returns an object whose controlled sequence is a copy of up
to n elements of the controlled sequence beginning at position pos.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2;
 s2=s1.substr(0,5);
 }

string::swap

 Syntax:
#include <string>
void swap(string & str);

 Description
Swaps the controlled sequences between *this and str.

 Example
#include <string>
void main()
{
 string s1("ABCDEFG"),s2("123");
 cout<<s1<<endl<<s2;
 s1.swap(s2);
 cout<<s1<<endl<<s2;
 }

string::iterator
The type describes an object that can serve as a random-access iterator for the
controlled sequence. It is described here as a synonym for the type char*.

operator>>

 Syntax:
#include <string>
istream & operator >> (istream &is,string &str);

 Description
The function overloads operator>> to replace the sequence controlled by str
with a sequence of elements extracted from the stream is. Extraction stops:

Chapter 6- EC++ Libraries 6-43

 At end of file.
 After the function extracts is.width () elements, if that value is
nonzero.
 After the function extracts is.max_size () elements.

After the function extracts a space character (0x09 - 0x0D or 0x20) in which
case the character is put back.
If the function extracts no elements, it calls
setstate(ios_base::failbit). In any case, it calls width(0) and
returns *this.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2;
 cout<<s1<<endl<<s2;
 cin>>s2;
 cout<<s1<<endl<<s2;
 }

operator<<

 Syntax:
#include <string>
ostream & operator << (ostream &os,const string &str);

 Description
The function overloads operator<< to insert an object str of class string
into the stream os The function effectively returns os.write (str.c_str
(), str.size ()).
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2;
 cout<<s1<<endl<<s2;
 cin>>s2;
 cout<<s1<<endl<<s2;
 }

getline

 Syntax:
#include <string>
istream & getline (istream &is,string &str);
istream & getline (istream &is,string &str,char delim);

Chapter 6- EC++ Libraries 6-44

 Description
The first function returns getline(is, str, '\n').

The second function replaces the sequence controlled by str with a sequence of
elements extracted from the stream is. In order of testing, extraction stops:

3. At end of file.
4. After the function extracts an element that compares equal to delim,
in which case the element is neither put back nor appended to the controlled
sequence.
5. After the function extracts is.max_size () elements, in which
case the function calls setstate(ios_base::failbit).

If the function extracts no elements, it calls setstate(failbit).
 Return Value

Returns *this.
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2("123");
 cout<<s1<<endl<<s2;
 getline(cin,s2);
 cout<<s1<<endl<<s2;
 }

operator+

 Syntax:
#include <string>
string operator + (const string &lhs,const string &rhs);
string operator + (const char *lhs,const string &rhs);
string operator + (char lhs,const string &rhs);
string operator + (const string &lhs,const char *rhs);
string operator + (const string &lhs,char rhs);

 Description
Each function overloads operator+ to concatenate two objects of class string.

 RETURN VALUE

All effectively return string(lhs).append(rhs).
 Example

#include <string>
void main()
{
 string s1("ABCDEFG"),s2("123"),s3;
 char *s="Sample";

Chapter 6- EC++ Libraries 6-45

 s3=s1+s2;
 s3=s2+s;
 s1='c'+s2;
 }

operator==

 Syntax:
#include <string>
bool operator == (const string &lhs,const string &rhs);
bool operator == (const char *lhs,const string &rhs);
bool operator == (const string &lhs,const char *rhs);

 Description
Each function overloads operator== to compare two objects of template class
string.

 RETURN VALUE

All effectively return string(lhs).compare(rhs) == 0.
 Example

#include <string>
void main()
{
 string s1("123"),s2("123"),s3;
 if (s1==s2)
 cout<<"The strings are equal";
 if (s3=="OK")
 cout<<"OK";
 }

operator!=

 Syntax:
#include <string>
bool operator != (const string &lhs,const string &rhs);
bool operator != (const char *lhs,const string &rhs);
bool operator != (const string &lhs,const char *rhs);

 Description
Each function overloads operator!= to compare two objects of template class
string. All effectively return string(lhs).compare(rhs) != 0.
 Example

#include <string>
void main()
 {

Chapter 6- EC++ Libraries 6-46

 string s1("123"),s2("213"),s3;
 if (s1!=s2)
 cout<<"Not equal";
 if (s3=="OK")
 cout<<"OK";
 }

operator<

 Syntax:
#include <string>
bool operator < (const string &lhs,const string &rhs);
bool operator < (const char *lhs,const string &rhs);
bool operator < (const string &lhs,const char *rhs);

 Description
Each function overloads operator< to compare two objects of template class
string.

 RETURN VALUE

All effectively return string(lhs).compare(rhs) < 0.
 Example

#include <string>
void main()
 {
 string s1("123"),s2("1423"),s3;
 if (s1<s2)
 cout<<"s1<s2";
 else
 if (s1>s2)
 cout<<"s1>s2";
 }

operator>

 Syntax:
#include <string>
bool operator > (const string &lhs,const string &rhs);
bool operator > (const char *lhs,const string &rhs);
bool operator > (const string &lhs,const char *rhs);

 Description
Each function overloads operator< to compare two objects of template class
string.

 RETURN VALUE

Chapter 6- EC++ Libraries 6-47

All effectively return string(lhs).compare(rhs) > 0.
 Example

#include <string>
void main()
 {
 string s1("123"),s2("213"),s3;
 if (s1<s2)
 cout<<"s1<s2";
 else
 if (s1>s2)
 cout<<"s1>s2";
 }

operator<=

 Syntax:
#include <string>
bool operator <= (const string &lhs,const string &rhs);
bool operator <= (const char *lhs,const string &rhs);
bool operator <= (const string &lhs,const char *rhs);

 Description
Each function overloads operator< to compare two objects of template class
string.

 RETURN VALUE

 All effectively return string(lhs).compare(rhs) <= 0.
 Example

#include <string>
void main()
 {
 string s1("123"),s2("123"),s3;
 if (s1<=s2)
 if (s1==s2)
 cout<<"s1=s2";
 else
 cout<<"s1<s2";
 }

operator>=

 Syntax:
#include <string>
bool operator >= (const string &lhs,const string &rhs);
bool operator >= (const char *lhs,const string &rhs);
bool operator >= (const string &lhs,const char *rhs);

Chapter 6- EC++ Libraries 6-48

 Description
Each function overloads operator< to compare two objects of template class
string.

 RETURN VALUE

All effectively return string(lhs).compare(rhs) >= 0.
 Example

#include <string>
void main()
{
 string s1("1230"),s2("123"),s3;
 if (s1>=s2)
 if (s1==s2)
 cout<<"s1=s2";
 else
 cout<<"s1<s2";
 }

swap

 Syntax:
#include <string>
void swap(string &lhs, string &rhs);

 Description
Swaps the controlled sequences between lhs and rhs.

 Example
#include <string>
void main()
{
 string s1("123"),s2("321");
 cout<<s1<<endl<<s2<<endl;
 swap(s1,s2);
 cout<<s1<<endl<<s2<<endl;
 }

<stdiobuf>

class stdiobuf : public streambuf {
public:

Chapter 6- EC++ Libraries 6-49

stdiobuf(filedesc);
~stdiobuf();
 stdiobuf* close();
virtual int overflow(int=EOF);
virtual int underflow();
virtual int sync();
private:
filedesc x_fd;
};

The stdiobuf class is a derived class of streambuf that is specialized for buffering to
and from the standard I/O system.

stdiobuf::stdiobuf

 Syntax:
#include <stdiobuf>
stdiobuf(filedesc fd);

 Description
Constructs a stdiobuf object from a file descriptor. Objects of class stdiobuf are
constructed from open standard I/O files, including stdin, stdout, and stderr. The
object is unbuffered by default.

stdiobuf::~stdiobuf

 Syntax:
#include <stdiobuf>
~stdiobuf();

 Description
Destroys a stdiobuf object and, in the process, flushes the put area. The destructor
does not close the attached file.

stdiobuf::close

 Syntax:
#include <stdiobuf>
stdiobuf* close();

 Description
Flushes any waiting output .

 Return Value
Return the address of the stdiobuf object.

Chapter 6- EC++ Libraries 6-50

stdiobuf::overflow

 Syntax:
#include <stdiobuf>
int overflow(int=EOF);

 Description
Empties the put area.

 Return Value
If the function cannot succeed, it returns EOF. Otherwise, it returns nCh.

stdiobuf::underflow

 Syntax:
#include <stdiobuf>
int underflow();

 Description
Fills the get area if necessary.

 Return Value
If the get area is empty, it fills the get area and returns the next character (which
it leaves in the get area). If there are no more characters available, then underflow
returns EOF and leaves the get area empty.

stdiobuf::sync

 Syntax:
#include <stdiobuf>
int sync();

 Description
Empties the get area and the put area and sends any unprocessed characters back
to the source, if necessary.
 Return Value

EOF if an error occurs.

Chapter 6- EC++ Libraries 6-51

<streambuf>

class streambuf {
public:

 virtual ~streambuf();

 inline int in_avail() const;
 inline int out_waiting() const;
 int sgetc();
 int snextc();
 int sbumpc();
 void stossc();
 int sungetc();

 inline int sputbackc(char);

 inline int sputc(int);
 inline int sputn(const char *,int);
 inline int sgetn(char *,int);

 streampos pubseekoff(streamoff _o, ios::seekdir _w,int _m = ios::in | ios::out);
 streampos pubseekpos(streampos _p, int _m = ios::in | ios::out);
 inline streambuf* pubsetbuf(char *, int);
 inline int pubsync();

 virtual int sync();

 virtual streambuf* setbuf(char *, int);
 virtual streampos seekoff(streamoff,ios::seekdir,int =ios::in|ios::out);
 virtual streampos seekpos(streampos,int =ios::in|ios::out);

 virtual int xsputn(const char *,int);
 virtual int xsgetn(char *,int);

 virtual int overflow(int =EOF) = 0; // pure virtual function
 virtual int underflow() = 0; // pure virtual function
 virtual int uflow();

 virtual int pbackfail(int);

 void dbp();

Chapter 6- EC++ Libraries 6-52

 streambuf();
 streambuf(char *,int);

protected:

 inline char * base() const;
 inline char * ebuf() const;
 inline char * pbase() const;
 inline char * pptr() const;
 inline char * epptr() const;
 inline char * eback() const;
 inline char * gptr() const;
 inline char * egptr() const;
 inline int blen() const;
 inline void setp(char *,char *);
 inline void setp(char *,char *,char *);
 inline void setg(char *,char *,char *);
 inline void pbump(int);
 inline void gbump(int);

 void setb(char *,char *,int =0);
 inline int unbuffered() const;
 inline void unbuffered(int);
 int allocate();
 virtual int doallocate();
 virtual int showmanyc() ;
private:
 int _fAlloc;
 int _fUnbuf;
 int x_lastc;
 char * _base;
 char * _ebuf;
 char * _pbase;
 char * _pptr;
 char * _epptr;
 char * _eback;
 char * _gptr;
 char * _egptr;
};

The class describes an abstract base class for deriving a stream buffer, which
controls the transmission of elements (characters) to and from a specific
representation of a stream.

Chapter 6- EC++ Libraries 6-53

Every stream buffer conceptually controls two independent streams, in fact, one for
extractions (input) and one for insertions (output). It typically maintains some
relationship between the two streams. What you insert into the output stream object,
for example, is what you later extract from its input stream. When you position one
stream of filebuf object, you position the other stream in tandem.
The public interface to template class streambuf supplies the operations common
to all stream buffers, however specialized. The protected interface supplies the
operations needed for a specific representation of a stream to do its work. The
protected virtual member functions let you tailor the behavior of a derived stream
buffer for a specific representation of a stream. The remaining protected member
functions control copying to and from any storage supplied to buffer transmissions to
and from streams. An input buffer, for example, is characterized by:

 eback(), a pointer to the beginning of the buffer
 gptr(), a pointer to the next element to read
 egptr(), a pointer just past the end of the buffer

Similarly, an output buffer is characterized by:
 pbase(), a pointer to the beginning of the buffer
 pptr(), a pointer to the next element to write
 epptr(), a pointer just past the end of the buffer

For any buffer, the protocol is:
 If the next pointer is null, no buffer exists. Otherwise, all three pointers
point into the same sequence. (They can be safely compared for order.)
 For an output buffer, if the next pointer compares less than the end pointer,
you can store an element at the write position designated by the next pointer.
 For an input buffer, if the next pointer compares less than the end pointer,
you can read an element at the read position designated by the next pointer.
 For an input buffer, if the beginning pointer compares less than the next
pointer, you can put back an element at the putback position designated by
the decremented next pointer.

An object of class streambuf stores the six pointers described above.

streambuf::in_avail

 Syntax:
#include <streambuf>
int in_avail() const;

 Description
Returns the number of characters in the get area.

 Return Value
Returns the number of characters in the get area that are available for fetching. These
characters are between the gptr and egptr pointers and may be fetched with a
guarantee of no errors.

Chapter 6- EC++ Libraries 6-54

streambuf::streambuf

 Syntax:
#include <streambuf>
streambuf();

 Description
Makes an uninitialized streambuf object. This object is not suitable for use until
a setbuf call is made. A derived class constructor usually calls setbuf or uses the
second constructor.

streambuf::streambuf

 Syntax:
#include <streambuf>
streambuf(char *pr,int nLength);

 Description
Initializes the streambuf object with the specified reserve area or marks it as
unbuffered.

streambuf::~streambuf

 Syntax:
#include <streambuf>
virtual ~streambuf();

 Description
The streambuf destructor flushes the buffer if the stream is being used for output.

streambuf:: out_waiting

 Syntax:
#include <streambuf>
int out_waiting() const;

 Description
Returns the number of characters in the put area.

 Return Value
Returns the number of characters in the put area that have not been sent to the
final output destination. These characters are between the pbase and pptr
pointers.

streambuf::sgetc

 Syntax:

Chapter 6- EC++ Libraries 6-55

#include <streambuf>
int sgetc();

 Description
Returns the character at the get pointer. The sgetc function does not move the get
pointer. Returns EOF if there is no character available.
 Example

#include <iostream>
void main()
{
 int i;
 i=cin.rdbuf()->sgetc();
cout<<i;
 }

streambuf::snextc

 Syntax:
#include <streambuf>
int snextc();

 Description
Advances the get pointer, then returns the next character.

 Return Value
First tests the get pointer, then returns EOF if it is already at the end of the get
area. Otherwise, it moves the get pointer forward one character and returns the
character that follows the new position. It returns EOF if the pointer has been
moved to the end of the get area.
 Example

#include <iostream>
void main()
{
 char s[3];
 for (int i=0;i<3;i++)
 s[i]=cin.rdbuf()->snextc();
 cout<<s;
 }

streambuf::sbumpc

 Syntax:
#include <streambuf>
int sbumpc();

 Description
Returns the current character, and then advances the get pointer.

Chapter 6- EC++ Libraries 6-56

 Return Value
Returns the current character, then advances the get pointer. Returns EOF if the
get pointer is currently at the end of the sequence (equal to the egptr pointer).
 Example

#include <iostream>
void main()
{
 char s[3];
 for (int i=0;i<3;i++)
 s[i]=cin.rdbuf()->sbumpc();
 cout<<s;
 }

streambuf::stossc

 Syntax:
#include <streambuf>
void stossc();

 Description
Moves the get pointer forward one position, but does not return a character. If the
pointer is already at the end of the get area, the function has no effect.

streambuf::stossc

 Syntax:
#include <streambuf>
int sungetc();

 Description
If a putback position is available, the member function decrements the next
pointer for the input buffer and returns the current character. Otherwise it returns
pbackfail().

streambuf::stossc

 Syntax:
#include <streambuf>
int sputbackc(char ch);

 Description
Attempts to move the get pointer back one position. The ch character must match
the character just before the get pointer.
 RETURN VALUE

EOF on failure.

Chapter 6- EC++ Libraries 6-57

streambuf::sputc

 Syntax:
#include <streambuf>
int sputc(int nCh);

 Description
Stores a character in the put area and advances the put pointer.

 Return Value
The number of characters successfully stored; EOF on error.

 Example
#include <iostream>
void main()
{
 cout.rdbuf()->sputc('P');
 }

streambuf::sputn

 Syntax:
#include <streambuf>
int sputn(const char *pCh,int nCount);

 Description
Copies nCount characters from pch to the streambuf buffer following the put
pointer. The function repositions the put pointer to follow the stored characters.
 RETURN VALUE

The number of characters stored. This number is usually nCount but could be less if
an error occurs.

 Example
#include <iostream>
void main()
{
 char *s="Example";
cout.rdbuf()->sputn(s,3);
 }

streambuf::sgettn

 Syntax:
#include <streambuf>
int sgetn(char *pCh,int nCount);

 Description
Gets the nCount characters that follow the get pointer and stores them in the area
starting at pch. When fewer than nCount characters remain in the streambuf

Chapter 6- EC++ Libraries 6-58

object, sgetn fetches whatever characters remain. The function repositions the get
pointer to follow the fetched characters.
 Return Value

The number of characters fetched.
 Example

#include <iostream>
void main()
{
 char s[5];
 cin.rdbuf()->sgetn(s,3);
 }

streambuf::pubseekoff

 Syntax:
#include <streambuf>
streampos pubseekoff(streamoff off, ios::seekdir way,int which = ios::in |
ios::out);

 RETURN VALUE

The member function returns seekoff(off, way, which).

streambuf::pubseekpos

 Syntax:
#include <streambuf>
streampos pubseekpos(streampos sp, int which = ios::in | ios::out);

 RETURN VALUE

The member function returns seekpos(sp,which).

streambuf::pubsetbuf

 Syntax:
#include <streambuf>
streambuf* pubsetbuf(char *s, int n);

 RETURN VALUE

The member function returns setbuf(s, n).

streambuf::pubsync

 Syntax:

Chapter 6- EC++ Libraries 6-59

#include <streambuf>
int pubsync();

 Return Value
The member function returns sync().

streambuf::sync

 Syntax:
#include <streambuf>
virtual int sync();

 Description
The sync function flushes the put area. It also empties the get area and, in the
process, sends any unprocessed characters back to the source, if necessary.
 Return Value

EOF if an error occurs.
streambuf::setbuf

 Syntax:
#include <streambuf>
virtual streambuf* setbuf(char *pr, int nLength);

 Description
Attaches the specified reserve area to the streambuf object. Derived classes may or
may not use this area.

 Return Value
A streambuf pointer if the buffer is accepted; otherwise NULL.

streambuf::seekoff

 Syntax:
#include <streambuf>
virtual streampos seekoff(streamoff off,ios::seekdir dir,int
nMode=ios::in|ios::out);

 Description
Seeks to a specified offset (changes the position for the streambuf object).

 Return Value
The new position value. This is the byte offset from the start of the file (or string).
If both ios::in and ios::out are specified, the function returns the output position.
If the derived class does not support positioning, the function returns EOF.

streambuf::seekoff

 Syntax:
#include <streambuf>
virtual streampos seekpos(streampos pos,int nMode =ios::in|ios::out);

Chapter 6- EC++ Libraries 6-60

 Description
Seeks to a specified position (changes the position, relative to the beginning of
the stream, for the streambuf object).
 Return Value
The new position value. If both ios::in and ios::out are specified, the function
returns the output position. If the derived class does not support positioning, the
function returns EOF.

streambuf::xsputn

 Syntax:
#include <streambuf>
virtual int xsputn(const char *s,int n);

 Description
Inserts up to n elements into the output stream, as if by repeated calls to sputc,
from the array beginning at s.
 Return Value

It returns the number of elements actually inserted.

streambuf::xsgetn

 Syntax:
#include <streambuf>
virtual int xsgetn(char *s,int n);

 Description
The protected virtual member function extracts up to n elements from the input
stream, as if by repeated calls to sbumpc, and stores them in the array beginning
at s.
 Return Value

It returns the number of elements actually extracted.

streambuf::overflow

 Syntax:
#include <streambuf>
virtual int overflow(int nCh=EOF) = 0;

 Description
Empties the put area.

The overflow function is most frequently called by public streambuf functions
like sputc and sputn when the put area is full, but other classes, including the
stream classes, can call overflow anytime.
The function "consumes" the characters (writes these characters to a file) in the
put area between the pbase and pptr pointers and then reinitializes the put area.

Chapter 6- EC++ Libraries 6-61

The overflow function must also consume nCh (if nCh is not EOF), or it might
choose to put that character in the new put area so that it will be consumed on the
next call.
 Return Value

EOF to indicate an error.

streambuf::underflow

 Syntax:
#include <streambuf>
virtual int underflow() = 0;

 Description
Fills the get area if necessary.

The underflow function is most frequently called by public streambuf functions
like sgetc and sgetn when the get area is empty, but other classes, including the
stream classes, can call underflow anytime.
The underflow function supplies the get area with characters from the input
source. If the get area contains characters, underflow returns the first character.
 Return Value
If the get area is empty, it fills the get area and returns the next character (which
it leaves in the get area). If there are no more characters available, then underflow
returns EOF and leaves the get area empty.

streambuf::uflow

 Syntax:
#include <streambuf>
virtual int uflow();

 Description
The protected virtual member function endeavors to extract the current element c
from the input stream, then advance the current stream position.
 Return Value
If the function cannot succeed, it returns EOF. Otherwise, it returns the current
element c in the input stream.

streambuf::pbackfail

 Syntax:
#include <streambuf>
virtual int pbackfail(int nCh);

 Description
Augments the sputbackc function. This function is called by sputbackc if it fails,
usually because the eback pointer equals the gptr pointer. The pbackfail function

Chapter 6- EC++ Libraries 6-62

should deal with the situation, if possible, by such means as repositioning the
external file pointer.
 Return Value

The nCh parameter if successful; otherwise EOF.

streambuf::dbp

 Syntax:
#include <streambuf>
void dbp();

 Description
Prints buffer statistics and pointer values (writes ASCII debugging information
directly on stdout).

streambuf::base

 Syntax:
#include <streambuf>
char * base() const;

 Description
Returns a pointer to the start of the reserve area.
 Return Value

Returns a pointer to the first byte of the reserve area. The reserve area consists of
space between the pointers returned by base and ebuf.

streambuf::ebuf

 Syntax:
#include <streambuf>
char * ebuf() const;

 Description
Returns a pointer to the end of the reserve area.

 Return Value
Returns a pointer to the byte after the last byte of the reserve area. The reserve
area consists of space between the pointers returned by base and ebuf.

streambuf::pbase

 Syntax:
#include <streambuf>
char * pbase() const;

 Description
Returns a pointer to the start of the put area.

Chapter 6- EC++ Libraries 6-63

 Return Value
Returns a pointer to the start of the put area. Characters between the pbase pointer
and the pptr pointer have been stored in the buffer but not flushed to the final
output destination.

streambuf::pptr

 Syntax:
#include <streambuf>
char * pptr() const;

 Description
Returns the put pointer.

 Return Value
Returns a pointer to the first byte of the put area. This pointer is known as the put
pointer and is the destination for the next character(s) sent to the streambuf
object.

streambuf::epptr

 Syntax:
#include <streambuf>
char * epptr() const;

 Description
Returns a pointer to the end of the put area.

 Return Value
Returns a pointer to the byte after the last byte of the put area.

streambuf::eback

 Syntax:
#include <streambuf>
char * eback() const;

 Description
Returns the lower bound of the get area.

 Return Value
Returns the lower bound of the get area. Space between the eback and gptr
pointers is available for putting a character back into the stream.

streambuf::gptr

 Syntax:
#include <streambuf>
char * gptr() const;

Chapter 6- EC++ Libraries 6-64

 Description
Returns the get pointer.

 Return Value
Returns a pointer to the next character to be fetched from the streambuf buffer.
This pointer is known as the get pointer.

streambuf::egptr

 Syntax:
#include <streambuf>
char * egptr() const;

 Description
Returns a pointer to the end of the get area.

 Return Value
Returns a pointer to the byte after the last byte of the get area.

streambuf::blen

 Syntax:
#include <streambuf>
int blen() const;

 Description
Returns the size of the reserve area.

 Return Value
Returns the size, in bytes, of the reserve area.

streambuf::setp

 Syntax:
#include <streambuf>
void setp(char *pp,char *pep);

 Description
Sets the values for the put area pointers (pbase=pptr=pp; epptr=pep).

streambuf::setp

 Syntax:
#include <streambuf>
void setp(char *pb,char *pp,char *pep);

 Description
Sets the values for the put area pointers (pbase=pb; pptr=pp; epptr=pep).

Chapter 6- EC++ Libraries 6-65

streambuf::setg
 Syntax:

#include <streambuf>
void setg(char *peb,char *pg,char *peg);

 Description
Sets the values for the get area pointers.

streambuf::pbump

 Syntax:
#include <streambuf>
void pbump(int nCount);

 Description
Increments the put pointer. No bounds checks are made on the result.

streambuf::gbump

 Syntax:
#include <streambuf>
void gbump(int nCount);

 Description
Increments the get pointer. No bounds checks are made on the result.

streambuf::setb

 Syntax:
#include <streambuf>
void setb(char *pb,char *peb,int nDelete=0);

 Description
Sets the values of the reserve area pointers. If both pb and peb are NULL, there
is no reserve area. If pb is not NULL and peb is NULL, the reserve area has a
length of 0.

streambuf::unbuffered

 Syntax:
#include <streambuf>
int unbuffered() const;

 Description
Tests the streambuf buffer state variable.

 Return Value
Returns the current buffering state variable.

Chapter 6- EC++ Libraries 6-66

streambuf::unbuffered

 Syntax:
#include <streambuf>
void unbuffered(int nState);

 Description
Sets the value of the streambuf object's buffering state. This variable's primary
purpose is to control whether the allocate function automatically allocates a
reserve area.

streambuf::alllocate

 Syntax:
#include <streambuf>
int allocate();

 Description
Allocates a buffer, if needed, by calling doalloc.

 Return Value
If a reserve area already exists or if the streambuf object is unbuffered, allocate
returns 0. If the space allocation fails, allocate returns EOF.

streambuf::doalllocate

 Syntax:
#include <streambuf>
virtual int doallocate();

 Description
By default, this function attempts to allocate a reserve area using operator new.

 Return Value
If the reserve area allocation fails, doallocate returns EOF.

streambuf::showmanyc

 Syntax:
#include <streambuf>
virtual int showmanyc();

 Description
The protected virtual member function returns a count of the number of characters
that can be extracted from the input stream without the program experiencing an
indefinite wait. The default behavior is to return zero.

Chapter 6- EC++ Libraries 6-67

<ios>

class ios_base {

public:

 enum fmtflags {
 skipws = 0x0001,
 unitbuf = 0x0002,
 uppercase = 0x0004,
 showbase = 0x0008,

showpoint = 0x0010,
 showpos = 0x0020,
 left = 0x0040,
 right = 0x0080,
 internal = 0x0100,
 dec = 0x0200,
 oct = 0x0400,
 hex = 0x0800,
 scientific = 0x1000,
 fixed = 0x2000,
 boolalpha = 0x4000,
 adjustfield = 0x01c0,
 basefield = 0x0e00,
 floatfield = 0x3000
 };

 enum iostate { goodbit = 0x00,
 eofbit = 0x01,
 failbit = 0x02,
 badbit = 0x04 };

enum event {erase_event, imbue_event, copyfmt_event};

 class Init;

 long flags() const ;
 long flags(long fmtfl);
 long setf(long fmtfl);
 long setf(long fmtfl, long mask);
 void unsetf(long mask);
 streamsize precision() const ;

Chapter 6- EC++ Libraries 6-68

streamsize precision(streamsize prec);
 streamsize width() const ;
 streamsize width(streamsize wide);
 ~ios_base();
 ios_base();

 static bool sync_with_stdio(bool sync = true);

 protected:
 long x_flags;
 int x_precision, x_width;
 int x_except, x_state;
 static bool _Sync;
 static int index;
 static long* iarray;
 static void** parray;
};

class ios_base::Init {

private:
 static int _Init_cnt;
protected:
 void cout_flush();
public:
 Init();
 ~Init();
};

The nested class describes an object whose construction ensures that the standard
iostreams objects are properly constructed, even during the execution of a constructor
for an arbitrary static object.

An object of class ios_base stores formatting information, which consists of:

 Format flags in an object of type fmtflags.
 An exception mask in an object of type iostate.
 A field width in an object of type int .
 A display precision in an object of type int.
 Two extensible arrays, with elements of type long and void pointer.

An object of class ios_base also stores stream state information, in an object of
type iostate, and a callback stack.

Chapter 6- EC++ Libraries 6-69

class ios : public ios_base {

public:

 int delbuf() const ;
 void delbuf(int i) ;
 operator void*() const;
 bool operator!() const;
 int rdstate() const ;
void clear(int st = goodbit);
 void setstate(int st);
 bool good() const ;
 bool eof() const ;
 bool fail() const ;
 bool bad() const ;
int exceptions() const ;
 void exceptions(iostate except) ;
ios(streambuf* sb);
 ios();
 virtual ~ios();

 ostream* tie() const ;
 ostream* tie(ostream* _os) ;
 streambuf* rdbuf() const ;
 streambuf* rdbuf(streambuf* sb);
 ios& copyfmt(const ios& rhs);
 char fill() const ;
 char fill(char ch);

protected:

 char x_fill;
 int x_delbuf; // if set, rdbuf() deleted by ~ios
 streambuf* bp;
 ostream* x_tie;
 void init(streambuf* sb);

};

The class describes the storage and member functions common to both input streams
(of class istream) and output streams (of class ostream). An object of class ios
helps control a stream with characters.
An object of class ios stores:

Chapter 6- EC++ Libraries 6-70

 Formatting information and stream state information
in a base object of type ios_base;
 a fill character in an object of type char;
 a tie pointer to an object of type ostream ;
 a stream buffer pointer to an object of type streambuf;

ios_base::fmtflags
enum fmtflags { skipws, unitbuf, uppercase, showbase, showpoint, showpos,
left, right, internal, dec, oct, hex, scientific, fixed, boolalpha, adjustfield, basefield,
floatfield };
The enumerated type fmtflags describes an object that can store format flags. The
distinct flag values are:

 skipws, to skip leading white space (0x09 - 0x0D or 0x20) before certain
extractions.
 unitbuf, to flush output after each insertion.
 uppercase, to insert uppercase equivalents of lowercase letters in certain
insertions.
 showbase, to insert a prefix that reveals the base of a generated integer
field.
 showpoint, to insert a decimal point unconditionally in a generated
floating-point field.
 showpos, to insert a plus sign in a non-negative generated numeric field.
 left, to pad to a field width as needed by inserting fill characters at the
end of a generated field (left justification).
 right, to pad to a field width as needed by inserting fill characters at the
beginning of a generated field (right justification).
 internal, to pad to a field width as needed by inserting fill characters at
a point internal to a generated numeric field.
 dec, to insert or extract integer values in decimal format.
 oct, to insert or extract integer values in octal format.
 hex, to insert or extract integer values in hexadecimal format.
 scientific, to insert floating-point values in scientific format (with an
exponent field).
 fixed, to insert floating-point values in fixed-point format (with no
exponent field).
 boolalpha, to insert or extract objects of type bool as names (such as
true and false) rather than as numeric values.
 adjustfield, internal | left | right
 basefield, dec | hex | oct
 floatfield, fixed | scientific

Chapter 6- EC++ Libraries 6-71

ios_base::iostate
The enumerated type iostate describes an object that can store stream state
information. The distinct flag values are:

 goodbit, no bits set
 eofbit, to record end-of-file while extracting from a stream
 failbit, to record a failure to extract a valid field from a stream
 badbit, to record a loss of integrity of the stream buffer

ios_base::event
The enumerated type event describes an object that can store the callback event
used as an argument to a function registered with register_callback. The
distinct event values are:

 copyfmt_event, to identify a callback that occurs near the end of a call to
copyfmt, just before the exception mask is copied.
 erase_event, to identify a callback that occurs at the beginning of a call to
copyfmt, or at the beginning of a call to the destructor for *this.
 imbue_event, to identify a callback that occurs at the end of a call to
imbue, just before the function returns.

ios_base::flags

 Syntax:
#include <ios>
long flags() const ;
long flags(long fmtfl);

 Description
The first function reads the stream's format flags.
The second function sets the stream's internal flags variable to fmtfl and returns the
previous value.

 Return Value
The first function returns the current value of the stream's format flags.
The second function returns the previous value of the stream's format flags.

 Example
#include <iostream>
void main()
{
 long f,i;
 int j;
 char
indic[15][12]={"skipws","left","right","internal","dec","oct","hex","showbase","sho
wpoint", "uppercase", "showpos","scientific","fixed","unitbuf"};

Chapter 6- EC++ Libraries 6-72

 f=cout.flags();
 for (i=1,j=0;i<0x2000;i=i<<1,j++)
 if (i & f) cout<<indic[i][j]<<" is enabled"<<endl;
 else cout<<indic[i][j]<<" is disabled"<<endl;
 f=0x04a4;
 cout.flags(f);//enables all flags
 }

ios_base::setf

 Syntax:
#include <ios>
long setf(long fmtfl);
long setf(long fmtfl, long mask);

 Description
The first function manipulates the stream's format flags
The second function manipulates the stream's format flags

 Return Value
The first function turns on only those format bits that are specified by 1s in fmtfl.
It returns a long that contains the previous value of all the flags.
The second function alters those format bits specified by 1s in mask. The new
values of those format bits are determined by the corresponding bits in fmtfl. It
returns a long that contains the previous value of all the flags.
 Example

#include <iostream>
void main()
{
 cout.setf(ios::showbase | ios::hex);
 cout<<100;//displays 0x64
 cout.setf(ios::oct,ios::hex | ios::oct);
 cout<<endl<<100;//displays 0144
 }

ios_base::unsetf

 Syntax:
#include <ios>
void unsetf(long mask);

 Description
Clears the format flags specified by 1s in mask.

 Return Value
It returns a long that contains the previous value of all the flags.

 Example

Chapter 6- EC++ Libraries 6-73

#include <iostream>
void main()
{
 cout.setf(ios::uppercase | ios::scientific);
 cout<<100.12;//displays 1.0012E+02
 cout.unsetf(ios::uppercase);
 cout<<endl<<100.12;//displays 1.0012e+02
 }

ios_base::precision

 Syntax:
#include <ios>
streamsize precision() const ;
streamsize precision(streamsize prec);

 Description
The first function reads the stream's floating-point format display precision.

The second function sets the stream's internal floating-point precision variable to
prec . The default precision is six digits. If the display format is scientific or fixed,
the precision indicates the number of digits after the decimal point. If the format
is automatic (neither floating point nor fixed), the precision indicates the total
number of significant digits.
 Return Value

The first function returns the stream's current precision value.
The second function returns the stream's previous precision value.

 Example
#include <iostream>
void main()
{
 int prec=cout.precision();
 cout.precision(4);
 cout.width(10);
 cout <<10.12345;//displays 10.12
 }

ios_base::width

 Syntax:
#include <ios>
streamsize width() const ;
streamsize width(streamsize wide);

 Description
The first function reads the stream's output field width.

Chapter 6- EC++ Libraries 6-74

The second function sets the stream's internal field width variable to nw. When
the width is 0 (the default), inserters insert only the number of characters
necessary to represent the inserted value. When the width is not 0, the inserters
pad the field with the stream's fill character, up to wide. If the unpadded
representation of the field is larger than wide, the field is not truncated. Thus, wide
is a minimum field width.

The internal width value is reset to 0 after each insertion or extraction.
 Return Value

The first function returns the current value of the stream's width variable.
The second function returns the previous value of the stream's width variable.

 Example
#include <iostream>
void main()
{
 int w=cout.width();
 cout.precision(4);
 cout.width(10);
 cout <<10.12345;//displays 10.12
 }

ios_base::~ios_base

 Syntax:
#include <ios>
~ios_base();

 Description
Frees the memory allocated for the internal arrays (extensible arrays).

ios_base::ios_base

 Syntax:
#include <ios>
ios_base();

 Description
The (protected) constructor does nothing. A later call to ios::init must
initialize the object before it can be safely destroyed. Thus, the only safe use for
class ios_base is as a base class ios.

ios_base:: sync_with_stdio

 Syntax:
#include <ios>

Chapter 6- EC++ Libraries 6-75

static bool sync_with_stdio(bool sync = true);
 Description
The static member function stores a stdio sync flag, which is initially true. When
true, this flag ensures that operations on the same file are properly synchronized
between the iostream functions and those defined in the Standard C library.
Otherwise, synchronization may or may not be guaranteed, but performance may
be improved. The function stores sync in the stdio sync flag and returns its
previous stored value. You can call it reliably only before performing any
operations on the standard streams.

ios:: delbuf

 Syntax:
#include <ios>
int delbuf() const ;

 Description
Controls the connection of streambuf deletion with ios destruction

 Return Value
Returns the current value of the buffer deletion flag.

ios:: delbuf

 Syntax:
#include <ios>
void delbuf(int i) ;

 Description
Controls the connection of streambuf deletion with ios destruction
Assigns a value to the stream's buffer-deletion flag.

ios:: operator void*

 Syntax:
#include <ios>
operator void*() const;

 Description
Converts a stream to a pointer that can be used only for error checking.

 Return Value
The conversion returns 0 if either failbit or badbit is set in the stream's error state.
See rdstate for a description of the error state masks. A nonzero pointer is not
meant to be derefferenced.

ios:: operator!

Chapter 6- EC++ Libraries 6-76

 Syntax:
#include <ios>
bool operator!() const;

 Description
Returns a nonzero value if a stream I/O error occurs.

 Return Value
Returns a nonzero value if either failbit or badbit is set in the stream's error state.
See rdstate for a description of the error state masks.

ios:: rdstate

 Syntax:
#include <ios>
int rdstate() const ;

 Description
Returns the stream's error flags.

 Return Value
Returns the current error state as specified by the following masks (ios enumerators):

 ios::goodbit No error condition.

 ios::eofbit End of file reached.

 ios::failbit A possibly recoverable formatting or conversion error.

 ios::badbit A severe I/O error or unknown state.

The returned value can be tested against a mask with the AND (&) operator
 Example

#include <iostream>
void main()
{
 int i; char ch; float f;
 cin>>i>>ch>>f;
 if (cin.rdtstate()!=ios::goodbit)
 { cin.clear();exit(1);}
 }

ios::clear

 Syntax:
#include <ios>
void clear(int st = goodbit);

 Description

Chapter 6- EC++ Libraries 6-77

Sets or clears the error-state flags. The rdstate function can be used to read the current
error state.

 Example
#include <iostream>
void main()
{
 int i; char ch; float f;
 cin>>i>>ch>>f;
 if (cin.rdtstate()!=ios::goodbit)
 { cin.clear();exit(1);}
 }

ios::setstate

 Syntax:
#include <ios>
void setstate(int st);

 Description
The member function effectively calls clear(st|rdstate()).

 Example
#include <iostream>
void main()
{
int i; char ch; float f;
 cin>>i>>ch>>f;
 if (cin.rdtstate()!=ios::goodbit)
 { cin.setstate(ios::goodbit);exit(1);}
 }

ios::good

 Syntax:
#include <ios>
bool good() const ;

 Description
Indicates good stream status.

 Return Value
Returns a nonzero value if all error bits are clear. Note that the good member
function is not simply the inverse of the bad function.
 Example

#include <iostream>
void main()
{

Chapter 6- EC++ Libraries 6-78

 int i; char ch; float f;
 cin>>i>>ch>>f;
 if (!cin.good())
 { cin.setstate(ios::goodbit);exit(1);}
 }

ios::eof

 Syntax:
#include <ios>
bool eof() const ;

 Description
Indicates end of file.

 Return Value
Returns a nonzero value if end of file has been reached. This is the same as setting
the eofbit error flag.

 Example
#include <iostream>
void main()
{
 char ch[5];
 cin>>ch;
 if (cin.eof())
 cin.clear();
 }

ios::fail

 Syntax:
#include <ios>
bool fail() const ;

 Description
Indicates a serious I/O error or a possibly recoverable I/O formatting error.

 Return Value
Returns a nonzero value if any I/O error (not end of file) has occurred. This
condition corresponds to either the badbit or failbit error flag being set. If a call
to bad returns 0, you can assume that the error condition is nonfatal and that you
can probably continue processing after you clear the flags.
 Example

#include <iostream>
void main()
{
 char ch[5];

Chapter 6- EC++ Libraries 6-79

 cin>>ch;
 if (cin.fail())
 if (cin.bad())
 {cin.clear();exit(1);}
 //other code lines
 }

ios::bad

 Syntax:
#include <ios>
bool bad() const ;

 Description
Indicates a serious I/O error.

 Return Value
Returns a nonzero value to indicate a serious I/O error. This is the same as setting
the badbit error state. Do not continue I/O operations on the stream in this
situation.
 Example

#include <iostream>
void main()
{
 char ch[5];
 cin>>ch;
 if (cin.fail())
 if (cin.bad())
 {cin.clear();exit(1);}
 //other code lines
}

ios::exceptions

 Syntax:
#include <ios>
int exceptions() const ;
void exceptions(iostate except) ;

 Description
The first function returns the stored exception mask.

The second function stores except in the exception mask and returns its previous
stored value.

 Return Value
The first function returns the stored exception mask.
The second function returns the previous stored value

Chapter 6- EC++ Libraries 6-80

ios::ios

 Syntax:
#include <ios>
ios(streambuf* sb);

 Description
Constructor for ios. Sets the stream buffer pointer to sb value.

ios::ios

 Syntax:
#include <ios>
ios();

 Description
Constructor for ios.

ios::~ios

 Syntax:
#include <ios>
virtual ~ios();

 Description
Virtual destructor for ios.

ios::tie

 Syntax:
#include <ios>
ostream* tie() const ;
ostream* tie(ostream* os) ;

 Description
The first function ties a specified ostream to this stream.
The second function ties a specified ostream to this stream.

 Return Value
Returns the value of the previous tie pointer or NULL if this stream was not
previously tied.

ios::rdbuf

 Syntax:
#include <ios>
streambuf* rdbuf() const ;

Chapter 6- EC++ Libraries 6-81

streambuf* rdbuf(streambuf* sb);
 Description

The first function gets the stream's streambuf object.
The second function sets the stream's streambuf object to sb.

 Return Value
The first function returns a pointer to the streambuf object that is associated with this
stream.
The second function returns a pointer to the old streambuf object that is associated
with this stream.

 Example
#include <iostream>
void main()
{
 int i;
 i=cin.rdbuf()->sgetc();
cout<<i;
 }

ios::copyfmt

 Syntax:
#include <ios>
ios& copyfmt(const ios& rhs);

 Description
The member function reports the callback event erase event. It then copies
the fill character, the tie pointer, and the formatting information from rhs
into *this. Before altering the exception mask, it reports the callback event
copyfmt event. If, after the copy is complete, state & exceptions()
is nonzero, the function effectively calls clear with the argument rdstate().
 Return Value

Returns *this.

ios::fill

 Syntax:
#include <ios>
char fill() const ;
char fill(char ch);

 Description
The first function reads the stream's fill character.
The second function sets the stream's internal fill character variable to ch.

 Return Value

Chapter 6- EC++ Libraries 6-82

The first function returns the stream's fill character.
The second function returns the previous value.

 Example
#include <iostream>
void main()
{
 cout.width(10);
 cout.fill('*');
 cout<<10.123<<endl;
 }

ios::init

 Syntax:
#include <ios>
void init(streambuf* sb);

 Description
The member function stores values in all member objects, so that:

 rdbuf () returns sb
 tie () returns a null pointer
 rdstate () returns goodbit if sb is nonzero; otherwise, it returns
badbit
 exceptions () returns goodbit
 flags () returns skipws| dec
 width () returns zero
 precision () returns 6
 fill () returns the space character (0x09 - 0x0D or 0x20)
 D:\Manuals\Cpp-8051\IOS_ios_baseCCiword.htm - ios_base::iwordiword returns
zero and pword returns a null pointer for all argument values

boolalpha

 Syntax:
#include <ios>
ios_base& boolalpha (ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::boolalpha).

 Return Value
Returns str.

 Example
#include <iostream>

Chapter 6- EC++ Libraries 6-83

void main()
{
 bool b=true;
 boolalpha(cout);
 cout<<b<<endl;
 }

noboolalpha

 Syntax:
#include <ios>
ios_base& noboolalpha(ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::boolalpha).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 bool b=true;
 noboolalpha(cout);
 cout<<b<<endl;
 }

showbase

 Syntax:
#include <ios>
ios_base& showbase (ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::showbase).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 int n=0x2d;
 showbase(cout);
 cout<<n<<endl;
 }

Chapter 6- EC++ Libraries 6-84

noshowbase

 Syntax:
#include <ios>
ios_base& noshowbase (ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::showbase).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 int n=0x2d;
 noshowbase(cout);
 cout<<n<<endl;
 }

showpoint

 Syntax:
#include <ios>
ios_base& showpoint (ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::showpoint).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 float n=1.00;
 showpoint(cout);
 cout<<n<<endl;
 }

noshowpoint

 Syntax:
#include <ios>
ios_base& noshowpoint (ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::showpoint).

Chapter 6- EC++ Libraries 6-85

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 float n=1.00;
 noshowpoint(cout);
 cout<<n<<endl;
 }

showpos

 Syntax:
#include <ios>
ios_base& showpos (ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::showpos).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 float n=1.00;
 showpos(cout);
 cout<<n<<endl;
 }

noshowpos

 Syntax:
#include <ios>
ios_base& noshowpos (ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::showpos).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 float n=1.00;

Chapter 6- EC++ Libraries 6-86

 noshowpos(cout);
 cout<<n<<endl;
 }

skipws

 Syntax:
#include <ios>
ios_base& skipws(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::skipws).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 char s[10];
 skipws(cin);
 cin>>s;
 cout<<s<<endl;
 }

noskipws

 Syntax:
#include <ios>
ios_base& noskipws(ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::skipws).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 char s[10];
 noskipws(cin);
 cin>>s;
 cout<<s<<endl;
 }

uppercase

Chapter 6- EC++ Libraries 6-87

 Syntax:
#include <ios>
ios_base& uppercase(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::uppercase).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 cout.setf(ios::scientific);
 uppercase(cout);
 cout<<100.12<<endl;
 }

nouppercase

 Syntax:
#include <ios>
ios_base& nouppercase(ios_base& str);

 Description
The manipulator effectively calls str.unsetf (ios_base::uppercase).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 cout.setf(ios::scientific);
 uppercase(cout);
 cout<<100.12<<endl;
 nouppercase(cout);
 cout<<100.12<<endl;
 }

internal

 Syntax:
#include <ios>
ios_base& internal(ios_base& str);

 Description

Chapter 6- EC++ Libraries 6-88

The manipulator effectively calls str.setf (ios_base::internal,
ios_base::adjustfield).
 Return Value

Returns str.
 Example

#include <iostream>
void main()
{
 cout.width(10);
 cout.fill('#');
 internal(cout);
 cout<<100.12<<endl;
 }

left

 Syntax:
#include <ios>
ios_base& left(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::left,
ios_base::adjustfield).
 Return Value

Returns str.
 Example

#include <iostream>
void main()
{
 cout.width(10);
 cout.fill('#');
 left(cout);
 cout<<100.12<<endl;
 }

right

 Syntax:
#include <ios>
ios_base& right(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::right,
ios_base::adjustfield).
 Return Value

Chapter 6- EC++ Libraries 6-89

Returns str.
 Example

#include <iostream>
void main()
{
 cout.width(10);
 cout.fill('#');
 right(cout);
 cout<<100.12<<endl;
 }

dec

 Syntax:
#include <ios>
ios_base& dec(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::dec,
ios_base::basefield).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 dec(cout);
 cout<<100<<endl;
 hex(cout);
 cout<<100<<endl;
 oct(cout);
 cout<<100<<endl;
 }

hex

 Syntax:
#include <ios>
ios_base& hex(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::hex,
ios_base::basefield).

 Return Value
Returns str.

Chapter 6- EC++ Libraries 6-90

 Example
#include <iostream>
void main()
{
 dec(cout);
 cout<<100<<endl;
 hex(cout);
 cout<<100<<endl;
 oct(cout);
 cout<<100<<endl;
 }

oct

 Syntax:
#include <ios>
ios_base& oct(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::oct,
ios_base::basefield).

 Return Value
Returns str.

 Example
#include <iostream>
void main()
{
 dec(cout);
 cout<<100<<endl;
 hex(cout);
 cout<<100<<endl;
 oct(cout);
 cout<<100<<endl;
 }

fixed

 Syntax:
#include <ios>
ios_base& fixed(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base::fixed,
ios_base::floatfield).
 Return Value

Chapter 6- EC++ Libraries 6-91

Returns str.
 Example

#include <iostream>
void main()
{
 fixed(cout);
 cout<<1.235<<endl;
 }

scientific

 Syntax:
#include <ios>
ios_base& scientific(ios_base& str);

 Description
The manipulator effectively calls str.setf (ios_base:: scientific,
ios_base::floatfield).
 Return Value

Returns str.
 Example

#include <iostream>
void main()
{
 scientific(cout);
 cout<<1.235<<endl;
 }

<istream>

class istream : public ios {

public:

 bool ipfx(bool _Noskip=false);
 void isfx();
 istream(stdiobuf* sb);
 virtual ~istream() ;
 class sentry;

Chapter 6- EC++ Libraries 6-92

 istream& operator>> (istream& (*pf)(istream&));
 istream& operator>> (ios& (*pf)(ios&));
 istream& operator>> (ios_base& (*pf)(ios_base&));
 istream& operator>>(bool& n);
 istream& operator>>(short& n);
 istream& operator>>(unsigned short& n);
 istream& operator>>(int& n);
 istream& operator>>(unsigned int& n);
 istream& operator>>(long& n);
 istream& operator>>(unsigned long& n);
 istream& operator>>(float& f);
 istream& operator>>(double& f);
 istream& operator>>(long double& f);
 istream& operator>>(void*& p);
 istream& operator>>(stdiobuf* sb);
 streamsize gcount() const ;
 int get();
 istream& get(char& c);
 istream& get(char* s, streamsize n);
 istream& get(char* s, streamsize n, char delim);
 istream& get(stdiobuf& sb);
 istream& get(stdiobuf& sb, char delim);
 istream& getline(char* s, streamsize n);
 istream& getline(char* s, streamsize n, char delim);
 istream& ignore(streamsize n = 1, int delim = EOF);
 int peek();
 istream& read (char* s, streamsize n);
 streamsize readsome(char* s, streamsize n);
 istream& putback(char c);
 istream& unget();
 int sync() ;
 void eatwhite();
 protected:
 istream& operator=(stdiobuf* _isb);
 private:
 streamsize x_gcount;
 int _fGline;
};

class istream::sentry {

 bool _Ok;
 public:

Chapter 6- EC++ Libraries 6-93

 sentry(istream& is, bool noskipws = false);
 ~sentry();
 operator bool();
};

// character extraction templates:

istream& operator>>(istream&, char&);
istream& operator>>(istream&, unsigned char&);
istream& operator>>(istream&, signed char&);

istream& operator>>(istream&, char*);
istream& operator>>(istream&, unsigned char*);
istream& operator>>(istream&, signed char*);

inline istream& ws(istream &is);

This header defines istream class, a manipulator and several character extraction
functions (formatted input functions).

The istream class provides the basic capability for sequential and random-access
input. An istream object has a streambuf-derived object attached, and the two
classes work together; the istream class does the formatting, and the streambuf class
does the low-level buffered input.

istream::ipfx

 Syntax:
#include <istream>
bool ipfx(bool _Noskip=false);

 Description
Check for error conditions prior to extraction operations (input prefix function).

 Return Value
A nonzero return value if the operation was successful; 0 if the stream's error state
is nonzero, in which case the function does nothing.

istream::isfx

 Syntax:
#include <istream>
void isfx();

Chapter 6- EC++ Libraries 6-94

 Description
This input suffix function is called at the end of every extraction operation (input
suffix function).

istream::istream

 Syntax:
#include <istream>
istream(stdiobuf* sb);

 Description
Constructs an istream object attached to an existing object of a streambuf-derived
class.

istream::~istream

 Syntax:
#include <istream>
virtual ~istream() ;

 Description
Destroys an istream object.

istream::operator>>

 Syntax:
#include <istream>
istream::operator>>
istream& operator>> (istream& (*pf)(istream&));
istream& operator>> (ios& (*pf)(ios&));
istream& operator>> (ios_base& (*pf)(ios_base&));
istream& operator>>(bool& n);
istream& operator>>(short& n);
istream& operator>>(unsigned short& n);
istream& operator>>(int& n);
istream& operator>>(unsigned int& n);
istream& operator>>(long& n);
istream& operator>>(unsigned long& n);
istream& operator>>(float& f);
istream& operator>>(double& f);
istream& operator>>(long double& f);
istream& operator>>(void*& p);
istream& operator>>(stdiobuf* sb);

 Description
These overloaded operators extract their argument from the stream.

Chapter 6- EC++ Libraries 6-95

 RETURN VALUE

Returns the current istream object (*this);
 Example

#include <iostream>
void main()
{
 bool b;
 float f;
 long n;
 cin>>b>>f>>n;
 cout << b<<" "<<f<<" "<<n;
 }

istream::gcount

 Syntax:
#include <istream>
streamsize gcount() const ;

 Description
Counts the characters extracted in the last unformatted operation.

 RETURN VALUE

Returns the number of characters extracted by the last unformatted input function.
 Example

#include <iostream>
void main()
{
 char *name;
 int buf_size = 100;
 int count = 0; // Character counter.
 name = new char[buf_size];
// Notice that the output buffer is flushed.
 cout << "\n Enter your name:" << endl;
 cin.getline(name, buf_size);
 count = cin.gcount();
 // Since getline() retains the linefeed, gcount()
 // will count it as input.
 cout << "\nName character count: " << count - 1;
 }

istream::get

 Syntax:

Chapter 6- EC++ Libraries 6-96

#include <istream>
int get();

 Description
Extracts a single character from the stream and returns it.

 Return Value
Returns the extracted character.

 Example
#include <iostream>
void main()
{
 char ch;
 ch=cin.get ();
 cout << ch;
 }

istream::get

 Syntax:
#include <istream>
istream& get(char& c);

 Description
Extracts a single character from the stream and stores it as specified by the reference
argument.

 RETURN VALUE

Returns the current istream object (*this);
 Example

#include <iostream>
void main()
{
 char ch;
 cin.get (ch);
 cout << ch;
 }

istream::get

 Syntax:
#include <istream>
istream& get(char* s, streamsize n);

 Description
Effectively calls get(s, n, '\n').

 RETURN VALUE

Returns the current istream object (*this);

Chapter 6- EC++ Libraries 6-97

 Example
#include <iostream>
void main()
{
 char s[10];
 cin.get (s,5);
 cout << s;
 }

istream::get

 Syntax:
#include <istream>
istream& get(char* s, streamsize n, char delim);

 Description
Extracts characters from the stream until either delim is found, the limit n is
reached, or the end of file is reached. The characters are stored in the array
followed by a null terminator.
 RETURN VALUE

Returns the current istream object (*this);
 Example

#include <iostream>
void main()
{
 char s[10];
 cin.get (s,5,'\n');
 cout << s;
 }

istream::get

 Syntax:
#include <istream>
istream& get(stdiobuf& sb);

 Description
Effectively calls get(sb,'\n').

 RETURN VALUE

Returns the current istream object (*this);

istream::get

 Syntax:
#include <istream>

Chapter 6- EC++ Libraries 6-98

istream& get(stdiobuf& sb, char delim);
 Description
Gets characters from the stream and stores them in a streambuf object until the
delimiter is found or the end of the file is reached. The ios::failbit flag is set if the
streambuf output operation fails.
 RETURN VALUE

Returns the current istream object (*this);
istream::getline

 Syntax:
#include <istream>
istream& getline(char* s, streamsize n);

 Description
EFFECTIVELY CALLS GETLINE(S, N, '\N').

 RETURN VALUE

Returns the current istream object (*this);
 Example

See the gcount example.

istream::getline

 Syntax:
#include <istream>
istream& getline(char* s, streamsize n, char delim);

 Description
Extracts characters from the stream until either the delimiter delim is found, the
limit n-1 is reached, or end of file is reached. The characters are stored in the
specified array followed by a null terminator. If the delimiter is found, it is
extracted but not stored.
 RETURN VALUE

Returns the current istream object (*this);
 Example

See the gcount example.

istream::ignore

 Syntax:
#include <istream>
istream& ignore(streamsize n = 1, int delim = EOF);

 Description

Chapter 6- EC++ Libraries 6-99

Extracts and discards up to n characters. Extraction stops if the delimiter delim is
extracted or the end of file is reached. If delim = EOF (the default), then only the
end of file condition causes termination. The delimiter character is extracted.
 RETURN VALUE

Returns the current istream object (*this);
 Example

#include <iostream>
void main()
{
 char s[10];
 cin.ignore(2);
 cin.get (s,5,'\n');
 cout << s;
 }

istream::peek

 Syntax:
#include <istream>
int peek();

 Description
Returns the next character without extracting it from the stream. Returns EOF if
the stream is at end of file or if the ipfx function indicates an error.
 Example

#include <iostream>
void main()
{
 char ch;
 cin.peek();
 cout << ch;
 }

istream::read

 Syntax:
#include <istream>
istream& read (char* s, streamsize n);

 Description
Extracts bytes from the stream until the limit n is reached or until the end of file
is reached. The bytes are stored in the array beginning at s.The read function is
useful for binary stream input.
 RETURN VALUE

Returns the current istream object (*this);

Chapter 6- EC++ Libraries 6-100

 Example
#include <iostream>
void main()
{
 char s[10];
 cin.read(s,5);
 cout << s;
 }

istream::readsome

 Syntax:
#include <istream>
streamsize readsome(char* s, streamsize n);

 Description
The member function extracts up to n elements and stores them in the array beginning
at s.

 Example
#include <iostream>
void main()
{
 char s[10];
 cin.readsome(s,5);
 cout << s;
 }

istream::putback

 Syntax:
#include <istream>
istream& putback(char c);

 Description
Puts a character back into the input stream. The putback function may fail and
set the error state. If c does not match the character that was previously extracted,
the result is undefined.
 RETURN VALUE

Returns the current istream object (*this);

istream::ungetc

 Syntax:
#include <istream>

Chapter 6- EC++ Libraries 6-101

istream& unget();
 Description
Puts back the previous element in the stream, if possible , as if by calling
rdbuf()->sungetc(). If rdbuf() is a null pointer, or if the call to
sungetc returns EOF, the function calls setstate(badbit.
 RETURN VALUE

Returns the current istream object (*this);

istream::sync

 Syntax:
#include <istream>
int sync() ;

 Description
Synchronizes the stream buffer with the external source of characters.

 Return Value
EOF to indicate errors.

istream::eatwhite

 Syntax:
#include <istream>
void eatwhite();

 Description
Extracts leading white space (0x09 - 0x0D or 0x20) from the stream by advancing
the get pointer past spaces and tabs.

istream::operator=

 Syntax:
#include <istream>
istream& operator=(stdiobuf* _isb);

 Description
The operator initializes ios and istream members and sets the streambuf object
to _isb.

operator>>

 Syntax:
#include <istream>
istream& operator>>(istream& is, char& c);
istream& operator>>(istream& is, unsigned char& c);

Chapter 6- EC++ Libraries 6-102

istream& operator>>(istream& is, signed char& c);
istream& operator>>(istream& is, char* s);
istream& operator>>(istream& is, unsigned char* s);
istream& operator>>(istream& is, signed char* s);

 Description
The first function extracts an element, if possible, and stores it in c. Otherwise, it
calls is.setstate(failbit).

The second function effectively calls is>>(char&)c.
The third function effectively calls is>>(char&)c.

The fourth function extracts up to n-1 elements and stores them in the array
beginning at s. If is.width() is greater than zero, n is is.width();
otherwise it is the largest array of characters that can be declared. The function
always stores char(0)after any extracted elements it stores. Extraction stops
early on end-of-file or on any element (which is not extracted) that would be
discarded by ws. If the function extracts no elements, it calls
is.setstate(failbit). In any case, it calls is.width(0).

The fifth function effectively calls is>>(char *)s.
The sixth function effectively calls is>>(char *)s.

 RETURN VALUE

Returns is.
 Example

#include <iostream>
void main()
{
 char s[10],ch;
 cin>>s>>ch;
 cout << s<<" "<<ch;
 }

ws

 Syntax:
#include <istream>
istream& ws(istream& is);

 Description
Extracts leading white space from the stream by calling the eatwhite function.

 RETURN VALUE

Returns is.
 Example

#include <iostream>
void main()

Chapter 6- EC++ Libraries 6-103

{
 char s[10];
 ws(cin);
 cin.read(s,3);
 cout << s;
 }

<ostream>

class ostream : public ios {
public:
 ostream(stdiobuf*);
 virtual ~ostream();
class sentry;
 int opfx();
 void osfx();
 ostream& operator<<(ostream& (* _f)(ostream&));
 ostream& operator<<(ios& (* _f)(ios&));
 ostream& operator<< (ios_base& (*pf)(ios_base&));
 ostream& operator<<(bool n);
 ostream& operator<<(short);
 ostream& operator<<(unsigned short);
 ostream& operator<<(int);
 ostream& operator<<(unsigned int);
 ostream& operator<<(long);
 ostream& operator<<(unsigned long);
 ostream& operator<<(float);
 ostream& operator<<(double);
 ostream& operator<<(long double);
 ostream& operator<<(const void *);
 ostream& operator<<(stdiobuf*);
 ostream& put(char);
 ostream& put(unsigned char);
 ostream& put(signed char);
 ostream& write(const char *,int);
 ostream& write(const unsigned char *,int);
 ostream& write(const signed char *,int);
 ostream& flush();
};

class ostream::sentry {

Chapter 6- EC++ Libraries 6-104

 bool _Ok;
 ostream _Ostr;
public:
 sentry(ostream& _Os);
 ~sentry();
 operator bool();
};

ostream& operator<<(ostream&, char);
ostream& operator<<(ostream&, signed char);
ostream& operator<<(ostream&, unsigned char);
ostream& operator<<(ostream&, const char*);
ostream& operator<<(ostream&, const signed char*);
ostream& operator<<(ostream&, const unsigned char*);
ostream& flush(ostream& os);
ostream& endl(ostream& os);
ostream& ends(ostream& os);

This header defines ostream class, several related manipulators and character
insertion functions (formatted output functions).
The ostream class provides the basic capability for sequential and random-access
output. An ostream object has a streambuf-derived object attached, and the two
classes work together; the ostream class does the formatting, and the streambuf class
does the low-level buffered output.

ostream::ostream

 Syntax:
#include <ostream>
ostream(stdiobuf*);

 Description
Constructs an ostream object that is attached to an existing streambuf object.

ostream::~ostream

 Syntax:
#include <ostream>
virtual ~ostream();

 Description
Destroys an ostream object. The output buffer is flushed as appropriate. The
attached streambuf object is destroyed only if it was allocated internally within
the ostream constructor.

Chapter 6- EC++ Libraries 6-105

ostream::opfx

 Syntax:
#include <ostream>
int opfx();

 Description
Output prefix function, called prior to insertion operations to check for error
conditions, and so forth.

 Return Value
If the ostream object's error state is not 0, opfx returns 0 immediately; otherwise
it returns a nonzero value.

ostream::osfx

 Syntax:
#include <ostream>
void osfx();

 Description
Output suffix function, called after insertion operations; flushes the stream's
buffer if it is unit buffered.

ostream::operator<<

 Syntax:
#include <ostream>
ostream& operator<<(ostream& (* _f)(ostream&));
ostream& operator<<(ios& (* _f)(ios&));
ostream& operator<< (ios_base& (*pf)(ios_base&));
ostream& operator<<(bool n);
ostream& operator<<(short);
ostream& operator<<(unsigned short);
ostream& operator<<(int);
ostream& operator<<(unsigned int);
ostream& operator<<(long);
ostream& operator<<(unsigned long);
ostream& operator<<(float);
ostream& operator<<(double);
ostream& operator<<(long double);
ostream& operator<<(const void *);
ostream& operator<<(stdiobuf*);

 Description
These overloaded operators insert their argument into the stream.

 RETURN VALUE

Chapter 6- EC++ Libraries 6-106

Returns the current output stream(*this).
 Example

#include <iostream>
void main()
{
 bool b=true;
 short i=30;
 float f=0.78
 cout << b<<" "<<i<<" "<<f;
 }

ostream::put

 Syntax:
#include <ostream>
ostream& put(char c);
ostream& put(unsigned char c);
ostream& put(signed char c);

 Description
Inserts a single character into the output stream.

 RETURN VALUE

Returns the current output stream(*this).
 Example

#include <iostream>
void main()
{
 char ch='A';
 cout .put(ch);
 }

ostream::write

 Syntax:
#include <ostream>
ostream& write(const char *s,int n);
ostream& write(const unsigned char *s,int n);
ostream& write(const signed char *s,int n);

 Description
Inserts a specified number of bytes from a buffer into the stream. If the underlying
file was opened in text mode, additional carriage return characters may be
inserted. The write function is useful for binary stream output.
 RETURN VALUE

Chapter 6- EC++ Libraries 6-107

Returns the current output stream(*this).
 Example

#include <iostream>
void main()
{
 char *s="This is an example";
 cout .write(s,5);
}

ostream::flush

 Syntax:
#include <ostream>
ostream& flush();

 Description
Flushes the buffer associated with this stream.

 RETURN VALUE

Returns the current output stream(*this).

operator<<

 Syntax:
#include <ostream>
ostream& operator<<(ostream& os, char c);
ostream& operator<<(ostream& os, signed char c);
ostream& operator<<(ostream& os, unsigned char c);
ostream& operator<<(ostream& os, const char* s);
ostream& operator<<(ostream& os, const signed char* s);
ostream& operator<<(ostream& os, const unsigned char* s);

 Description
The first function inserts the character c into the output stream os.
The second function effectively calls os << (char)c.
The third function effectively calls os << (char)c.

The fourth function determines the length n of the sequence beginning at s, and
inserts the sequence. If n < os.width(), then the function also inserts a
repetition of width() - n fill characters. The repetition precedes the
sequence if (os.flags() & adjustfield!=left. Otherwise, the
repetition follows the sequence.

The fifth function effectively calls os << (const char *)s.
The sixth function effectively calls os << (const char *)s.

 RETURN VALUE

Chapter 6- EC++ Libraries 6-108

The function returns os.
 Example

#include <iostream>
void main()
{
 char *s="This is an example";
 char ch='x';
 cout<<s;
 cout<<ch;
 }

flush

 Syntax:
#include <ostream>
ostream& flush(ostream& os);

 Description
This manipulator, when inserted into an output stream, flushes the buffer.

 Return Value
Returns the output stream os.

endl

 Syntax:
#include <ostream>
ostream& endl(ostream& os);

 Description
This manipulator, when inserted into an output stream, inserts a newline character
and then flushes the buffer.
 Return Value

Returns the output stream os.
 Example

#include <iostream>
void main()
{
 cout<<"This is a sample!";
 endl(cout);
 }

ends

 Syntax:
#include <ostream>
ostream& ends(ostream& os);

 Description

Chapter 6- EC++ Libraries 6-109

This manipulator, when inserted into an output stream, inserts a null-terminator
character.

 Return Value
Returns the output stream os.

 Example
#include <iostream>
void main()
{
 cout<<"This is a sample!";
 ends(cout);
 }

<iostream>

extern class istream cin;
extern class ostream cout;
extern class ostream cerr, clog;

Declare objects that control reading from and writing to the standard streams: cin,
cout, cerr, clog.

<iomanip>

T1 resetiosflags(ios_base::fmtflags mask);
T2 setiosflags(ios_base::fmtflags mask);
T3 setbase(int base);
T4 setfill(char c);
T5 setprecision(int n);
T6 setw(int n);

Defines several manipulators that each take a single argument. Each of these
manipulators returns an unspecified type, called T1 through T6 here, that overloads
both istream::operator>> and ostream::operator<<.

Chapter 6- EC++ Libraries 6-110

resetiosflags
T1 resetiosflags(ios_base::fmtflags mask);
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(ios_base::fmtflags(), mask), then returns
str.
Example
#include <iostream>
#include <iomanip>
void main()
{
 cout<<resetiosflags(ios::showbase);
 cout<<123<<" "<<hex<<123;
}

setiosflags
T2 setiosflags(ios_base::fmtflags mask);
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask), then returns str.
Example
#include <iostream>
#include <iomanip>
void main()
{
 cout<<setiosflags(ios::showbase);
 cout<<setiosflags(ios::showpos);
 cout<<123<<" "<<hex<<123;
}

setbase
T3 setbase(int base);
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.setf(mask, ios_base::basefield), then returns
str. Here, mask is determined as follows:

 If base is 8, then mask is ios_base::oct.
 If base is 10, then mask is ios_base::dec.
 If base is 16, then mask is ios_base::hex.
 If base is any other value, then mask is ios_base::fmtflags(0).

Example
#include <iostream>

Chapter 6- EC++ Libraries 6-111

#include <iomanip>
void main()
{
 cout<<"123"<<" "<<setbase(16)<<123;
}

T4 setfill(char fillch);
The template manipulator returns an object that, when extracted from or inserted into
the stream str, calls str.fill(fillch), then returns str.
Example
#include <iostream>
#include <iomanip>
void main()
{
 cout<<setfill('*')<<setw(10)<<123.5;
}

T5 setprecision(int prec);
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.precision(prec), then returns str.
Example
#include <iostream>
#include <iomanip>
void main()
{
 cout<<setprecision(8)<<123.5345786;
}

T6 setw(int wide);
The manipulator returns an object that, when extracted from or inserted into the
stream str, calls str.width(wide), then returns str.
Example
#include <iostream>
#include <iomanip>
void main()
{
 cout<< setw(10) <<setfill('*')<<123.5; cout<<setprecision(8)<<123.5345786
}

Chapter 6- EC++ Libraries 6-112

<new>

void *operator new(size_t size);
void operator delete(void *ptr);
void *operator new[] (size_t size);
void operator delete[](void * ptr);
void *operator new(size_t size,void * ptr);
void *operator new[](size_t size,void * ptr);
void operator delete(void * ptr,void *);
void operator delete[](void * ptr,void *);

void *operator new(size_t size);
void *operator new[] (size_t size);

 Description
Attempts to allocate memory for an object or for an array of objects of type size_t .

 Return Value
A pointer to the allocated memory or NULL if it fails.

 Example
#include <new>
void main()
{
 int *p;
 p=new int;
 *p=17;
 int *n= new int[3];
 for (int i=0;i<3;i++)
 *(n+i)=10+i;
}

void operator delete(void *ptr);
void operator delete[](void * ptr);

 Description
The delete keyword deallocates a block of memory. The argument ptr must point
to a block of memory previously allocated by the new operator. If ptr points to an
array, place empty brackets before pointer.
 Example

#include <new>

Chapter 6- EC++ Libraries 6-113

void main()
{
 int *p;
 p=new int;
 *p=17;
 if (!p)
 { cout<<"Allocation error!";exit(1);}
 int *n= new int[3];
 if (!n)
 { cout<<"Allocation error!";exit(1);}
 for (int i=0;i<3;i++)
 *(n+i)=10+i;
 delete p;
 delete []n;
}

void *operator new(size_t size,void * ptr);
void *operator new[](size_t size,void * ptr);

 Description
Returns ptr.

INDEX

I-1

INDEX

A

Abs, 6-9
Arg, 6-10
Auto, 4-3

B

Bool, 4-3
Break, 4-4

C

Case, 4-6
Char, 4-6
Class, 4-7
Conj, 6-10
Const, 4-12
Continue, 4-14
Cos, 6-10
Cosh, 6-11

D

Default, 4-15
Delete, 4-15
Directories, 2-1
Do, 4-19
Double, 4-20, 6-2

E

Else, 4-20
Enum, 4-21
Errors, 5-3
Exception, 1-2
Exp, 6-11
Extern, 4-22

F

False, 4-24
Float, 4-24,
For, 4-25
Friend, 4-27

G

Goto, 4-29

H

Handlaing, 1-2

I

If, 4-31
Imag, 6-11
Inline, 4-32, 5-68
Installation, 2-1
Int, 4-33
Ios, 6-63
Istream, 6-86
Iostream, 6-102
Iomanip, 6-103

I-1

K

Keywords, 4-1

L

Library, 1-4, 3-1, 6-1
Log, 6-11
Log10, 6-12
Long, 4-34

M

Mutable, 1-2
Multiple Inheritance, 1-4

N

Namespace, 1-3
New, 4-34, 6-105
Norm, 6-12

O

Operator, 4-35, 6-15 to 6-19
ostream, 6-97

P

Polar, 6-13
Pow, 6-13
Private, 4-38
Projects, 3-1
Protected, 4-41
Public, 4-44

R

Real, 6-14
Register, 4-45
Return, 4-46
RTX51, 4-63
Runtime, 1-3

S

Short, 4-47
Signed, 4-47
Sin, 6-14
Sinh, 6-14
Sizeof, 4-48
Software, P-1
Sqrt, 6-15
Static, 4-49
Stdiobuf, 6-46
Streambuf, 6-48
String, 6-20
Struct, 4-50
Swap, 6-2, 6-45
Switch, 4-52

T

Template, 1-3
This, 4-54
True, 4-56
Typedef, 4-56

U

Union, 4-57
Unsigned, 4-59

V
Virtual, 4-59
Void, 4-61
Volatile, 4-61

W

Warnings, 5-1
While, 4-62

