
October 1993

Microprocessor Peripherals
UPI- 41A/41AH/42/42AH
User’s Manual

Order Number: 231318-006

www.ceibo.com

MCS-48

and

UPI-41

8048 - 8049

8041 - 8042

Ceibo In-Circuit

Emulator Supporting

MCS-48 and UPI-41:

DS-48

http://www.ceibo.com/eng/products/ds48.shtml

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1996

Microprocessor Peripherals
UPI-41A/41AH/42/42AH User’s Manual

CONTENTS PAGE

CHAPTER 1. INTRODUCTION ÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Interface Registers for Multiprocessor
Configurations ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Powerful 8-Bit Processor ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 3

Special Instruction Set Features ÀÀÀÀÀÀÀÀÀÀÀÀ 4

Preprogrammed UPI’s ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Development Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

UPI Development Support ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

CHAPTER 2. FUNCTIONAL
DESCRIPTION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

Pin Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 7

CPU Section ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 10

Program Memory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Interrupt Vectors ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Data Memory ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Program Counter ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Program Counter Stack ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Program Status Word ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

Conditional Branch Logic ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 13

Oscillator and Timing Circuits ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14

Interval Timer/Event Counter ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 16

Test Inputs ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 17

Interrupts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 18

CONTENTS PAGE

Reset ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 19

Data Bus Buffer ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 20

System Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 21

Input/Output Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

Ports 1 and 2 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 22

Ports 4, 5, 6, and 7 ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 23

CHAPTER 3. INSTRUCTION SET ÀÀÀÀÀÀÀÀ 26

Instruction Set Description ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 28

Alphabetic Listing ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 30

CHAPTER 4. SINGLE-STEP AND
PROGRAMMING POWER-DOWN
MODES ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53

Single-Step ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 53

External Access ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 55

Power Down Mode
(UPI-41AH/42AH Only) ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 55

CHAPTER 5. SYSTEM OPERATION ÀÀÀÀÀÀ 56

Bus Interface ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 56

Design Examples ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 57

General Handshaking Protocol ÀÀÀÀÀÀÀÀÀÀÀÀ 60

CHAPTER 6. APPLICATIONS ÀÀÀÀÀÀÀÀÀÀÀÀ 62

Abstracts ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 62

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 1
INTRODUCTION

Accompanying the introduction of microprocessors
such as the 8088, 8086, 80186 and 80286 there has been
a rapid proliferation of intelligent peripheral devices.
These special purpose peripherals extend CPU per-
formance and flexibility in a number of important
ways.

Table 1-1. Intelligent Peripheral Devices

8255 (GPIO) Programmable Peripheral

Interface

8251A(USART) Programmable

Communication Interface

8253 (TIMER) Programmable Interval Timer

8257 (DMA) Programmable DMA Controller

8259 Programmable Interrupt

Controller

82077AA Programmable Floppy Disk

Controller

8273 (SDLC) Programmable Synchronous

Data Link Controller

8274 Programmable Multiprotocol-

Serial Communications

Controller

8275/8276 (CRT) Programmable CRT

Controllers

8279 (PKD) Programmable

Keyboard/Display Controller

8291A, 8292, 8293 Programmable GPIB System

Talker, Listener, Controller

Intelligent devices like the 82077AA floppy disk con-
troller and 8273 synchronous data link controller (see
Table 1-1) can preprocess serial data and perform con-
trol tasks which off-load the main system processor.
Higher overall system throughput is achieved and soft-
ware complexity is greatly reduced. The intelligent
peripheral chips simplify master processor control tasks
by performing many functions externally in peripheral
hardware rather than internally in main processor soft-
ware.

Intelligent peripherals also provide system flexibility.
They contain on-chip mode registers which are pro-
grammed by the master processor during system initial-
ization. These control registers allow the peripheral to
be configured into many different operation modes. The
user-defined program for the peripheral is stored in

main system memory and is transferred to the peripher-
al’s registers whenever a mode change is required. Of
course, this type of flexibility requires software over-
head in the master system which tends to limit the ben-
efit derived from the peripheral chip.

In the past, intelligent peripherals were designed to
handle very specialized tasks. Separate chips were de-
signed for communication disciplines, parallel I/O,
keyboard encoding, interval timing, CRT control, etc.
Yet, in spite of the large number of devices available
and the increased flexibility built into these chips, there
is still a large number of microcomputer peripheral
control tasks which are not satisfied.

With the introduction of the Universal Peripheral In-
terface (UPI) microcomputer, Intel has taken the intel-
ligent peripheral concept a step further by providing an
intelligent controller that is fully user programmable. It
is a complete single-chip microcomputer which can
connect directly to a master processor data bus. It has
the same advantages of intelligence and flexibility
which previous peripheral chips offered. In addition,
UPIs are user-programmable: it has 1K/2K bytes of
ROM or EPROM memory for program storage plus
64/128/256 bytes of RAM memory UPI-41A,
41AH/42, 42AH respectively for data storage or ini-
tialization from the master processor. The UPI device
allows a designer to fully specify his control algorithm
in the peripheral chip without relying on the master
processor. Devices like printer controllers and key-
board scanners can be completely self-contained, rely-
ing on the master processor only for data transfer.

The UPI family currently consists of seven compo-
nents:

8741A microcomputer with 1K EPROM memory

8741AH microcomputer with 1K OTP EPROM
memory

8041AH microcomputer with 1K ROM memory

8742 microcomputer with 2K EPROM memory

8742AH microcomputer with 2K ‘‘OTP’’ EPROM
memory

8042AH microcomputer with 2K ROM memory

8243 I/O expander device

The UPI-41A/41AH/42/42AH family of microcom-
puters are functionally equivalent except for the type
and amount of program memory available with each.
In addition, the UPI-41AH/42AH family has a Signa-
ture Row outside the EPROM Array. The UPI-41AH/
42AH family also has a Security Feature which renders
the EPROM Array unreadable when set.

1

UPI-41A/41AH/42/42AH USER’S MANUAL

All UPI’s have the following main features:

8-bit CPU

8-bit data bus interface registers

Interval timer/event counter

Two 8-bit TTL compatible I/O ports

Resident clock oscillator circuits

The UPI family has the following differences:

Table 1-2

UPI-41A UPI-42 UPI-41AH UPI-42AH

1K x 8 EPROM 2K x 8 EPROM 1K x 8 ROM 2K x 8 ROM

or 1K x 8 OTP or 2K x 8 OTP

64 x 8 RAM 128 x 8 RAM 128 x 8 RAM 256 x 8 RAM

*Set Security Feature

**Signature Row Feature

32 Bytes with:

1. Test Code/Checksum

2. Intel Signature

3. Security Byte

4. User Signature

PROGRAMMING

UPI-41A UPI-42 UPI-41AH/UPI-42AH

VDD e 25V 21V 12.5V

IDD e 50 ms 50 mA 30 mA

EA e 21.5V–24.5V 18V 12.5V

VPH e 21.5V–24.5V 18V 20.V–5.5V

TPW e 50 ms 50 ms 1 ms

PIN DESCRIPTION

UPI-41A/UPI-42 UPI-41AH/UPI-42AH

(T1) T1 functions as a test input which can be T1 functions as a test input that can be directly
directly tested using conditional branching tested using conditional branching instructions. It
instructions. It functions as the event timer input works as the event timer input under software
under software control. control. It is used during sync mode to reset the

instruction state to S1 and synchronize the
internal clock to phase 1.

(SS) Single step input used with the sync Single step input used with the sync output to
output to step the program through each step the program through each instruction.
instruction. This pin is used to put the device in sync mode by

applying a12.5V to it.

Port 1 (P10–P17): 8-bit, Quasi-Bidirectional I/O Port 1 (P10–P17): 8-bit, Quasi-Bidirectional I/O
Lines. Lines. P10–P17 access the Signature Row and

Security Bit.

NOTES:
*For a complete description of the Security Feature, refer to the UPI-41AH/42AH Datasheet.

**For a complete description of the Signature Row, refer to the UPI-41AH/42AH Datasheet.

2

UPI-41A/41AH/42/42AH USER’S MANUAL

HMOS processing has been applied to the UPI family
to allow for additional performance and memory capa-
bility while reducing costs. The UPI-41A/41AH/42/
42AH are all pin and software compatible. This allows
growth in present designs to incorporate new features
and add additional performance. For new designs, the
additional memory and performance of the UPI-
41A/41AH/42/42AH extends the UPI ‘grow your
own solution’ concept to more complex motor control
tasks, 80-column printers and process control applica-
tions as examples.

The 8243 device is an I/O multiplexer which allows
expansion of I/O to over 100 lines (if seven devices are
used). All three parts are fabricated with N-channel
MOS technology and require a single, 5V supply for
operation.

INTERFACE REGISTERS FOR MULTI-
PROCESSOR CONFIGURATIONS

In the normal configuration, the UPI-41A/41AH/42/
42AH interfaces to the system bus, just like any intelli-
gent peripheral device (see Figure 1-1). The host proc-
essor and the UPI-41A/41AH/42/42AH form a loose-
ly coupled multi-processor system, that is, communica-
tions between the two processors are direct. Common
resources are three addressable registers located physi-
cally on the UPI-41A/41AH/42/42AH. These reg-

isters are the Data Bus Buffer Input (DBBIN), Data
Bus Buffer Output (DBBOUT), and Status (STATUS)
registers. The host processor may read data from
DBBOUT or write commands and data into DBBIN.
The status of DBBOUT and DBBIN plus user-defined
status is supplied in STATUS. The host may read
STATUS at any time. An interrupt to the UPI proces-
sor is automatically generated (if enabled) when
DBBIN is loaded.

Because the UPI contains a complete microcomputer
with program memory, data memory, and CPU it can
function as a ‘‘Universal’’ controller. A designer can
program the UPI to control printers, tape transports, or
multiple serial communication channels. The UPI can
also handle off-line arithmetic processing, or any num-
ber of other low speed control tasks.

POWERFUL 8-BIT PROCESSOR

The UPI contains a powerful, 8-bit CPU with as fast as
1.2 msec cycle time and two single-level interrupts. Its
instruction set includes over 90 instructions for easy
software development. Most instructions are single byte
and single cycle and none are more than two bytes long.
The instruction set is optimized for bit manipulation
and I/O operations. Special instructions are included to
allow binary or BCD arithmetic operations, table look-
up routines, loop counters, and N-way branch routines.

231318–1

Figure 1-1. Interfacing Peripherals To Microcomputer Systems

3

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–49
8741A

Electrically
Programmable
Light Erasable

EPROM

231318–47

8741AH, 8742AH
Electrically

Programmed
OTP EPROM

231318–2

8041AH, 8042AH
Programmed

ROM

231318–3

D8742
Electrically

Programmable
Light Erasable

EPROM

Figure 1-2. Pin Compatible ROM/EPROM Versions

SPECIAL INSTRUCTION SET
FEATURES

For Loop Counters:
Decrement Register and Jump if not zero.

For Bit Manipulation:
AND to A (immediate data or Register)
OR to A (immediate data or Register)
XOR to A (immediate data or Register)
AND to Output Ports (Accumulator)
OR to Output Ports (Accumulator)
Jump Conditionally on any bit in A

For BDC Arithmetic:
Decimal Adjust A
Swap 4-bit Nibbles of A
Exchange lower nibbles of A and Register
Rotate A left or right with or without Carry

For Lookup Tables:
Load A from Page of ROM (Address in A)
Load A from Current Page of ROM
(Address in A)

231318–5

Figure 1-3. Interfaces and Protocols for Multiprocessor Systems

4

UPI-41A/41AH/42/42AH USER’S MANUAL

Features for Peripheral Control

The UPI 8-bit interval timer/event counter can be used
to generate complex timing sequences for control appli-
cations or it can count external events such as switch
closures and position encoder pulses. Software timing
loops can be simplified or eliminated by the interval
timer. If enabled, an interrupt to the CPU will occur
when the timer overflows.

The UPI I/O complement contains two TTL-compati-
ble 8-bit bidirectional I/O ports and two general-pur-
pose test inputs. Each of the 16 port lines can individu-
ally function as either input or output under software
control. Four of the port lines can also function as an
interface for the 8243 I/O expander which provides
four additional 4-bit ports that are directly addressable
by UPI software. The 8243 expander allows low cost
I/O expansion for large control applications while
maintaining easy and efficient software port addressing.

231318–4

Figure 1-4. 8243 I/O Expander Interface

On-Chip Memory

The UPI’s 64/128/256 bytes data memory include dual
working register banks and an 8-level program counter
stack. Switching between the register banks allows fast
response to interrupts. The stack is used to store return
addresses and processor status upon entering a subrou-
tine.

The UPI program memory is available in three types to
allow flexibility in moving from design to prototype to
production with the same PC layout. The 8741A/8742
device with EPROM memory is very economical for
initial system design and development. Its program
memory can be electrically programmed using the Intel
Universal PROM Programmer. When changes are
needed, the entire program can be erased using UV
lamp and reprogrammed in about 20 minutes. This
means the 8741A/8742 can be used as a single chip
‘‘breadboard’’ for very complex interface and control
problems. After the 8741A/8742 is programmed it can
be tested in the actual production level PC board and
the actual functional environment. Changes required
during system debugging can be made in the
8741A/8742 program much more easily than they
could be made in a random logic design. The system
configuration and PC layout can remain fixed during
the development process and the turn around time be-
tween changes can be reduced to a minimum.

At any point during the development cycle, the
8741A/8742 EPROM part can be replaced with the
low cost UPI-41AH/42AH respectively with factory
mask programmed memory or OTP EPROM. The
transition from system development to mass production
is made smoothly because the 8741A/8742, 8741AH
and 8041AH, 8742AH and 8042AH parts are com-
pletely pin compatible. This feature allows extensive
testing with the EPROM part, even into initial ship-
ments to customers. Yet, the transition to low-cost
ROMs or OTP EPROM is simplified to the point of
being merely a package substitution.

PREPROGRAMMED UPI’s

The 8242AH, 8292, and 8294 are 8042AH’s that are
programmed by Intel and sold as standard peripherals.
Intel offers a complete line of factory programmed key-
board controllers. These devices contain firmware de-
veloped by Phoenix Technologies Ltd. and Award Soft-
ware Inc. See Table 1-3 for a complete listing of Intels’
entire keyboard controller product line. The 8292 is a
GPIB controller, part of a three chip GPIB system.
The 8294 is a Data Encryption Unit that implements
the National Bureau of Standards data encryption algo-
rithm. These parts illustrate the great flexibility offered
by the UPI family.

5

UPI-41A/41AH/42/42AH USER’S MANUAL

Table 1-3. Keyboard Controller Family Product Selection Guide

UPI-42: The industry standard for desktop Keyboard Control.

Device Package ROM OTP Comments

8042 N, P 2K ROM Device

8242 N, P Phoenix firmware version 2.5

8242PC N, P Phoenix MultiKey/42 firmware, PS/2 style mouse support

8242WA N, P Award firmware version 3.57

8242WB N, P Award firmware version 4.14, PS/2 style mouse support

8742 N, P, D 2K Available as OTP (N, P) or EPROM (D)

UPI-C42: A low power CHMOS version of the UPI-42. The UPI-C42 doubles the user programmable memory size,
adds Auto A20 Gate support, includes Standby (**) and Suspend power down modes, and is available in a space
saving 44-lead QFP pkg.

Device Package ROM OTP Comments

80C42 N, P, S 4K ROM Device

82C42PC N, P, S Phoenix MultiKey/42 firmware, PS/2 style mouse support

82C42PD N, P, S Phoenix MultiKey/42L firmware, KBC and SCC for portable apps.

82C42PE N, P, S Phoenix MultiKey/42G firmware, Energy Efficient KBC solution

87C42 N, P, S 4K One Time Programmable Version

UPI-L42: The low voltage 3.3V version of the UPI-C42.

Device Package ROM OTP Comments

80L42 N, P, S 4K ROM Device

82L42PC N, P, S Phoenix MultiKey/42 firmware, PS/2 style mouse support

82L42PD N, P, S Phoenix MultiKey/42L firmware, KBC and SCC for portable apps.

87L42 N, P, S 4K One Time Programmable Version

NOTES:
N e 44 lead PLCC, P e 40 lead PDIP, S e 44 lead QFP, D e 40 lead CERDIP
KBC e Key Board Control, SCC e Scan Code Control
(**) Standby feature not supported on current (B-1) stepping

DEVELOPMENT SUPPORT

The UPI microcomputer is fully supported by Intel
with development tools like the UPP PROM program-
mer already mentioned. The combination of device fea-
tures and Intel development support make the UPI an
ideal component for low-speed peripheral control appli-
cations.

UPI DEVELOPMENT SUPPORT

8048/UPI-41A/41AH/42/42AH Assembler

Universal PROM Programmer UPP Series

Application Engineers

Training Courses

6

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 2
FUNCTIONAL DESCRIPTION

The UPI microcomputer is an intelligent peripheral
controller designed to operate in iAPX-86, 88, MCS-85,
MCS-80, MCS-51 and MCS-48 systems. The UPI’s ar-
chitecture, illustrated in Figure 2-1, is based on a low
cost, single-chip microcomputer with program memo-
ry, data memory, CPU, I/O, event timer and clock os-
cillator in a single 40-pin package. Special interface reg-
isters are included which enable the UPI to function as
a peripheral to an 8-bit master processor.

This chapter provides a basic description of the UPI
microcomputer and its system interface registers. Un-
less otherwise noted the descriptions in this section ap-
ply to the 8741AH, 8742AH with OTP EPROM mem-

ory, the 8741A/8742 (with UV erasable program mem-
ory) and the 8041AH, 8042AH. These devices are so
similar that they can be considered identical under
most circumstances. All functions described in this
chapter apply to the UPI-41A/41AH/42/42AH.

PIN DESCRIPTION

The UPI-41A/41AH/42/42AH are packaged in 40-pin
Dual In-Line (DIP) packages. The pin configuration
for both devices is shown in Figure 2-2. Figure 2-3 illus-
trates the UPI Logic Symbol.

231318–6

Figure 2-1. UPI-41A/41AH/42/42AH Single Chip Microcomputer

7

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–7

Figure 2-2. Pin Configuration

231318–8

Figure 2-3. Logic Symbol

8

UPI-41A/41AH/42/42AH USER’S MANUAL

The following section summarizes the functions of each UPI pin. NOTE that several pins have two or more
functions which are described in separate paragraphs.

Table 2-1. Pin Description

Symbol Pin No. Type Name and Function

D0–D7 12–19 I/O DATA BUS: Three-state, bidirectional DATA BUS BUFFER
(BUS) lines used to interface the UPI-41A/41AH/42/42AH

microcomputer to an 8-bit master system data bus.

P10–P17 27-34 I/O PORT 1: 8-bit, PORT 1 quasi-bidirectional I/O lines.

P20–P27 21-24 I/O PORT 2: 8-bit, PORT 2 quasi-bidirectional I/O lines. The lower
35–38 4 bits (P20–P23) interface directly to the 8243 I/O expander

device and contain address and data information during PORT
4–7 access. The upper 4 bits (P24–P27) can be programmed
to provide interrupt Request and DMA Handshake capability.
Software control can configure P24 as Output Buffer Full
(OBF) interrupt, P25 as Input Buffer Full (IBF) interrupt, P26 as
DMA Request (DRQ), and P27 as DMA
ACKnowledge (DACK).

WR 10 I WRITE: I/O write input which enables the master CPU to write
data and command words to the UPI INPUT DATA BUS
BUFFER.

RD 8 I READ: I/O read input which enables the master CPU to read
data and status words from the OUTPUT DATA BUS BUFFER
or status register.

CS 6 I CHIP SELECT: Chip select input used to select one UPI-
41A/41AH/42/42AH microcomputer out of several
connected to a common data bus.

A0 9 I COMMAND/DATA SELECT: Address input used by the
master processor to indicate whether byte transfer is data
(A0 e 0) or command (A0 e 1).

TEST 0, 1 I TEST INPUTS: Input pins can be directly tested using
TEST 1 39 conditional branch instructions.

FREQUENCY REFERENCE: TEST 1 (T1) also functions as
the event timer input (under software control). TEST0 (T0) is
used during PROM programming and verification in the UPI-
41A/41AH/42/42AH.

XTAL 1, 2 I INPUTS: Inputs for a crystal, LC or an external timing signal to
XTAL 2 3 determine the internal oscillator frequency.

SYNC 11 O OUTPUT CLOCK: Output signal which occurs once per UPI
instruction cycle. SYNC can be used as a strobe for external
circuitry; it is also used to synchronize single step operation.

EA 7 I EXTERNAL ACCESS: External access input which allows
emulation, testing and PROM/ROM verification.

PROG 25 I/O PROGRAM: Multifunction pin used as the program pulse input
during PROM programming.
During I/O expander access the PROG pin acts as an
address/data strobe to the 8243.

RESET 4 I RESET: Input used to reset status flip-flops and to set the
program counter to zero. RESET is also used during PROM
programming and verification.

SS 5 I SINGLE STEP: Single step input used in conjunction with the
SYNC output to step the program through each instruction.

VCC 40 POWER: a5V main power supply pin.

VDD 26 POWER: a5V during normal operation. a25V for UPI-41A,
21V for UPI-42 programming operation, a12V for
programming, UPI-41AH/42AH. Low power standby pin in
ROM version.

VSS 20 GROUND: Circuit ground potential.

9

UPI-41A/41AH/42/42AH USER’S MANUAL

The following sections provide a detailed functional de-
scription of the UPI microcomputer. Figure 2-4 illus-
trates the functional blocks within the UPI device.

CPU SECTION

The CPU section of the UPI-41A/41AH/42/42AH
microcomputer performs basic data manipulations and
controls data flow throughout the single chip computer
via the internal 8-bit data bus. The CPU section in-
cludes the following functional blocks shown in Figure
2-4:

Arithmetic Logic Unit (ALU)

Instruction Decoder

Accumulator

Flags

Arithmetic Logic Units (ALU)

The ALU is capable of performing the following opera-
tions:

ADD with or without carry

AND, OR, and EXCLUSIVE OR

Increment, Decrement

Bit complement

Rotate left or right

Swap

BCD decimal adjust

In a typical operation data from the accumulator is
combined in the ALU with data from some other
source on the UPI-41A/41AH/42/42AH internal bus
(such as a register or an I/O port). The result of an
ALU operation can be transferred to the internal bus or
back to the accumulator.

If an operation such as an ADD or ROTATE requires
more than 8 bits, the CARRY flag is used as an indica-
tor. Likewise, during decimal adjust and other BCD
operations the AUXILIARY CARRY flag can be set
and acted upon. These flags are part of the Program
Status Word (PSW).

Instruction Decoder

During an instruction fetch, the operation code (op-
code) portion of each program instruction is stored and
decoded by the instruction decoder. The decoder gener-
ates outputs used along with various timing signals to
control the functions performed in the ALU. Also, the
instruction decoder controls the source and destination
of ALU data.

Accumulator

The accumulator is the single most important register
in the processor. It is the primary source of data to the
ALU and is often the destination for results as well.
Data to and from the I/O ports and memory normally
passes through the accumulator.

231318–9

Figure 2-4. UPI-41A/41AH/42/42AH Block Diagram

10

UPI-41A/41AH/42/42AH USER’S MANUAL

PROGRAM MEMORY

The UPI-41A/41AH/42/42AH microcomputer has
1024, 2048 8-bit words of resident, read-only memory
for program storage. Each of these memory locations is
directly addressable by a 10-bit program counter. De-
pending on the type of application and the number of
program changes anticipated, three types of program
memory are available:

8041AH, 8042AH with mask programmed ROM
Memory

8741AH, 8742AH with electrically programmable
OTP EPROM Memory

8741A and 8742 with electrically programmable
EPROM Memory

A program memory map is illustrated in Figure 2-5.
Memory is divided into 256 location ‘pages’ and three
locations are reserved for special use:

231318–10

Figure 2-5. Program Memory Map

INTERRUPT VECTORS

1) Location 0

Following a RESET input to the processor, the next
instruction is automatically fetched from location 0.

2) Location 3

An interrupt generated by an Input Buffer Full
(IBF) condition (when the IBF interrupt is enabled)
causes the next instruction to be fetched from loca-
tion 3.

3) Location 7

A timer overflow interrupt (when enabled) will
cause the next instruction to be fetched from loca-
tion 7.

Following a system RESET, program execution begins
at location 0. Instructions in program memory are nor-
mally executed sequentially. Program control can be
transferred out of the main line of code by an input
buffer full (IBF) interrupt or a timer interrupt, or when
a jump or call instruction is encountered. An IBF inter-
rupt (if enabled) will automatically transfer control to
location 3 while a timer interrupt will transfer control
to location 7.

All conditional JUMP instructions and the indirect
JUMP instruction are limited in range to the current
256-location page (that is, they alter PC bits 0–7 only).
If a conditional JUMP or indirect JUMP begins in lo-
cation 255 of a page, it must reference a destination on
the following page.

Program memory can be used to store constants as well
as program instructions. The UPI-41AH, 42AH in-
struction set contains an instruction (MOVP3) de-
signed specifically for efficient transfer of look-up table
information from page 3 of memory.

DATA MEMORY

The UPI-41A has 64 8-bit words of Random Access
Memory, the UPI-41AH has 128 8-bit words of Ran-
dom Access Memory; the UPI-42 has 128 8-bit words
of RAM; and the UPI-42AH has 256 8-bit words of
RAM. This memory contains two working register
banks, an 8-level program counter stack and a scratch
pad memory, as shown in Figure 2-6. The amount of
scratch pad memory available is variable depending on
the number of addresses nested in the stack and the
number of working registers being used.

Addressing Data Memory

The first eight locations in RAM are designated as
working registers R0–R7. These locations (or registers)
can be addressed directly by specifying a register num-
ber in the instruction. Since these locations are easily
addressed, they are generally used to store frequently

11

UPI-41A/41AH/42/42AH USER’S MANUAL

accessed intermediate results. Other locations in data
memory are addressed indirectly by using R0 or R1 to
specify the desired address.

231318–11

Figure 2-6. Data Memory Map

Working Registers

Dual banks of eight working registers are included in
the UPI-41A/41AH/42/42AH data memory. Loca-
tions 0–7 make up register bank 0 and locations 24–13
form register bank 1. A RESET signal automatically
selects register bank 0. When bank 0 is selected, refer-
ences to R0–R7 in UPI-41A/41AH/42/42AH instruc-
tions operate on locations 0–7 in data memory. A ‘‘se-
lect register bank’’ instruction is used to selected be-
tween the banks during program execution. If the in-
struction SEL RB1 (Select Register Bank 1) is execut-
ed, then program references to R0–R7 will operate on
locations 24–31. As stated previously, registers 0 and 1
in the active register bank are used as indirect address
registers for all locations in data memory.

Register bank 1 is normally reserved for handling inter-
rupt service routines, thereby preserving the contents of
the main program registers. The SEL RB1 instruction
can be issued at the beginning of an interrupt service
routine. Then, upon return to the main program, an
RETR (return & restore status) instruction will auto-
matically restore the previously selected bank. During

interrupt processing, registers in bank 0 can be accessed
indirectly using R0Ê and R1Ê.

If register bank 1 is not used, registers 24–31 can still
serve as additional scratch pad memory.

Program Counter Stack

RAM locations 8–23 are used as an 8-level program
counter stack. When program control is temporarily
passed from the main program to a subroutine or inter-
rupt service routine, the 10-bit program counter and
bits 4–7 of the program status word (PSW) are stored
in two stack locations. When control is returned to the
main program via an RETR instruction, the program
counter and PSW bits 4–7 are restored. Returning via
an RET instruction does not restore the PSW bits,
however. The program counter stack is addressed by
three stack pointer bits in the PSW (bits 0–2). Opera-
tion of the program counter stack and the program
status word is explained in detail in the following sec-
tions.

The stack allows up to eight levels of subroutine ‘nest-
ing’; that is, a subroutine may call a second subroutine,
which may call a third, etc., up to eight levels. Unused
stack locations can be used as scratch pad memory.
Each unused level of subroutine nesting provides two
additional RAM locations for general use.

The following sections provide a detailed description of
the Program Counter Stack and the Program Status
Word.

PROGRAM COUNTER

The UPI-41A/41AH/42/42AH microcomputer has a
10-bit program counter (PC) which can directly ad-
dress any of the 1024, 2048, or 4096 locations in pro-
gram memory. The program counter always contains
the address of the next instruction to be executed and is
normally incremented sequentially for each instruction
to be executed when each instruction fetches occurs.

When control is temporarily passed from the main pro-
gram to a subroutine or an interrupt routine, however,
the PC contents must be altered to point to the address
of the desired routine. The stack is used to save the
current PC contents so that, at the end of the routine,
main program execution can continue. The program
counter is initialized to zero by a RESET signal.

PROGRAM COUNTER STACK

The Program Counter Stack is composed of 16 loca-
tions in Data Memory as illustrated in Figure 2-7.
These RAM locations (8 through 23) are used to store
the 10-bit program counter and 4 bits of the program
status word.

12

UPI-41A/41AH/42/42AH USER’S MANUAL

An interrupt or Call to a subroutine causes the contents
of the program counter to be stored in one of the 8
register pairs of the program counter stack.

DATA

STACK MEMORY

POINTER LOCATION

111
23

22

110
21

20

101
19

18

100
17

16

011
15

14

010
13

12

001
11

10

000
PSW(4–7) PC(8–9) 9

PC(4–7) PC(0–3) 8

MSB LSB

Figure 2-7. Program Counter Stack

A 3-bit Stack Pointer which is part of the Program
Status Word (PSW) determines the stack pair to be
used at a given time. The stack pointer is initialized by
a RESET signal to 00H which corresponds to RAM
locations 8 and 9.

The first call or interrupt results in the program coun-
ter and PSW contents being transferred to RAM loca-
tions 8 and 9 in the format shown in Figure 2-7. The
stack pointer is automatically incremented by 1 to point
to location is 10 and 11 in anticipation of another
CALL.

Nesting of subroutines within subroutines can continue
up to 8 levels without overflowing the stack. If overflow
does occur the deepest address stored (locations 8 and
9) will be overwritten and lost since the stack pointer
overflows from 07H to 00H. Likewise, the stack pointer
will underflow from 00H to 07H.

The end of a subroutine is signaled by a return instruc-
tion, either RET or RETR. Each instruction will auto-
matically decrement the Stack Pointer and transfer the
contents of the proper RAM register pair to the Pro-
gram Counter.

PROGRAM STATUS WORD

The 8-bit program status word illustrated in Figure 2-8
is used to store general information about program exe-
cution. In addition to the 3-bit Stack Pointer discussed
previously, the PSW includes the following flags:

CY Ð Carry

AC Ð Auxiliary Carry

F0 Ð Flag 0

BS Ð Register Bank Select

231318–12

Figure 2-8. Program Status Word

The Program Status Word (PSW) is actually a collec-
tion of flip-flops located throughout the machine which
are read or written as a whole. The PSW can be loaded
to or from the accumulator by the MOV A, PSW or
MOV PSW, A instructions. The ability to write directly
to the PSW allows easy restoration of machine status
after a power-down sequence.

The upper 4 bits of the PSW (bits 4, 5, 6, and 7) are
stored in the PC Stack with every subroutine CALL or
interrupt vector. Restoring the bits on a return is op-
tional. The bits are restored if an RETR instruction is
executed, but not if an RET is executed.

PSW bit definitions are as follows:

Bits 0–2 Stack Pointer Bits S0, S1, S2

Bit 3 Not Used

Bit 4 Working Register Bank
0 e Bank 0
1 e Bank 1

Bit 5 Flag 0 bit (F0)
This is a general purpose flag which can be cleared
or complemented and tested with conditional jump
instructions. It may be used during data transfer to
an external processor.

Bit 6 Auxiliary Carry (AC)
The flag status is determined by an ADD instruc-
tion and is used by the Decimal Adjustment instruc-
tion DAA

Bit 7 Carry (CY)
The flag indicates that a previous operation resulted
in overflow of the accumulator.

CONDITIONAL BRANCH LOGIC

Conditional Branch Logic in the UPI-41AH, 42AH al-
lows the status of various processor flags, inputs, and
other hardware functions to directly affect program ex-
ecution. The status is sampled in state 3 of the first
cycle.

13

UPI-41A/41AH/42/42AH USER’S MANUAL

Table 2-2 lists the internal conditions which are testable
and indicates the condition which will cause a jump. In
all cases, the destination address must be within the
page of program memory (256 locations) in which the
jump instruction occurs.

OSCILLATOR AND TIMING CIRCUITS

The UPI-41A/41AH/42/42AH’s internal timing gen-
eration is controlled by a self-contained oscillator and
timing circuit. A choice of crystal, L-C or external
clock can be used to derive the basic oscillator frequen-
cy.

The resident timing circuit consists of an oscillator, a
state counter and a cycle counter as illustrated in Fig-
ure 2-9. Figure 2-10 shows instruction cycle timing.

Oscillator

The on-board oscillator is a series resonant circuit with
a frequency range of 1 to 12.5 MHz depending on

which UPI is used. Refer to Table 1.1. Pins XTAL 1
and XTAL 2 are input and output (respectively) of a
high gain amplifier stage. A crystal or inductor and
capacitor connected between XTAL 1 and XTAL 2
provide the feedback and proper phase shift for oscilla-
tion. Recommended connections for crystal or L-C are
shown in Figure 2-11.

State Counter

The output of the oscillator is divided by 3 in the state
counter to generate a signal which defines the state
times of the machine.

Each instruction cycle consists of five states as illustrat-
ed in Figure 2-10 and Table 2-3. The overlap of address
and execution operations illustrated in Figure 2-10 al-
lows fast instruction execution.

Table 2-2. Conditional Branch Instructions

Device Instruction Mnemonic
Jump Condition

Jump if:

Accumulator JZ addr All bits zero
JNZ addr Any bit not zero

Accumulator bit JBb addr Bit ‘‘b’’ e 1
Carry flag JC addr Carry flag e 1

JNC addr Carry flag e 0
User flag JFO addr F0 flag e 1

JF1 addr F1 flag e 1
Timer flag JTF addr Timer flag e 1
Test Input 0 JT0 addr T0 e 1

JNT0 addr T0 e 0
Test Input 1 JT1 addr T1 e 1

JNT1 addr T1 e 0
Input Buffer flag JNIBF addr IBF flag e 0
Output Buffer flag JOBF addr OBF flag e 1

231318–13

231318–14

Figure 2-9. Oscillator Configuration Figure 2-10. Instruction Cycle Timing

14

UPI-41A/41AH/42/42AH USER’S MANUAL

Table 2-3. Instruction Timing Diagram

Instruction
CYCLE 1 CYCLE 2

S1 S2 S3 S4 S5 S1 S2 S3 S4 S5

IN A,Pp
Fetch Increment

Ð
Increment

Ð Ð
Read Port

Ð Ð Ð
Instruction Program Counter Timer

OUTL Pp,A
Fetch Increment

Ð
Increment Output

Ð Ð Ð Ð Ð
Instruction Program Counter Timer To Port

Fetch Increment
Ð

Increment Read Port Fetch
Ð

Increment Output
Ð

ANL Pp, DATA Instruction Program Timer Immediate Program To Port

Counter Data Counter

Fetch Increment
Ð

Increment Read Port Fetch
Ð

Increment Output
Ð

ORL Pp, DATA Instruction Program Timer Immediate Program To Port

Counter Data Counter

MOVD A,Pp
Fetch Increment Output Increment

Ð
Ð Read

Ð Ð Ð
Instruction Program Counter Opcode/Address Timer P2 Lower

MOVD Pp, A
Fetch Increment Output Increment Output Data

Ð Ð Ð Ð Ð
Instruction Program Counter Opcode/Address Timer To P2 Lower

D Pp, A
Fetch Increment Output Increment Output

Ð Ð Ð Ð Ð
Instruction Program Counter Opcode/Address Timer Data

ORLD Pp, A
Fetch Increment Output Increment Output

Ð Ð Ð Ð Ð
Instruction Program Counter Opcode/Address Timer Data

Fetch Increment Sample Increment
Ð

Fetch
Ð

Update
Ð Ð

J (Conditional) Instruction Program Counter Condition Timer Immediate Data Program

Counter

MOV STS, A
Fetch Increment

Ð
Increment Update

Instruction Program Counter Timer Status Register

IN A, DBB
Fetch Increment

Ð
Increment

Ð
Instruction Program Counter Timer

OUT DBB, A
Fetch Increment

Ð
Increment Output

Instruction Program Counter Timer To Port

STRT T Fetch Increment
Ð Ð

Start

STRT CNT Instruction Program Counter Counter

STOP TCNT
Fetch Increment

Ð Ð
Stop

Instruction Program Counter Counter

EN I
Fetch Increment

Ð
Enable

Ð
Instruction Program Counter Interrupt

DIS I
Fetch Increment

Ð
Disable

Ð
Instruction Program Counter Interrupt

EN DMA Fetch Increment
Ð

DMA Enabled
Ð

Instruction Program Counter DRQ Cleared

EN FLAGS
Fetch Increment

Ð
OBF, IBF

Ð
Instruction Program Counter Output Enabled

231318–48

231318–15

Figure 2-11. Recommended Crystal and L-C Connections

15

UPI-41A/41AH/42/42AH USER’S MANUAL

Cycle Counter

The output of the state counter is divided by 5 in the
cycle counter to generate a signal which defines a ma-
chine cycle. This signal is call SYNC and is available
continuously on the SYNC output pin. It can be used
to synchronize external circuitry or as a general pur-
pose clock output. It is also used for synchronizing sin-
gle-step.

Frequency Reference

The external crystal provides high speed and accurate
timing generation. A crystal frequency of 5.9904 MHz
is useful for generation of standard communication fre-
quencies by the UPI-41A/41AH/42/42AH. However,
if an accurate frequency reference and maximum proc-
essor speed are not required, an inductor and capacitor
may be used in place of the crystal as shown in Figure
2-11.

A recommended range of inductance and capacitance
combinations is given below:

L e 130 mH corresponds to 3 MHz

L e 45 mH corresponds to 5 MHz

An external clock signal can also be used as a frequency
reference to the UPI-41A/41AH/42/42AH; however,
the levels are not TTL compatible. The signal must be
in the 1–12.5 MHz frequency range depending on
which UPI is used. Refer to Table 1-2. The signal must
be connected to pins XTAL 1 and XTAL 2 by buffers
with a suitable pull-up resistor to guarantee that a logic
‘‘1’’ is above 3.8 volts. The recommended connection is
shown in Figure 2-12.

231318–16

Figure 2-12. Recommended Connection

For External Clock Signal

INTERVAL TIMER/EVENT COUNTER

The UPI-41A/41AH/42/42AH has a resident 8-bit
timer/counter which has several software selectable
modes of operation. As an interval timer, it can gener-
ate accurate delays from 80 microseconds to 20.48 mil-
liseconds without placing undue burden on the proces-
sor. In the counter mode, external events such as switch
closures or tachometer pulses can be counted and used
to direct program flow.

Timer Configuration

Figure 2-13 illustrates the basic timer/counter configu-
ration. An 8-bit register is used to count pulses from
either the internal clock and prescaler or from an exter-
nal source. The counter is presettable and readable with
two MOV instructions which transfer the contents of
the accumulator to the counter and vice-versa (i.e.
MOV T, A and MOV A, T). The counter is stopped by
a RESET or STOP TCNT instruction and remains
stopped until restarted either as a timer (START T in-
struction) or as a counter (START CNT instruction).
Once started, the counter will increment to its maxi-
mum count (FFH) and overflow to zero continuing its
count until stopped by a STOP TCNT instruction or
RESET.

The increment from maximum count to zero (overflow)
results in setting the Timer Flag (TF) and generating an
interrupt request. The state of the overflow flag is test-
able with the conditional jump instruction, JTF. The
flag is reset by executing a JTF or by a RESET signal.

The timer interrupt request is stored in a latch and
ORed with the input buffer full interrupt request. The
timer interrupt can be enabled or disabled independent
of the IBF interrupt by the EN TCNTI and DIS
TCTNI instructions. If enabled, the counter overflow
will cause a subroutine call to location 7 where the tim-
er service routine is stored. If the timer and Input Buff-
er Full interrupts occur simultaneously, the IBF source
will be recognized and the call will be to location 3.
Since the timer interrupt is latched, it will remain pend-
ing until the DBBIN register has been serviced and will
immediately be recognized upon return from the serv-
ice routine. A pending timer interrupt is reset by the
initiation of a timer interrupt service routine.

Event Counter Mode

The STRT CNT instruction connects the TEST 1 input
pin to the counter input and enables the counter. Note
this instruction does not clear the counter. The counter
is incremented on high to low transitions of the TEST 1
input. The TEST 1 input must remain high for a mini-
mum of one state in order to be registered (250 ns at
12 MHz). The maximum count frequency is one count
per three instruction cycles (267 kHz at 12 MHz).
There is no minimum frequency limit.

16

UPI-41A/41AH/42/42AH USER’S MANUAL

Timer Mode

The STRT T instruction connects the internal clock to
the counter input and enables the counter. The input
clock is derived from the SYNC signal of the internal
oscillator and the divide-by-32 prescaler. The configu-
ration is illustrated in Figure 2-13. Note this instruction
does not clear the timer register. Various delays and
timing sequences between 40 msec and 10.24 msec can
easily be generated with a minimum of software timing
loops (at 12 MHz).

Times longer than 10.24 msec can be accurately mea-
sured by accumulating multiple overflows in a register
under software control. For time resolution less than 40
msec, an external clock can be applied to the TEST 1
counter input (see Event Counter Mode). The mini-
mum time resolution with an external clock is 3.75
msec (267 kHz at 12 MHz).

TEST 1 Event Counter Input

The TEST 1 pin is multifunctional. It is automatically
initialized as a test input by a RESET signal and can be
tested using UPI-41A conditional branch instructions.

In the second mode of operation, illustrated in Figure
2-13, the TEST 1 pin is used as an input to the internal

8-bit event counter. The Start Counter (STRT CNT)
instruction controls an internal switch which connects
TEST 1 through an edge detector to the 8-bit internal
counter. Note that this instruction does not inhibit the
testing of TEST 1 via conditional Jump instructions.

In the counter mode the TEST 1 input is sampled once
per instruction cycle. After a high level is detected, the
next occurrence of a low level at TEST 1 will cause the
counter to increment by one.

The event counter functions can be stopped by the Stop
Timer/Counter (STOP TCNT) instruction. When this
instruction is executed the TEST 1 pin becomes a test
input and functions as previously described.

TEST INPUTS

There are two multifunction pins designated as Test
Inputs, TEST 0 and TEST 1. In the normal mode of
operation, status of each of these lines can be directly
tested using the following conditional Jump instruc-
tions:

JT0 Jump if TEST 0 e 1

JNT0 Jump if TEST 0 e 0

JT1 Jump if TEST 1 e 1

JNT1 Jump if TEST 1 e 0

231318–17

Figure 2-13. Timer Counter

17

UPI-41A/41AH/42/42AH USER’S MANUAL

The test imputs are TTL compatible. An external logic
signal connected to one of the test inputs will be sam-
pled at the time the appropriate conditional jump in-
struction is executed. The path of program execution
will be altered depending on the state of the external
signal when sampled.

INTERRUPTS

The UPI-41A/41AH/42/42AH has the following in-
ternal interrupts:

Input Buffer Full (IBF) interrupt

Timer Overflow interrupt

The IBF interrupt forces a CALL to location 3 in pro-
gram memory; a timer-overflow interrupts forces a
CALL to location 7. The IBF interrupt is enabled by
the EN I instruction and disabled by the DIS I instruc-
tion. The timer-overflow interrupt is enabled and dis-
abled by the EN TNCTI and DIS TCNTI instructions,
respectively.

Figure 2-14 illustrates the internal interrupt logic. An
IBF interrupt request is generated whenever WR and
CS are both low, regardless of whether interrupts are
enabled. The interrupt request is cleared upon entering
the IBF service routine only. That is, the DIS I instruc-
tion does not clear a pending IBF interrupt.

Interrupt Timing Latency

When the IBF interrupt is enabled and an IBF inter-
rupt request occurs, an interrupt sequence is intiated as
soon as the currently executing instruction is complet-
ed. The following sequence occurs:

A CALL to location 3 is forced.

The program counter and bits 4–7 of the Program
Status Word are stored in the stack.

The stack pointer is incremented.

231318–19

Figure 2-14. Interrupt Logic

18

UPI-41A/41AH/42/42AH USER’S MANUAL

Location 3 in program memory should contain an un-
conditional jump to the beginning of the IBF interrupt
service routine elsewhere in program memory. At the
end of the service routine, an RETR (Return and Re-
store Status) instruction is used to return control to the
main program. This instruction will restore the pro-
gram counter and PSW bits 4–7, providing automatic
restoration of the previously active register bank as
well. RETR also re-enables interrupts.

A timer-overflow interrupt is enabled by the EN
TCNTI instruction and disabled by the DIS TCNTI
instruction. If enabled, this interrupt occurs when the
timer/counter register overflows. A CALL to location
7 is forced and the interrupt routine proceeds as de-
scribed above.

The interrupt service latency is the sum of current in-
struction time, interrupt recognition time, and the in-
ternal call to the interrupt vector address. The worst
case latency time for servicing an interrupt is 7 clock
cycles. Best case latency is 4 clock cycles.

Interrupt Timing

Interrupt inputs may be enabled or disabled under pro-
gram control using EN I, DIS I, EN TCNTI and DIS
TCNTI instructions. Also, a RESET input will disable
interrupts. An interrupt request must be removed be-
fore the RETR instruction is executed to return from
the service routine, otherwise the processor will re-en-
ter the service routine immediately. Thus, the WR and
CS inputs should not be held low longer than the dura-
tion of the interrupt service routine.

The interrupt system is single level. Once an interrupt
is detected, all further interrupt requests are latched but
are not acted upon until execution of an RETR instruc-
tion re-enables the interrupt input logic. This occurs at
the beginning of the second cycle of the RETR instruc-
tion. If an IBF interrupt and a timer-overflow interrupt
occur simultaneously, the IBF interrupt will be recog-
nized first and the timer-overflow interrupt will remain
pending until the end of the interrupt service routine.

External Interrupts

An external interrupt can be created using the UPI-
41A/41AH/42/42AH timer/counter in the event
counter mode. The counter is first preset to FFH and
the EN TCNTI instruction is executed. A timer-over-
flow interrupt is generated by the first high to low tran-

sition of the TEST 1 input pin. Also, if an IBF interrupt
occurs during servicing of the timer/counter interrupt,
it will remain pending until the end of the service rou-
tine.

Host Interrupts And DMA

If needed, two external interrupts to the host system
can be created using the EN FLAGS instruction. This
instruction allocates two I/O lines on PORT 2 (P24 and
P25). P24 is the Output Buffer Full interrupt request
line to the host system; P25 is the Input Buffer empty
interrupt request line. These interrupt outputs reflect
the internal status of the OBF flag and the IBF inverted
flag. Note, these outputs may be inhibited by writing a
‘‘0’’ to these pins. Reenabling interrupts is done by
writing a ‘‘1’’ to these port pins. Interrupts are typically
enabled after power on since the I/O ports are set in a
‘‘1’’ condition. The EN FLAG’s effect is only cancelled
by a device RESET.

DMA handshaking controls are available from two
pins on PORT 2 of the UPI-41A/41AH/42/42AH mi-
crocomputer. These lines (P26 and P27) are enabled by
the EN DMA instruction. P26 becomes DMA request
(DRQ) and P27 becomes DMA acknowledge (DACK).
The UPI program initiates a DMA request by writing a
‘‘1’’ to P26. The DMA controller transfers the data into
the DBBIN data register using DACK which acts as a
chip select. The EN DMA instruction can only be can-
celled by a chip RESET.

RESET

The RESET input provides a means for internal initiali-
zation of the processor. An automatic initialization
pulse can be generated at power-on by simply connect-
ing a 1 mfd capacitor between the RESET input and
ground as shown in Figure 2-15. It has an internal
pull-up resistor to charge the capacitor and a Schmitt-
trigger circuit to generate a clean transition. A 2-stage
synchronizer has been added to support reliable opera-
tion up to 12.5 MHz.

If automatic initialization is used, RESET should be
held low for at least 10 milliseconds to allow the power
supply to stabilize. If an external RESET signal is used,
RESET may be held low for a minimum of 8 instruc-
tion cycles. Figure 2-15 illustrates a configuration using
an external TTL gate to generate the RESET input.
This configuration can be used to derive the RESET
signal from the 8224 clock generator in an 8080 system.

19

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–20

Figure 2-15. External Reset Configuration

The RESET input performs the following functions:

Disables Interrupts

Clears Program Counter to Zero

Clears Stack Pointer

Clears Status Register and Flags

Clears Timer and Timer Flag

Stops Timer

Selects Register Bank 0

Sets PORTS 1 and 2 to Input Mode

DATA BUS BUFFER

Two 8-bit data bus buffer registers, DBBIN and
DBBOUT, serve as temporary buffers for commands
and data flowing between it and the master processor.
Externally, data is transmitted or received by the DBB
registers upon execution of an INput or OUTput in-
struction by the master processor. Four control signals
are used:

A0 Address input signifying control or data

CS Chip Select

RD Read Strobe

WR Write Strobe

Transfer can be implemented with or without UPI pro-
gram interference by enabling or disabling an internal
UPI interrupt. Internally, data transfer between the
DBB and the UPI accumulator is under software con-

trol and is completely asynchronous to the external
processor timing. This allows the UPI software to han-
dle peripheral control tasks independent of the main
processor while still maintaining a data interface with
the master system.

Configuration

Figure 2-16 illustrates the internal configuration of the
DBB registers. Data is stored in two 8-bit buffer regis-
ters, DBBIN and DBBOUT. DBBIN and DBBOUT
may be accessed by the external processor using the
WR line and the RD line, respectively. The data bus is
a bidirectional, three-state bus which can be connected
directly to an 8-bit microprocessor system. Four con-
trol lines (WR, RD, CS, A0) are used by the external
processor to transfer data to and from the DBBIN and
DBBOUT registers.

An 8-bit register containing status flags is used to indi-
cate the status of the DBB registers. The eight status
flags are defined as follows:

OBF Output Buffer Full

This flag is automatically set when the UPI-Micro-
computer loads the DBBOUT register and is cleared
when the master processor reads the data register.

IBF Input Buffer Full

This flag is set when the master processor writes a
character to the DBBIN register and is cleared
when the UPI INputs the data register contents to
its accumulator.

20

UPI-41A/41AH/42/42AH USER’S MANUAL

UPI Bus Contents During Status Read

ST7 ST6 ST5 ST4 F1 F0 IBF 0BF

D7 D6 D5 D4 D3 D2 D1 D0

231318–21

Figure 2-16. Data Bus Buffer Configuration

F0
This is a general purpose flag which can be cleared
or toggled under UPI software control. The flag is
used to transfer UPI status information to the mas-
ter processor.

F1 Command/Data

This flag is set to the condition of the A0 input line
when the master processor writes a character to the
data register. The F1 flag can also be cleared or tog-
gled under UPI-Microcomputer program control.

ST4 through ST7

These bits are user defined status bits. They are de-
fined by the MOV STS,A instruction.

SYSTEM INTERFACE

Figure 2-17 illustrates how a UPI-Microcomputer can
be connected to a standard 8080-type bus system. Data
lines D0–D7 form a three-state, bidirectional port
which can be connected directly to the system data bus.
The UPI bus interface has sufficient drive capability
(400 mA) for small systems, however, a larger system
may require buffers.

Four control signals are required to handle the data
and status information transfer:

WR
I/O WRITE signal used to transfer data from the
system bus to the UPI DBBIN register and set the
F1 flag in the status register.

RD
I/O READ signal used to transfer data from the
DBBOUT register or status register to the system
data bus.

CS
CHIP SELECT signal used to enable one 8041AH
out of several connected to a common bus.

A0
Address input used to select either the 8-bit status
register or DBBOUT register during an I/O READ.
Also, the signal is used to set the F1 flag in the
status register during an I/O WRITE.

The WR and RD signals are active low and are stan-
dard MCS-80 peripheral control signals used to syn-
chronize data transfer between the system bus and pe-
ripheral devices.

The CS and A0 signals are decoded from the address
bus of the master system. In a system with few I/O
devices a linear addressing configuration can be used
where A0 and A1 lines are connected directly to A0 and
CS inputs (see Figure 2-17).

Data Read

Table 2-4 illustrates the relative timing of a DBBOUT
Read. When CS, A0, and RD are low, the contents of
the DBBOUT register is placed on the three-state Data
lines D0–D7 and the OBF flag is cleared.

The master processor uses CS, A0, WR, and RD to
control data transfer between the DBBOUT register
and the master system. The following operations are
under master processor control:

21

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–22

Figure 2-17. Interface to 8080 System Bus

Table 2-4. Data Transfer Controls

CS RD WR A0

0 0 1 0 Read DBBOUT register

0 0 1 1 Read STATUS register

0 1 0 0 Write DBBIN data register

0 1 0 1 Write DBBIN command register

1 x x x Disable DBB

Status Read

Table 2-4 shows the logic sequence required for a
STATUS register read. When CS and RD are low with
A0 high, the contents of the 8-bit status register appears
on Data lines D0–D7.

Data Write

Table 2-4 shows the sequence for writing information
to the DBBIN register. When CS and WR are low, the
contents of the system data bus is latched into DBBIN.
Also, the IBF flag is set and an interrupt is generated, if
enabled.

Command Write

During any write (Table 2-4), the state of the A0 input
is latched into the status register in the F1 (command/
data) flag location. This additional bit is used to signal
whether DBBIN contents are command (A0 e 1) or
data (A0 e 0) information.

INPUT/OUTPUT INTERFACE

The UPI-41A/41AH/42/42AH has 16 lines for input
and output functions. These I/O lines are grouped as
two 8-bit TTL compatible ports: PORTS 1 and 2. The
port lines can individually function as either inputs or
outputs under software control. In addition, the lower 4
lines of PORT 2 can be used to interface to an 8243 I/O
expander device to increase I/O capacity to 28 or more
lines. The additional lines are grouped as 4-bit ports:
PORTS 4, 5, 6, and 7.

PORTS 1 and 2

PORTS 1 and 2 are each 8 bits wide and have the same
I/O characteristics. Data written to these ports by an

22

UPI-41A/41AH/42/42AH USER’S MANUAL

OUTL Pp,A instruction is latched and remains un-
changed until it is rewritten. Input data is sampled at
the time the IN, A, Pp instruction is executed. There-
fore, input data must be present at the PORT until read
by an INput instruction. PORT 1 and 2 inputs are fully
TTL compatible and outputs will drive one standard
TTL load.

Circuit Configuration

The PORT 1 and 2 lines have a special output structure
(shown in Figure 2-18) that allows each line to serve as
an input, an output, or both, even though outputs are
statically latched.

Each line has a permanent high impedance pull-up (50
KX) which is sufficient to provide source current for a
TTL high level, yet can be pulled low by a standard
TTL gate drive. Whenever a ‘‘1’’ is written to a line, a
low impedance pull-up (250X) is switched in momen-
tarily (500 ns) to provide a fast transition from 0 to 1.
When a ‘‘0’’ is written to the line, a low impedance
pull-down (300X) is active to provide TTL current
sinking capability.

To use a particular PORT pin as an input, a logic ‘‘1’’
must first be written to that pin.

NOTE:

A RESET initializes all PORT pins to the high im-
pedance logic ‘‘1’’ state.

An external TTL device connected to the pin has suffi-
cient current sinking capability to pull-down the pin to
the low state. An IN A, Pp instruction will sample the
status of PORT pin and will input the proper logic
level. With no external input connected, the IN A,Pp
instruction inputs the previous output status.

This structure allows input and output information on
the same pin and also allows any mix of input and
output lines on the same port. However, when inputs
and outputs are mixed on one PORT, a PORT write
will cause the strong internal pull-ups to turn on at all
inputs. If a switch or other low impedance device is
connected to an input, a PORT write (‘‘1’’ to an input)
could cause current limits on internal lines to be ex-
ceeded. Figure 2-19 illustrates the recommended con-
nection when inputs and outputs are mixed on one
PORT.

The bidirectional port structure in combination with
the UPI-41A/41AH/42/42AH logical AND and OR
instructions provide an efficient means for handling sin-
gle line inputs and outputs within an 8-bit processor.

PORTS 4, 5, 6, and 7

By using an 8243 I/O expander, 16 additional I/O lines
can be connected to the UPI-41AH, 42AH and directly
addressed as 4-bit I/O ports using UPI-41AH, 42AH

231318–23

Figure 2-18. Quasi-Bidirectional Port Structure

23

UPI-41A/41AH/42/42AH USER’S MANUAL

instructions. This feature saves program space and de-
sign time, and improves the bit handling capability of
the UPI-41A/41AH/42/42AH.

The lower half of PORT 2 provides an interface to the
8243 as illustrated in Figure 2-20. The PROG pin is
used as a strobe to clock address and data information
via the PORT 2 interface. The extra 16 I/O lines are
referred to in UPI software as PORTS 4, 5, 6, and 7.
Each PORT can be directly addressed and can be
ANDed and ORed with an immediate data mask. Data
can be moved directly to the accumulator from the ex-
pander PORTS (or vice-versa).

The 8243 I/O ports, PORTS 4, 5, 6, and 7, provide
more drive capability than the UPI-41A/41AH/42/
42AH bidirectional ports. The 8243 output is capable
of driving about 5 standard TTL loads.

Multiple 8243’s can be connected to the PORT 2 inter-
face. In normal operation, only one of the 8243’s would
be active at the time an Input or Output command is
executed. The upper half of PORT 2 is used to provide
chip select signals to the 8043’s. Figure 2-21 shows how
four 8243’s could be connected. Software is needed to
select and set the proper PORT 2 pin before an INPUT
or OUTPUT command to PORTS 4–7 is executed. In
general, the software overhead required is very minor
compared to the added flexibility of having a large
number of I/O pins available.

231318–24

Figure 2-19. Recommended PORT Input Connections

24

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–25

231318–26

Figure 2-20. 8243 Expander Interface

231318–27

Figure 2-21. Multiple 8243 Expansion

25

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 3
INSTRUCTION SET

The UPI-41A/41AH/42/42AH Instruction Set is op-
code-compatible with the MCS-48 set except for the
elimination of external program and data memory in-
structions and the addition of the data bus buffer in-
structions. It is very straightforward and efficient in its
use of program memory. All instructions are either 1 or
2 bytes in length (over 70% are only 1 byte long) and
over half of the instructions execute in one machine
cycle. The remainder require only two cycles and in-
clude Branch, Immediate, and I/O operations.

The UPI-41A/41AH/42/42AH Instruction Set effi-
ciently handles the single-bit operations required in
control applications. Special instructions allow port bits
to be set or cleared individually. Also, any accumulator
bit can be directly tested via conditional branch instruc-
tions. Additional instructions are included to simplify
loop counters, table look-up routines and N-way
branch routines.

The UPI-41A/41AH/42/42AH Microcomputer han-
dles arithmetic operations in both binary and BCD for
efficient interface to peripherals such as keyboards and
displays.

The instruction set can be divided into the following
groups:

Data Moves

Accumulator Operations

Flags

Register Operations

Branch Instructions

Control

Timer Operations

Subroutines

Input/Output Instructions

Data Moves
(See Instruction Summary)

The 8-bit accumulator is the control point for all data
transfers within the UPI-41A/41AH/42/42AH. Data
can be transferred between the 8 registers of each work-
ing register bank and the accumulator directly (i.e.,
with a source or destination register specified by 3 bits
in the instruction). The remaining locations in the
RAM array are addressed either by R0 or R1 of the
active register bank. Transfers to and from RAM re-
quire one cycle.

Constants stored in Program Memory can be loaded
directly into the accumulator or the eight working reg-
isters. Data can also be transferred directly between the

accumulator and the on-board timer/counter, the
Status Register (STS), or the Program Status Word
(PSW). Transfers to the STS register alter bits 4–7
only. Transfers to the PSW alter machine status ac-
cordingly and provide a means of restoring status after
an interrupt or of altering the stack pointer if necessary.

Accumulator Operations

Immediate data, data memory, or the working registers
can be added (with or without carry) to the accumula-
tor. These sources can also be ANDed, ORed, or exclu-
sive ORed to the accumulator. Data may be moved to
or from the accumulator and working registers or data
memory. The two values can also be exchanged in a
single operation.

The lower 4 bits of the accumulator can be exchanged
with the lower 4 bits of any of the internal RAM loca-
tions. This operation, along with an instruction which
swaps the upper and lower 4-bit halves of the accumu-
lator, provides easy handling of BCD numbers and
other 4-bit quantities. To facilitate BCD arithmetic a
Decimal Adjust instruction is also included. This
instruction is used to correct the result of the binary
addition of two 2-digit BCD numbers. Performing a
decimal adjust on the result in the accumulator produc-
es the desired BCD result.

The accumulator can be incremented, decremented,
cleared, or complemented and can be rotated left or
right 1 bit at a time with or without carry.

A subtract operation can be easily implemented in UPI
software using three single-byte, single-cycle instruc-
tions. A value can be subtracted from the accumulator
by using the following instructions:

Complement the accumulator

Add the value to the accumulator

Complement the accumulator

Flags

There are four user accessible flags:

Carry

Auxiliary Carry

F0

F1

The Carry flag indicates overflow of the accumulator,
while the Auxiliary Carry flag indicates overflow be-
tween BCD digits and is used during decimal adjust

26

UPI-41A/41AH/42/42AH USER’S MANUAL

operations. Both Carry and Auxiliary Carry are part of
the Program Status Word (PSW) and are stored in the
stack during subroutine calls. The F0 and F1 flags are
general-purpose flags which can be cleared or comple-
mented by UPI instructions. F0 is accessible via the
Program Status Word and is stored in the stack with
the Carry flags. F1 reflects the condition of the A0 line,
and caution must be used when setting or clearing it.

Register Operations

The working registers can be accessed via the accumu-
lator as explained above, or they can be loaded with
immediate data constants from program memory. In
addition, they can be incremented or decremented di-
rectly, or they can be used as loop counters as explained
in the section on branch instructions.

Additional Data Memory locations can be accessed
with indirect instructions via R0 and R1.

Branch Instructions

The UPI-41A/41AH/42/42AH Instruction Set in-
cludes 17 jump instructions. The unconditional allows
jumps anywhere in the 1K words of program memory.
All other jump instructions are limited to the current
page (256 words) of program memory.

Conditional jump instructions can test the following in-
puts and maching flags:

TEST 0 input pin

TEST 1 input pin

Input Buffer Full flag

Output Buffer Full flag

Timer flag

Accumulator zero

Accumulator bit

Carry flag

F0 flag

F1 flag

The conditions tested by these instructions are the
instantaneous values at the time the conditional jump
instruction is executed. For instance, the jump on accu-
mulator zero instruction tests the accumulator itself,
not an intermediate flag.

The decrement register and jump if not zero (DJNZ)
instruction combines decrement and branch operations

in a single instruction which is useful in implementing a
loop counter. This instruction can designate any of the
8 working registers as a counter and can effect a branch
to any address within the current page of execution.

A special indirect jump instruction (JMPP @A) allows
the program to be vectored to any one of several differ-
ent locations based on the contents of the accumulator.
The contents of the accumulator point to a location in
program memory which contains the jump address. As
an example, this instruction could be used to vector to
any one of several routines based on an ASCII charac-
ter which has been loaded into the accumulator. In this
way, ASCII inputs can be used to initiate various rou-
tines.

Control

The UPI-41A/41AH/42/42AH Instruction Set has six
instructions for control of the DMA, interrupts, and
selection of working registers banks.

The UPI-41A/41AH/42/42AH provides two instruc-
tions for control of the external microcomputer system.
IBF and OBF flags can be routed to PORT 2 allowing
interrupts of the external processor. DMA handshaking
signals can also be enabled using lines from PORT 2.

The IBF interrupt can be enabled and disabled using
two instructions. Also, the interrupt is automatically
disabled following a RESET input or during an inter-
rupt service routine.

The working register bank switch instructions allow the
programmer to immediately substitute a second 8 regis-
ter bank for the one in use. This effectively provides
either 16 working registers or the means for quickly
saving the contents of the first 8 registers in response to
an interrupt. The user has the option of switching regis-
ter banks when an interrupt occurs. However, if the
banks are switched, the original bank will automatically
be restored upon execution of a return and restore
status (RETR) instruction at the end of the interrupt
service routine.

Timer

The 8-bit on-board timer/counter can be loaded or read
via the accumulator while the counter is stopped or
while counting.

The counter can be started as a timer with an internal
clock source or as an event counter or timer with an

27

UPI-41A/41AH/42/42AH USER’S MANUAL

external clock applied to the TEST 1 pin. The instruc-
tion executed determines which clock source is used. A
single instruction stops the counter whether it is operat-
ing with an internal or an external clock source. In
addition, two instructions allow the timer interrupt to
be enabled or disabled.

Subroutines

Subroutines are entered by executing a call instruction.
Calls can be made to any address in the 1K word pro-
gram memory. Two separate return instructions deter-
mine whether or not status (i.e., the upper 4 bits of the
PSW) is restored upon return from a subroutine.

Input/Output Instructions

Two 8-bit data bus buffer registers (DBBIN and
DBBOUT) and an 8-bit status register (STS) enable the
UPI-41A universal peripheral interface to communi-
cate with the external microcomputer system. Data can
be INputted from the DBBIN register to the accumula-
tor. Data can be OUTputted from the accumulator to
the DBBOUT register.

The STS register contains four user-definable bits
(ST4–ST7) plus four reserved status bits (IBF, OBF, F0
and F1). The user-definable bits are set from the accu-
mulator.

The UPI-41A/41AH/42/42AH peripheral interface
has two 8-bit static I/O ports which can be loaded to
and from the accumulator. Outputs are statically
latched but inputs to the ports are sampled at the time
an IN instruction is executed. In addition, immediate
data from program memory can be ANDed and ORed
directly to PORTS 1 and 2 with the result remaining on
the port. This allows ‘‘masks’’ stored in program mem-
ory to be used to set or reset individual bits on the I/O
ports. PORTS 1 and 2 are configured to allow input on
a given pin by first writing a ‘‘1’’ to the pin.

Four additional 4-bit ports are available through the
8243 I/O expander device. The 8243 interfaces to the

UPI-41A/41AH/42/42AH peripheral interface via
four PORT 2 lines which form an expander bus. The
8243 ports have their own AND and OR instructions
like the on-board ports, as well as move instructions to
transfer data in or out. The expander AND or OR in-
structions, however, combine the contents of the accu-
mulator with the selected port rather than with imme-
diate data as is done with the on-board ports.

INSTRUCTION SET DESCRIPTION

The following section provides a detailed description of
each UPI instruction and illustrates how the instruc-
tions are used.

For further information about programming the UPI,
consult the 8048/8041AH Assembly Language Manual.

Table 3-1. Symbols and Abbreviations Used

Symbol Definition

A Accumulator

C Carry

DBBIN Data Bus Buffer Input

DBBOUT Data Bus Buffer Output

F0, F1 FLAG 0, FLAG 1 (C/D flag)

I Interrupt

P Mnemonic for ‘‘in-page’’ operation

PC Program Counter

Pp Port designator (p e 1, 2, or 4–7)

PSW Program Status Word

Rr Register designator (r e 0–7)

SP Stack Pointer

STS Status register

T Timer

TF Timer Flag

T0, T1 TEST 0, TEST 1
Ý Immediate data prefix
@ Indirect address prefix

(()) Double parentheses show the effect of @,

that is @RO is shown as ((RO)).

() Contents of

28

UPI-41A/41AH/42/42AH USER’S MANUAL

Table 3-2. Instruction Set Summary

Mnemonic Description Bytes Cycle

ACCUMULATOR

ADD A, Rr Add register to A 1 1

ADD A, @Rr Add data memory to A 1 1

ADD A, Ýdata Add immediate to A 2 2

ADDC A, Rr Add register to A with carry 1 1

ADDC A, @Rr Add data memory to A

with carry 1 1

ADDC A, Add immediate to A
Ýdata with carry 2 2

ANL A, Rr And register to A 1 1

ANL A, @Rr And data memory to A 1 1

ANL A, Ýdata And immediate to A 2 2

ORL A, Rr Or register to A 1 1

ORL A, @Rr Or data memory to A 1 1

ORL A, Ýdata Or immediate to A 2 2

XRL A, Rr Exclusive Or

register to A 1 1

XRL A, @Rr Exclusive Or data

memory to A 1 1

XRL A, Ýdata Exclusive Or

immediate to A 2 2

INC A Increment A 1 1

DEC A Decrement A 1 1

CLR A Clear A 1 1

CPL A Complement A 1 1

DA A Decimal Adjust A 1 1

SWAP A Swap nibbles of A 1 1

RL A Rotate A left 1 1

RLC A Rotate A left

through carry 1 1

RR A Rotate A right 1 1

RRC A Rotate A right

through carry 1 1

INPUT/OUTPUT

IN A, Pp Input port to A 1 2

OUTL Pp, A Output A to port 1 2

ANL Pp, Ýdata And immediate to port 2 2

ORL Pp, Ýdata Or immediate to port 2 2

IN A,DBB Input DDB to A, clear IBF 1 1

OUT DBB, A Output A to DBB, Set OBF 1 1

MOV STS,A A4–A7 to bits 4–7 of status 1 1

MOVD A,Pp Input Expander port to A 1 2

MOVD Pp,A Output A to Expander port 1 2

ANLD Pp,A And A to Expander port 1 2

ORLD Pp,A Or A to Expander port 1 2

DATA MOVES

MOV A, Rr Move register to A 1 1

MOV A, @Rr Move data memory to A 1 1

MOV A, Ýdata Move immediate to A 2 2

MOV Rr, A Move A to register 1 1

MOV @Rr, A Move A to data memory 1 1

MOV Rr, Ýdata Move immediate to register 2 2

MOV @Rr, Move immediate to
Ýdata data memory 2 2

MOV A, PSW Move PSW to A 1 1

MOV PSW, A Move A to PSW 1 1

XCH A, Rr Exchange A and registers 1 1

XCH A, @Rr Exchange A and

data memory 1 1

XCHD A, Exchange digit of A
@Rr and register 1 1

Mnemonic Description Bytes Cycle

DATA MOVES (Continued)

MOVP A, @A Move to A from current

page 1 2

MOVP3 A, Move to A from page 3 1 2
@A

TIMER/COUNTER

MOV A,T Read Timer/Counter 1 1

MOV T,A Load Timer/Counter 1 1

STRT T Start Timer 1 1

STRT CNT Start Counter 1 1

STOP TCNT Stop Timer/Counter 1 1

EN TCNTI Enable Timer/Counter 1 1

DIS TCNTI Disable Timer/Counter 1 1

Interrupt

CONTROL

EN DMA Enable DMA Handshake

Lines 1 1

EN I Enable IBF interrupt 1 1

DIS I Disable IBF interrupt 1 1

EN FLAGS Enable Master Interrupts 1 1

SEL RB0 Select register bank 0 1 1

SEL RB1 Select register bank 1 1 1

NOP No Operation 1 1

REGISTERS

INC Rr Increment register 1 1

INC @Rr Increment data memory 1 1

DEC Rr Decrement register 1 1

SUBROUTINE

CALL addr Jump to subroutine 2 2

RET Return 1 2

RETR Return and restore status 1 2

FLAGS

CLR C Clear Carry 1 1

CPL C Complement Carry 1 1

CLR F0 Clear Flag 0 1 1

CPL F0 Complement Flag 0 1 1

CLR F1 Clear F1 Flag 1 1

CPL F1 Complement F1 Flag 1 1

BRANCH

JMP addr Jump unconditional 2 2

JMPP @A Jump indirect 1 2

DJNZ Rr, Decrement register

addr and jump on non-zero 2 2

JC addr Jump on Carry e 1 2 2

JNC addr Jump on Carry e 0 2 2

JZ addr Jump on A zero 2 2

JNZ addr Jump on A not zero 2 2

JT0 addr Jump on T0 e 1 2 2

JNT0 addr Jump on T0 e 0 2 2

JT1 addr Jump on T1 e 1 2 2

JNT1 addr Jump on T1 e 0 2 2

JF0 addr Jump on F0 Flag e 1 2 2

JF1 addr Jump on F1 Flag e 1 2 2

JTF addr Jump on Timer Flag e 1 2 2

JNIBF addr Jump on IBF Flag e 0 2 2

JOBF addr Jump on OBF Flag e 1 2 2

JBb addr Jump on Accumulator Bit 2 2

29

UPI-41A/41AH/42/42AH USER’S MANUAL

ALPHABETIC LISTING

ADD A,Rr Add Register Contents to Accumulator

Opcode: 0 1 1 0 1 r2 r1 r0

The contents of register ‘r’ are added to the accumulator. Carry is affected.
(A) w (A) a (Rr) r e 0–7

Example: ADDREG: ADD A,R6 ;ADD REG 6 CONTENTS
;TO ACC

ADD A,@Rr Add Data Memory Contents to Accumulator

Opcode: 0 1 1 0 0 0 0 r

The contents of the standard data memory location address by register ‘r’ bits 0–7 are added
to the accumulator. Carry is affected.

(A) w (A) a ((Rr)) r e 0–1

Example: ADDM: MOV RO,Ý47 ;MOVE 47 DECIMAL TO REG 0
ADD A,@RO ;ADD VALUE OF LOCATION

;47 TO ACC

ADD A,Ýdata Add Immediate Data to Accumulator

Opcode: 0 0 0 0 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. The specified data is added to the accumulator. Carry is affected.
(A) w (A) a data

Example: ADDID: ADD A,ÝADDER ;ADD VALUE OF SYMBOL
;ADDER’ TO ACC

ADDC A,Rr Add Carry and Register Contents to Accumulator

Opcode: 0 1 1 1 1 r2 r1 r0

The content of the carry bit is added to accumulator location 0. The contents of register ‘r’ are
then added to the accumulator. Carry is affected.
(A) w (A) a (Rr) a (C) r e 0–7

Example: ADDRGC: ADDC A,R4 ;ADD CARRY AND REG 4
;CONTENTS TO ACC

30

UPI-41A/41AH/42/42AH USER’S MANUAL

ADDC A,@Rr Add Carry and Data Memory Contents to Accumulator

Opcode: 0 1 1 1 0 0 0 r

The content of the carry bit is added to accumulator location 0. Then the contents of the
standard data memory location addressed by register ‘r’ bits 0–7 are added to the accumula-
tor. Carry is affected.
(A) w (A) a ((Rr)) a (C) r e 0–1

Example: ADDMC: MOV R1,Ý40 ;MOV ‘40’ DEC TO REG 1
ADDC A,@R1 ;ADD CARRY AND LOCATION 40

;CONTENTS TO ACC

ADDC A,Ýdata Add Carry and Immediate Data to Accumulator

Opcode: 0 0 0 1 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. The content of the carry bit is added to accumulator location 0.
Then the specified data is added to the accumulator. Carry is affected.
(A) w (A) a data a (C)

Example: ADDC A,Ý255 ;ADD CARRY AND ‘225’ DEC
;TO ACC

ANL A,Rr Logical AND Accumulator With Register Mask

Opcode: 0 1 0 1 1 r2 r1 r0

Data in the accumulator is logically ANDed with the mask contained in working register ‘r’.
(A) w (A) AND (Rr) r e 0–7

Example: ANDREG: ANL A,R3 ;‘AND’ ACC CONTENTS WITH MASK
;MASK IN REG 3

ANL A,@Rr Logical AND Accumulator With Memory Mask

Opcode: 0 1 0 1 0 0 0 r

Data in the accumulator is logically ANDed with the mask contained in the data memory
location referenced by register ‘r’, bits 0–7.
(A) w (A) AND ((Rr)) r e 0–1

Example: ANDDM: MOV R0,Ý0FFH MOV ‘FF’ HEX TO REG 0
ANL A,Ý0AFH ;‘AND’ ACC CONTENTS WITH

;MASK IN LOCATION 63

31

UPI-41A/41AH/42/42AH USER’S MANUAL

ANL A,Ýdata Logical AND Accumulator With Immediate Mask

Opcode: 0 1 0 1 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. Data in the accumulator is logically ANDed with an immediate-
ly-specified mask.
(A) w (A) AND data

Example: ANDID: ANL A,Ý0AFH ;‘AND’ ACC CONTENTS
;WITH MASK 10101111

ANL A,Ý3aX/Y ;‘AND’ ACC CONTENTS
;WITH VALUE OF EXP
‘3aX/Y’

ANL PP,Ýdata Logical AND PORT 1–2 With Immediate Mask

Opcode: 1 0 0 1 1 0 p1 p0 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. Data on the port ‘p’ is logically ANDed with an immediately-
specified mask.
(Pp) w (Pp) AND data p e 1–2

Note: Bits 0–1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary
rather than assembly language, the mapping is as follows:

Bits p1 p0 Port

0 0 X

0 1 1

1 0 2

1 1 X

Example: ANDP2: ANL P2,ÝOF0H ;‘AND’ PORT 2 CONTENTS
;WITH MASK‘F0’ HEX
;(CLEAR P20–23)

ANLD Pp,A Logical AND Port 4–7 With Accumulator Mask

Opcode: 1 0 0 1 1 1 p1 p0

This is a 2-cycle instruction. Data on port ‘p’ on the 8243 expander is logically ANDed with
the digit mask contained in accumulator bits 0–3.
(Pp) w (Pp) AND (A0–3) p e 4–7

Note: The mapping of Port ‘p’ to opcode bits p1, p0 is as follows:

P1 P0 Port

0 0 4

0 1 5

1 0 6

1 1 7

Example: ANDP4: ANLD P4,A ;‘AND’ PORT 4 CONTENTS
;WITH ACC BITS 0–3

32

UPI-41A/41AH/42/42AH USER’S MANUAL

CALL address Subroutine Call

Opcode: a10 a9 a8 1 0 1 0 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. The program counter and PSW bits 4–7 are saved in the stack.
The stack pointer (PSW bits 0–2) is updated. Program control is then passed to the location
specified by ‘address’.

Execution continues at the instruction following the CALL upon return from the subroutine.
((SP)) w (PC), (PSW4–7)
(SP) w (SP) a 1
(PC8–9) w (addr8–9)
(PC0–7) w (addr0–7)

Example: Add three groups of two numbers. Put subtotals in locations 50, 51 and total in location 52.
MOV R0,Ý50 ;MOVE ‘50’ DEC TO ADDRESS

;REG 0
BEGADD: MOV A,R1 ;MOVE CONTENTS OF REG 1

;TO ACC
ADD A,R2 ;ADD REG 2 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’
ADD A,R3 ;ADD REG 3 TO ACC
ADD A,R4 ;ADD REG 4 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’
ADD A,R5 ;ADD REG 5 TO ACC
ADD A,R6 ;ADD REG 6 TO ACC
CALL SUBTOT ;CALL SUBROUTINE ‘SUBTOT’

#

#

#
SUBTOT: MOV @R0,A ;MOVE CONTENTS OF ACC TO

;LOCATION ADDRESSED BY
;REG 0

INC R0 ;INCREMENT REG 0
RET ;RETURN TO MAIN PROGRAM

CLR A Clear Accumulator

Opcode: 0 0 1 0 0 1 1 1

The contents of the accumulator are cleared to zero.
(A) w 00H

CLR C Clear Carry Bit

Opcode: 1 0 0 1 0 1 1 1

During normal program execution, the carry bit can be set to one by the ADD, ADDC, RLC,
CPLC, RRC, and DAA instructions. This instruction resets the carry bit to zero.
(C) w 0

CLR F1 Clear Flag 1

Opcode: 1 0 1 0 0 1 0 1

The F1 flag is cleared to zero.
(F1) w 0

33

UPI-41A/41AH/42/42AH USER’S MANUAL

CLR F0 Clear Flag 0

Opcode: 1 0 0 0 0 1 0 1

F0 flag is cleared to zero.
(F0) w 0

CPL A Complement Accumulator

Opcode: 0 0 1 1 0 1 1 1

The contents of the accumulator are complemented. This is strictly a one’s complement. Each
one is changed to zero and vice-versa.
(A) w NOT (A)

Example: Assume accumulator contains 01101010.
CPLA: CPL A ;ACC CONTENTS ARE COMPLE-

;MENTED TO 10010101

CPL C Complement Carry Bit

Opcode: 1 0 1 0 0 1 1 1

The setting of the carry bit is complemented; one is changed to zero, and zero is changed to
one.
(C) w NOT (C)

Example: Set C to one; current setting is unknown.
CT01: CLR C ;C IS CLEARED TO ZERO

CPL C ;C IS SET TO ONE

CPL F0 COMPLEMENT FLAG 0

Opcode: 1 0 0 1 0 1 0 1

The setting of Flag 0 is complemented; one is changed to zero, and zero is changed to one.
F0 w NOT (F0)

CPL F1 Complement Flag 1

Opcode: 1 0 1 1 0 1 0 1

The setting of the F1 Flag is complemented; one is changed to zero, and zero is changed to
one.
(F1) w NOT (F1)

34

UPI-41A/41AH/42/42AH USER’S MANUAL

DA A Decimal Adjust Accumulator

Opcode: 0 1 0 1 0 1 1 1

The 8-bit accumulator value is adjusted to form two 4-bit Binary Coded Decimal (BCD) digits
following the binary addition of BCD numbers. The carry bit C is affected. If the contents of
bits 0–3 are greater than nine, or if AC is one, the accumulator is incremented by six.

The four high-order bits are then checked. If bits 4–7 exceed nine, or if C is one, these bits are
increased by six. If an overflow occurs, C is set to one; otherwise, it is cleared to zero.

Example: Assume accumulator contains 9AH.
DA A ;ACC ADJUSTED TO 01H with C set
C AC ACC
0 0 9AH INITIAL CONTENTS

06H ADD SIX TO LOW DIGIT
0 0 A1H

60H ADD SIX TO HIGH DIGIT

1 0 01H RESULT

DEC A Decrement Accumulator

Opcode: 0 0 0 0 0 1 1 1

The contents of the accumulator are decremented by one.
(A) w (A) b 1

Example: Decrement contents of data memory location 63.
MOV R0,Ý3FH ;MOVE ‘3F’ HEX TO REG 0
MOV A,@R0 ;MOVE CONTENTS OF LOCATION 63

;TO ACC
DEC A ;DECREMENT ACC
MOV @R0,A ;MOVE CONTENTS OF ACC TO

;LOCATION 63

DEC Rr Decrement Register

Opcode: 1 1 0 0 1 r2 r1 r0

The contents of working register ‘r’ are decremented by one.
(Rr) w (Rr) b 1 r e 0–7

Example: DECR1: DEC R1 ;DECREMENT ADDRESS REG 1

DIS I Disable IBF Interrupt

Opcode: 0 0 0 1 0 1 0 1

The input Buffer Full interrupt is disabled. The interrupt sequence is not initiated by WR and
CS, however, an IBF interrupt request is latched and remains pending until an EN I (enable
IBF interrupt) instruction is executed.

Note: The IBF flag is set and cleared independent of the IBF interrupt request so that handshaking
protocol can continue normally.

35

UPI-41A/41AH/42/42AH USER’S MANUAL

DIS TCNTI Disable Timer/Counter Interrupt

Opcode: 0 0 1 1 0 1 0 1

The timer/counter interrupt is disabled. Any pending timer interrupt request is cleared. The
interrupt sequence is not initiated by an overflow, but the timer flag is set and time accumula-
tion continues.

DJNZ Rr, address Decrement Register and Test

Opcode: 1 1 1 0 1 r2 r1 r0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Register ‘r’ is decremented and tested for zero. If the register
contains all zeros, program control falls through to the next instruction. If the register con-
tents are not zero, control jumps to the specified address within the current page.
(Rr) w (Rr) b 1
If R i 0, then;
(PC0–7) w addr

Note: A 10-bit address specification does not cause an error if the DJNZ instruction and the jump
target are on the same page. If the DJNZ instruction begins in location 255 of a page, it will
jump to a target address on the following page. Otherwise, it is limited to a jump within the
current page.

Example: Increment values in data memory locations 50–54.
MOV R0,Ý50 ;MOVE ‘50’ DEC TO ADDRESS

;REG 0
MOV R3,Ý05 ;MOVE ‘5’ DEC TO COUNTER

;REG 3
INCRT: INC @R0 ;INCREMENT CONTENTS OF

;LOCATION ADDRESSED BY
;REG 0

INC R0 ;INCREMENT ADDRESS IN REG 0
DJNZ R3,INCRT ;DECREMENT REG 3ÐÐJUMP TO

;‘INCRT’ IF REG 3 NONZERO
NEXTÐÐ ;‘NEXT’ ROUTINE EXECUTED

;IF R3 IS ZERO

EN DMA Enable DMA Handshake Lines

Opcode: 1 1 1 0 0 1 0 1

DMA handshaking is enabled using P26 as DMA request (DRQ) and P27 as DMA acknowl-
edge (DACK). The DACK lines forces CS and A0 low internally and clears DRQ.

EN FLAGS Enable Master Interrupts

Opcode: 1 1 1 1 0 1 0 1

The Output Buffer Full (OBF) and the Input Buffer Full (IBF) flags (IBF is inverted) are
routed to P24 and P25. For proper operation, a ‘‘1’’ should be written to P25 and P24 before the
EN FLAGS instruction. A ‘‘0’’ written to P24 or P25 disables the pin.

36

UPI-41A/41AH/42/42AH USER’S MANUAL

EN I Enable IBF Interrupt

Opcode: 0 0 0 0 0 1 0 1

The Input Buffer Full interrupt is enabled. A low signal on WR and CS initiates the interrupt
sequence.

EN TCNTI Enable Timer/Counter Interrupt

Opcode: 0 0 1 0 0 1 0 1

The timer/counter interrupt is enabled. An overflow of this register initiates the interrupt
sequence.

IN A,DBB Input Data Bus Buffer Contents to Accumulator

Opcode: 0 0 1 0 0 0 1 0

Data in the DBBIN register is transferred to the accumulator and the Input Buffer Full (IBF)
flag is set to zero.
(A) w (DBB)
(IBF) w 0

Example: INDBB: IN A,DBB ;INPUT DBBIN CONTENTS TO
;ACCUMULATOR

IN A,Pp Input Port 1–2 Data to Accumulator

Opcode: 0 0 0 0 1 0 p1 p0

This is a 2-cycle instruction. Data present on port ‘p’ is transferred (read) to the accumulator.
(A) w (Pp) p e 1–2 (see ANL instruction)

Example: INP 12: IN A,P1 ;INPUT PORT 1 CONTENTS
;TO ACC

MOV R6,A ;MOVE ACC CONTENTS TO
;REG 6

IN A,P2 ;INPUT PORT 2 CONTENTS
;TO ACC

MOV R7,A ;MOVE ACC CONTENTS TO REG 7

INC A Increment Accumulator

Opcode: 0 0 0 1 0 1 1 1

The contents of the accumulator are incremented by one.
(A) w (A) a 1

Example: Increment contents of location 10 in data memory.
INCA: MOV R0,Ý10 ;MOV ‘10’ DEC TO ADDRESS

;REG 0
MOV A,@R0 ;MOVE CONTENTS OF LOCATION

;10 TO ACC
INC A ;INCREMENT ACC
MOV @R0,A ;MOVE ACC CONTENTS TO

;LOCATION 10

37

UPI-41A/41AH/42/42AH USER’S MANUAL

INC Rr Increment Register

Opcode: 0 0 0 1 1 r2 r1 r0

The contents of working register ‘r’ are incremented by one.
(Rr) w (Rr) a 1 r e 0–7

Example: INCR0: INC R0 ;INCREMENT ADDRESS REG 0

INC @Rr Increment Data Memory Location

Opcode: 0 0 0 1 0 0 0 r

The contents of the resident data memory location addressed by register ‘r’ bits 0–7 are
incremented by one.
((Rr)) w ((Rr)) a 1 r e 0–1

Example: INCDM: MOV R1,ÝOFFH ;MOVE ONES TO REG 1
INC @R1 ;INCREMENT LOCATION 63

JBb address Jump If Accumulator Bit is Set

Opcode: b2 b1 b0 1 0 0 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if accumulator bit ‘b’ is set
to one.
(PC0–7) addr if b e 1
(PC) w (PC) a 2 if b e 0

Example: JB4IS1: JB4 NEXT ;JUMP TO ‘NEXT’ ROUTINE
;IF ACC BIT 4 e 1

JC address Jump If Carry Is Set

Opcode: 1 1 1 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is set to
one.
(PC0–7) w addr if C e 1
(PC) w (PC) a 2 if C e 0

Example: JC1: JC OVERFLOW ;JUMP TO ‘OVFLOW’ ROUTINE
;IF C e 1

JF0 address Jump If Flag 0 is Set

Opcode: 1 0 1 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if flag 0 is set to one.
(PC0–7) w addr if F0 e 1

Example: JF0IS1: JF0 TOTAL ;JUMP TO ‘TOTAL’ ROUTINE
;IF F0 e 1

38

UPI-41A/41AH/42/42AH USER’S MANUAL

JF1 address Jump If C/D Flag (F1) Is Set

Opcode: 0 1 1 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the C/D flag (F1) is set
to one.
(PC0–7) w addr if F1 e 1

Example: JF 1IS1: JF1 FILBUF ;JUMP TO ‘FILBUF’
;ROUTINE IF F1 e 1

JMP address Direct Jump Within 1K Block

Opcode: a10 a9 a8 0 0 1 0 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Bits 0–10 of the program counter are replaced with the directly-
specified address.
(PC8–10) w addr 8–10
(PC0–7) w addr 0–7

Example: JMP SUBTOT ;JUMP TO SUBROUTINE ‘SUBTOT’
JMP $–6 ;JUMP TO INSTRUCTION SIX LOCATIONS

;BEFORE CURRENT LOCATION
JMP 2FH ;JUMP TO ADDRESS ‘2F’ HEX

JMPP @A Indirect Jump Within Page

Opcode: 1 0 1 1 0 0 1 1

This is a 2-cycle instruction. The contents of the program memory location pointed to by the
accumulator are substituted for the ‘page’ portion of the program counter (PC 0–7).
(PC0–7) w ((A))

Example: Assume accumulator contains OFH
JMPPAG: JMPP @A ;JMP TO ADDRESS STORED IN

;LOCATION 15 IN CURRENT PAGE

JNC address Jump If Carry Is Not Set

Opcode: 1 1 1 0 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the carry bit is not set,
that is, equals zero.
(PC0–7) w addr if C e 0

Example: JC0: JNC NOVFLO ;JUMP TO ‘NOVFLO’ ROUTINE
;IF C e 0

JNIBF address Jump If Input Buffer Full Flag Is Low

Opcode: 1 1 0 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the Input Buffer Full
flag is low (IBF e 0).
(PC0–7) w addr if IBF e 0

Example: LOC 3:JNIBF LOC 3 ;JUMP TO SELF IF IBF e 0
;OTHERWISE CONTINUE

39

UPI-41A/41AH/42/42AH USER’S MANUAL

JNTO address Jump if TEST 0 is Low

Opcode: 0 0 1 0 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address, if the TEST 0 signal is
low. Pin is sampled during SYNC.
(PC0–7) w addr if T0 e 0

Example: JT0LOW: JNT0 60 ;JUMP TO LOCATION 60 DEC
;IF T0 e 0

JNT1 address Jump If TEST 1 is Low

Opcode: 0 1 0 0 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is low.
Pin is sampled during SYNC.
(PC0–7) w addr if T1 e 0

Example: JT1LOW: JNT1 OBBH ;JUMP TO LOCATION ‘BB’ HEX
;IF T1 e 0

JNZ address Jump If Accumulator Is Not Zero

Opcode: 1 0 0 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the accumulator con-
tents are nonzero at the time this instruction is executed.
(PC0–7) w addr if A i 0

Example: JACCNO: JNZ OABH ;JUMP TO LOCATION ‘AB’ HEX
;IF ACC VALUE IS NONZERO

JOBF Address Jump If Output Buffer Full Flag Is Set

Opcode: 1 0 0 0 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the Output Buffer Full
(OBF) flag is set (e 1) at the time this instruction is executed.
(PC0–7) w addr if OBF e 1

Example: JOBFHI: JOBF OAAH ;JUMP TO LOCATION ‘AA’ HEX
;IF OBF e 1

JTF address Jump If Timer Flag is Set

Opcode: 0 0 0 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the timer flag is set to
one, that is, the timer/counter register overflows to zero. The timer flag is cleared upon
execution of this instruction. (This overflow initiates an interrupt service sequence if the timer-
overflow interrupt is enabled.)
(PC0–7) w addr if TF e 1

Example: JTF1: JTF TIMER ;JUMP TO ‘TIMER’ ROUTINE
;IF TF e 1

40

UPI-41A/41AH/42/42AH USER’S MANUAL

JTO address Jump If TEST 0 Is High

Opcode: 0 0 1 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the TEST 0 signal is
high (e 1). Pin is sampled during SYNC.
(PC0–7) w addr if T0 e 1

Example: JT0HI: JT0 53 ;JUMP TO LOCATION 53 DEC
;IF T0 e 1

JT1 address Jump If TEST 1 Is High

Opcode: 0 1 0 1 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the TEST 1 signal is
high (e 1). Pin is sampled during SYNC.
(PC0–7) w addr if T1 e 1

Example: JT1HI: JT1 COUNT ;JUMP TO ‘COUNT’ ROUTINE
;IF T1 e 1

JZ address Jump If Accumulator Is Zero

Opcode: 1 1 0 0 0 1 1 0 # a7 a6 a5 a4 a3 a2 a1 a0

This is a 2-cycle instruction. Control passes to the specified address if the accumulator con-
tains all zeros at the time this instruction is executed.
(PC0–7) w addr if A e 0

Example: JACCO: JZ OA3H ;JUMP TO LOCATION ‘A3’ HEX
;IF ACC VALUE IS ZERO

MOV A,Ýdata Move Immediate Data to Accumulator

Opcode: 0 0 1 0 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. The 8-bit value spedified by ‘data’ is loaded in the accumulator.
(A) w data

Example: MOV A,ÝOA3H ;MOV ‘A3’ HEX TO ACC

MOV A,PSW Move PSW Contents to Accumulator

Opcode: 1 1 0 0 0 1 1 1

The contents of the program status word are moved to the accumulator.
(A) w (PSW)

Example: Jump to ‘RB1SET’ routine if bank switch, PSW bit 4, is set.
BSCHK: MOV A,PSW ;MOV PSW CONTENTS TO ACC

JB4 RB1 SET ;JUMP TO ‘RB1SET’ IF ACC
;BIT 4 e 1

41

UPI-41A/41AH/42/42AH USER’S MANUAL

MOV A,Rr Move Register Contents to Accumulator

Opcode: 1 1 1 1 1 r2 r1 r0

Eight bits of data are moved from working register ‘r’ into the accumulator.
(A) w (Rr) r e 0–7

Example: MAR: MOV A,R3 ;MOVE CONTENTS OF REG 3
;TO ACC

MOV A,@Rr Move Data Memory Contents to Accumulator

Opcode: 1 1 1 1 0 0 0 r

The contents of the data memory location addressed by bits 0–7 of register ‘r’ are moved to
the accumulator. Register ‘r’ contents are unaffected.
(A) w ((Rr)) r e 0–1

Example: Assume R1 contains 00110110.
MADM: MOV A,@R1 ;MOVE CONTENTS OF DATA MEM

;LOCATION 54 TO ACC

MOV A,T Move Timer/Counter Contents to Accumulator

Opcode: 0 1 0 0 0 0 1 0

The contents of the timer/event-counter register are moved to the accumulator. The timer/
event-counter is not stopped.
(A) w (T)

Example: Jump to ‘‘Exit’’ routine when timer reaches ‘64’, that is, when bit 6 is setÐassuming initializa-
tion to zero.
TIMCHK: MOV A,T ;MOVE TIMER CONTENTS TO

;ACC
JB6 EXIT ;JUMP TO ‘EXIT’ IF ACC BIT

;6 e 1

MOV PSW,A Move Accumulator Contents to PSW

Opcode: 1 1 0 1 0 1 1 1

The contents of the accumulator are moved into the program status word. All condition bits
and the stack pointer are affected by this move.
(PSW) w (A)

Example: Move up stack pointer by two memory locations, that is, increment the pointer by one.
INCPTR: MOV A,PSW ;MOVE PSW CONTENTS TO ACC

INC A ;INCREMENT ACC BY ONE
MOV PSW,A ;MOVE ACC CONTENTS TO PSW

42

UPI-41A/41AH/42/42AH USER’S MANUAL

MOV Rr,A Move Accumulator Contents to Register

Opcode: 1 0 1 0 1 r2 r1 r0

The contents of the accumulator are moved to register ‘r’
(Rr) w (A) r e 0–7

Example: MRA MOV R0,A ;MOVE CONTENTS OF ACC TO
;REG 0

MOV Rr,Ýdata Move Immediate Data to Register

Opcode: 1 0 1 1 1 r2 r1 r0 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to register ‘r’.
(Rr) w data r e 0–7

Example: MIR4: MOV R4,ÝHEXTEN ;THE VALUE OF THE SYMBOL
;‘HEXTEN’ IS MOVED INTO
;REG 4

MIR5: MOV R5,ÝPI*(R*R) ;THE VAUE OF THE
;EXPRESSION ‘PI*(R*R)’
;IS MOVED INTO REG 5

MIR6: MOV R6,ÝOADH ;‘AD’ HEX IS MOVED INTO
REG 6

MOV @Rr,A Move Accumulator Contents to Data Memory

Opcode: 1 0 1 0 0 0 0 r

The contents of the accumulator are moved to the data memory location whose address is
specified by bits 0–7 of register ‘r’. Register ‘r’ contents are unaffected.
((Rr)) w (A) r e 0–1

Example: Assume R0 contains 11000111.
MDMA: MOV @R,A ;MOVE CONTENTS OF ACC TO

;LOCATION 7 (REG)

MOV @Rr,Ýdata Move Immediate Data to Data Memory

Opcode: 1 0 1 1 0 0 0 r # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. The 8-bit value specified by ‘data’ is moved to the standard data
memory location addressed by register ‘r’, bit 0–7.

Example: Move the hexadecimal value AC3F to locations 62–63.
MIDM: MOV R0,Ý62 ;MOVE ‘62’ DEC TO ADDR REG0

MOV @RO,ÝOACH ;MOVE ‘AC’ HEX TO LOCATION 62
INC R0 ;INCREMENT REG 0 TO ‘63’
MOV @R0,Ý3FH ;MOVE ‘3F’ HEX TO LOCATION 63

43

UPI-41A/41AH/42/42AH USER’S MANUAL

MOV STS,A Move Accumulator Contents to STS Register

Opcode: 1 0 0 1 0 0 0 0

The contents of the accumulator are moved into the status register. Only bits 4–7 are affected.
(STS4–7) w (A4–7)

Example: Set ST4–ST7 to ‘‘1’’.
MSTS: MOV A,Ý0F0H ;SET ACC

MOV STS,A ;MOVE TO STS

MOV T,A Move Accumulator Contents to Timer/Counter

Opcode: 0 1 1 0 0 0 1 0

The contents of the accumulator are moved to the timer/event-counter register.
(T) w (A)

Example: Initialize and start event counter.

INITEC: CLR A ;CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO EVENT COUNTER
STRT CNT ;START COUNTER

MOVD A,Pp Move Port 4–7 Data to Accumulator

Opcode: 0 0 0 0 1 1 p1 p0

This is a 2-cycle instruction. Data on 8243 port ‘p’ is moved (read) to accumulator bits 0–3.
Accumulator bits 4–7 are zeroed.
(A0–3) wPp p e 4–7
(A4–7) w0

Note: Bits 0–1 of the opcode are used to represent PORTS 4–7. If you are coding in binary rather
than assembly language, the mapping is as follows:

Bits
Port

p1 p0

0 0 4

0 1 5

1 0 6

1 1 7

Example: INPPT5: MOVD A,P5 ;MOVE PORT 5 DATA TO ACC
;BITS 0–3, ZERO ACC BITS 4–7

MOVD Pp,A Move Accumulator Data to Port 4, 5, 6 and 7

Opcode: 0 0 1 1 1 1 p1 p0

This is a 2-cycle instruction. Data in accumulator bits 0–3 is moved (written) to 8243 port ‘p’.
Accumulator bits 4–7 are unaffected. (See NOTE above regarding port mapping.)

Example: Move data in accumulator to ports 4 and 5.
OUTP45: MOVD P4,A ;MOVE ACC BITS 0–3 TO PORT 4

SWAP A ;EXCHANGE ACC BITS 0–3 AND 4–7
MOVD P5,A ;MOVE ACC BITS 0–3 TO PORT 5

44

UPI-41A/41AH/42/42AH USER’S MANUAL

MOVP A,@A Move Current Page Data to Accumulator

Opcode: 1 0 1 0 0 0 1 1

This is a 2-cycle instruction. The contents of the program memory location addressed by the
accumulator are moved to the accumulator. Only bits 0–7 of the program counter are affected,
limiting the program memory reference to the current page. The program counter is restored
following this operation.
(A) w ((A))

Note: This a 1-byte, 2-cycle instruction. If it appears in location 255 of a program memory page, @A
addresses a location in the following page.

Example: MOV128: MOV A,Ý128 ;MOVE ‘128’ DEC TO ACC
MOVP A,@A ;CONTENTS OF 129TH LOCATION

;IN CURRENT PAGE ARE MOVED TO
;ACC

MOVP3 A,@A Move Page 3 Data to Accumulator

Opcode: 1 1 1 0 0 0 1 1

This is a 2-cycle instruction. The contents of the program memory location within page 3,
addressed by the accumulator, are moved to the accumulator. The program counter is restored
following this operation.
(A) w ((A)) within page 3

Example: Look up ASCII equivalent of hexadecimal code in table contained at the beginning of page 3.
Note that ASCII characters are designated by a 7-bit code; the eighth bit is always reset.
TABSCH: MOV A,ÝOB8H ;MOVE ‘B8’ HEX TO ACC (10111000)

ANL A,Ý7FH ;LOGICAL AND ACC TO MASK BIT
;7 (00111000)

MOVP3, A,@A ;MOVE CONTENTS OF LOCATION
;‘38’ HEX IN PAGE 3 TO ACC
;(ASCII ‘8’)

Access contents of location in page 3 labelled TAB1. Assume current program location is not
in page 3.
TABSCH: MOV A,ÝTAB1 ;ISOLATE BITS 0–7

;OF LABEL
;ADDRESS VALUE

MOVP3 A,@A ;MOVE CONTENT OF PAGE 3
;LOCATION LABELED ‘TAB1’
;TO ACC

NOP The NOP Instruction

Opcode: 0 0 0 0 0 0 0 0

No operation is performed. Execution continues with the following instruction.

ORL A,Rr Logical OR Accumulator With Register Mask

Opcode: 0 1 0 0 1 r2 r1 r0

Data in the accumulator is logically ORed with the mask contained in working register ‘r’.
(A) w (A) OR (Rr) r e 0–7

Example: ORREG: ORL A,R4 ;‘OR’ ACC CONTENTS WITH
;MASK IN REG 4

45

UPI-41A/41AH/42/42AH USER’S MANUAL

ORL A,@Rr Logical OR Accumulator With Memory Mask

Opcode: 0 1 0 0 0 0 0 r

Data in the accumulator is logically ORed with the mask contained in the data memory
location referenced by register ‘r’, bits 0–7.
(A) w (A) OR ((Rr)) r e 0–1

Example: ORDM: MOVE R0,Ý3FH ;MOVE ‘3F’ HEX TO REG 0
ORL A, @R0 ;‘OR’ ACC CONTENTS WITH MASK

;IN LOCATION 63

ORL A,ÝData Logical OR Accumulator With Immediate Mask

Opcode: 0 1 0 0 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. Data in the accumulator is logically ORed with an immediately-
specified mask.
(A) w (A) OR data

Example: ORID: ORL A,Ý‘X’ ;‘OR’ ACC CONTENTS WITH MASK
;01011000 (ASCII VALUE OF ‘X’)

ORL Pp,Ýdata Logical OR Port 1–2 With Immediate Mask

Opcode: 1 0 0 0 1 0 p1 p0 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. Data on port ‘p’ is logically ORed with an immediately-specified
mask.
(Pp) w (Pp) OR data p e 1–2 (see OUTL instruction)

Example: ORP1: ORL P1,ÝOFH ;‘OR’ PORT 1 CONTENTS WITH
;MASK ‘FF’ HEX (SET PORT 1
‘TO ALL ONES)

ORLD Pp,A Logical OR Port 4–7 With Accumulator Mask

Opcode: 1 0 0 0 1 1 p1 p0

This is a 2-cycle instruction. Data on 8243 port ‘p’ is logically ORed with the digit mask
contained in accumulator bits 0–3,
(Pp) (Pp) OR (A0–3) p e 4–7 (See MOVD instruction)

Example: ORP7; ORLD P7,A ;‘OR’ PORT 7 CONTENTS
;WITH ACC BITS 0–3

OUT DBB,A Output Accumulator Contents to Data Bus Buffer

Opcode: 0 0 0 0 0 0 1 0

Contents of the accumulator are transferred to the Data Bus Buffer Output register and the
Output Buffer Full (OBF) flag is set to one.
(DBB) w (A)
OBF w 1

Example: OUTDBB: OUT DBB,A ;OUTPUT THE CONTENTS OF
;THE ACC TO DBBOUT

46

UPI-41A/41AH/42/42AH USER’S MANUAL

OUTL Pp,A Output Accumulator Data to Port 1 and 2

Opcode: 0 0 1 1 1 0 p1 p0

This is a 2-cycle instruction. Data residing in the accumulator is transferred (written) to port
‘p’ and latched.
(Pp) w (A) P e 1–2

Note: Bits 0–1 of the opcode are used to represent PORT 1 and PORT 2. If you are coding in binary
rather than assembly language, the mapping is as follows:

Bits
Port

p1 p0

0 0 X

0 1 1

1 0 2

1 1 X

Example: OUTLP; MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
OUTL P2,A ;OUTPUT ACC CONTENTS TO PORT2
MOV A,R6 ;MOVE REG 6 CONTENTS TO ACC
OUTL P1,A ;OUTPUT ACC CONTENTS TO PORT 1

RET Return Without PSW Restore

Opcode: 1 0 0 0 0 0 1 1

This is a 2-cycle instruction. The stack pointer (PSW bits 0–2 is decremented. The program
counter is then restored from the stack. PSW bits 4–7 are not restored.
(SP) w (SP) b 1
(PC) w ((SP))

RETR Return With PSW Restore

Opcode: 1 0 0 1 0 0 1 1

This is a 2-cycle instruction. The stack pointer is decremented. The program counter and bits
4–7 of the PSW are then restored from the stack. Note that RETR should be used to return
from an interrupt, but should not be used within the interrupt service routine as it signals the
end of an interrupt routine.
(SP) w (SP) b 1
(PC) w ((SP))
(PSW4–7) w ((SP))

RL A Rotate Left Without Carry

Opcode: 1 1 1 0 0 1 1 1

The contents of the accumulator are rotated left one bit. Bit 7 is rotated into the bit 0 position.
(Ana1) w (An) n e 0–6
(A0) w (A7)

Example: Assume accumulator contains 10110001.
RLNC: RL A ;NEW ACC CONTENTS ARE 01100011

47

UPI-41A/41AH/42/42AH USER’S MANUAL

RLC A Rotate Left Through Carry

Opcode: 1 1 1 1 0 1 1 1

The contents of the accumulator are rotated left one bit. Bit 7 replaces the carry bit; the carry
bit is rotated into the bit 0 position.
(Ana1) w (An) n e 0–6
(A0) w (C)
(C) w (A7)

Example: Assume accumulator contains a ‘signed’ number; isolate sign without changing value.
RLTC: CLR C ;CLEAR CARRY TO ZERO

RLC A ;ROTATE ACC LEFT, SIGN
;BIT (7) IS PLACED IN CARRY

RR A ;ROTATE ACC RIGHTÐVALUE
;(BITS 0–6) IS RESTORED,
;CARRY UNCHANGED, BIT 7
;IS ZERO

RR A Rotate Right Without Carry

Opcode: 0 1 1 1 0 1 1 1

The contents of the accumulator are rotated right one bit. Bit 0 is rotated into the bit 7
position.
(A) w (An a 1) n e 0–6
(A7) w (A0)

Example Assume accumulator contains 10110001.
RRNC: RRA ;NEW ACC CONTENTS ARE 11011000

RRC A Rotate Right Through Carry

Opcode: 0 1 1 0 0 1 1 1

The contents of the accumulator are rotated one bit. Bit 0 replaces the carry bit; the carry bit is
rotated into the bit 7 position.
(An) w (An a 1) n e 0–6
(A7) w (C)
(C) w (A0)

Example Assume carry is not set and accumulator contains 10110001.
RRTC: RRCA ;CARRY IS SET AND ACC

;CONTAINS 01011000

48

UPI-41A/41AH/42/42AH USER’S MANUAL

SEL RB0 Select Register Bank 0

Opcode: 1 1 0 0 0 1 0 1

PSW BIT 4 is set to zero. References to working registers 0–7 address data memory locations
0–7. This is the recommended setting for normal program execution.
(BS) w 0

SEL RB1 Select Register Bank 1

Opcode: 1 1 0 1 0 1 0 1

PSW bit 4 is set to one. References to working registers 0–7 address data memory locations
24–31. This is the recommended setting for interrupt service routines, since locations 0–7 are
left intact. The setting of PSW bit 4 in effect at the time of an interrupt is restored by the
RETR instruction when the interrupt service routine is completed.

Example: Assume an IBF interrupt has occurred, control has passed to program memory location 3, and
PSW bit 4 was zero before the interrupt.
LOC3: JMP INIT ;JUMP TO ROUTINE ‘INIT’

.

.

.
INIT: MOV R7,A ;MOV ACC CONTENTS TO

;LOCATION 7
SEL RB1 ;SELECT REG BANK 1
MOV R7,ÝOFAH ;MOVE ‘FA’ HEX TO LOCATION 31

.

.

.
SEL RB0 ;SELECT REG BANK 0
MOV A,R7 ;RESTORE ACC FROM LOCATION 7
RETR ;RETURNÐÐRESTORE PC AND PSW

49

UPI-41A/41AH/42/42AH USER’S MANUAL

STOP TCNT Stop Timer/Event Counter

Opcode: 0 1 1 0 0 1 0 1

This instruction is used to stop both time accumulation and event counting.

Example: Disable interrupt, but jump to interrupt routine after eight overflows and stop timer. Count
overflows in register 7.
START: DIS TCNTI ;DISABLE TIMER INTERRUPT

CLR A ;CLEAR ACC TO ZERO
MOV T,A ;MOV ZERO TO TIMER
MOV R7,A ;MOVE ZERO TO REG 7
STRT T ;START TIMER

MAIN: JTF COUNT ;JUMP TO ROUTINE ‘COUNT’
;IF TF e 1 AND CLEAR TIMER FLAG

JMP MAIN ;CLOSE LOOP
COUNT: INC R7 ;INCREMENT REG 7

MOV A,R7 ;MOVE REG 7 CONTENTS TO ACC
JB3 INT ;JUMP TO ROUTINE ‘INT’ IF ACC

;BIT 3 IS SET (REG 7 e 8)
JMP MAIN ;OTHERWISE RETURN TO ROUTINE

;MAIN
.
.
.

INT: STOP TCNT ;STOP TIMER
JMP 7H ;JUMP TO LOCATION 7 (TIMER

;INTERRUPT ROUTINE)

STRT CNT Start Event Counter

Opcode: 0 1 0 0 0 1 0 1

The TEST 1 (T1) pin is enabled as the event-counter input and the counter is started. The
event-counter register is incremented with each high to low transition on the T1 pin.

Example: Initialize and start event counter. Assume overflow is desired with first T1 input.
STARTC: EN TCNTI ;ENABLE COUNTER INTERRUPT

MOV A,ÝOFFH ;MOVE ‘FF’ HEX (ONES) TO
;ACC

MOV T,A ;MOVE ONES TO COUNTER
STRT CNT ;INPUT AND START

STRT T Start Timer

Opcode: 0 1 0 1 0 1 0 1

Timer accumulation is initiated in the timer register. The register is incremented every 32
instruction cycles. The prescaler which counts the 32 cycles is cleared but the timer register is
not.

Example: Initialize and start timer.
STARTT: EN TCNTI ;ENABLE TIMER INTERRUPT

CLR A :CLEAR ACC TO ZEROS
MOV T,A ;MOVE ZEROS TO TIMER
STRT T ;START TIMER

50

UPI-41A/41AH/42/42AH USER’S MANUAL

SWAP A Swap Nibbles Within Accumulator

Opcode: 0 1 0 0 0 1 1 1

Bits 0–3 of the accumulator are swapped with bits 4-7 of the accumulator.
(A4–7) Ý (A0–3)

Example: Pack bits 0–3 of locations 50-51 into location 50.
PCKDIG: MOV R0,Ý50 ;MOVE ‘50’ DEC TO REG 0

MOV R1,Ý51 ;MOVE ‘51’ DEC TO REG 1
XCHD A,@R0 ;EXCHANGE BIT 0–3 OF ACC

;AND LOCATION 50
SWAP A ;SWAP BITS 0–3 AND 4–7 OF ACC
XCHD A,@ R1 ;EXCHANGE BITS 0–3 OF ACC AND

;LOCATION 51
MOV @R0,A ;MOVE CONTENTS OF ACC TO

;LOCATION 51

XCH ARr Exchange Accumulator-Register Contents

Opcode: 0 0 1 0 1 r2 r1 r0

The contents of the accumulator and the contents of working register ‘r’ are exchanged.
(A) Ý (Rr) r e 0–7

Example: Move PSW contents to Reg 7 without losing accumulator contents.
XCHAR7: XCH A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC
MOV A,PSW ;MOVE PSW CONTENTS TO ACC
XCH, A,R7 ;EXCHANGE CONTENTS OF REG 7

;AND ACC AGAIN

XCH A,@Rr Exchange Accumulator and Data Memory Contents

Opcode: 0 0 1 0 0 0 0 r

The contents of the accumulator and the contents of the data memory location addressed by
bits 0–7 of register ‘r’ are exchanged. Register ‘r’ contents are unaffected.
(A) Ý ((Rr)) r e 0–1

Example: Decrement contents of location 52.
DEC 52: MOV R0,Ý52 ;MOVE ‘52’ DEC TO ADDRESS

;REG 0
XCH A,@R0 ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52
DEC A ;DECREMENT ACC CONTENTS
XCH A,@R0 ;EXCHANGE CONTENTS OF ACC

;AND LOCATION 52 AGAIN

51

UPI-41A/41AH/42/42AH USER’S MANUAL

XCHD A,@Rr Exchange Accumulator and Data Memory 4-bit Data

Opcode: 0 0 1 1 0 0 0 r

This instruction exchanges bits 0–3 of the accumulator with bits 0–3 of the data memory
location addressed by bits 0–7 of register ‘r’. Bits 4–7 of the accumulator, bits 4–7 of the data
memory location, and the contents of register ‘r’ are unaffected.
(A0–3) Ý ((Rr0–3)) r e 0–1

Example: Assume program counter contents have been stacked in locations 22-23.
XCHNIB: MOV R0,Ý23 ;MOVE ‘23’ DEC TO REG 0

CLR A ;CLEAR ACC TO ZEROS
XCHD A,@R0 ;EXCHANGE BITS 0–3 OF ACC

;AND LOCATION 23 (BITS 8–11
;OF PC ARE ZEROED, ADDRESS
;REFERS TO PAGE 0)

XRL A,Rr Logical XOR Accumulator With Register Mask

Opcode: 1 1 0 1 1 r2 r1 r0

Data in the accumulator is EXCLUSIVE ORed with the mask contained in working register
‘r’.
(A) Ý (A) XOR (Rr) r e 0–7

Example: XORREG: XRL A,R5 ;‘XOR’ ACC CONTENTS WITH
;MASK IN REG 5

XRL A,@Rr Logical XOR Accumulator With Memory Mask

Opcode: 1 1 0 1 0 0 0 r

Data in the accumulator is EXCLUSIVE ORed with the mask contained in the data memory
location address by register ‘r’, bits 0–7.
(A) w (A) XOR ((Rr)) r e 0–1

Example: XORDM: MOV R1,Ý20H ;MOVE ‘20’ HEX TO REG 1
XRL A,@R1 ;‘XOR’ ACC CONTENTS WITH MASK

;IN LOCATION 32

XRL A,Ýdata, Logical XOR Accumulator With Immediate Mask

Opcode: 1 1 0 1 0 0 1 1 # d7 d6 d5 d4 d3 d2 d1 d0

This is a 2-cycle instruction. Data in the accumulator is EXCLUSIVE ORed with an immedi-
ately-specified mask.
(A) w (A) XOR data

Example: XORID: XRL A,ÝHEXTEN ;XOR CONTENTS OF ACC WITH
;MASK EQUAL VALUE OF SYMBOL
;‘HEXTEN’

52

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 4
SINGLE-STEP AND PROGRAMMING

POWER-DOWN MODES

SINGLE-STEP

The UPI family has a single-step mode which allows
the user to manually step through his program one in-
struction at a time. While stopped, the address of the
next instruction to be fetched is available on PORT 1
and the lower 2 bits of PORT 2. The single-step feature
simplifies program debugging by allowing the user to
easily follow program execution.

Figure 4-1 illustrates a recommended circuit for single-
step operation, while Figure 4-2 shows the timing rela-
tionship between the SYNC output and the SS input.
During single-step operation, PORT 1 and part of
PORT 2 are used to output address information. In
order to retain the normal I/O functions of PORTS 1
and 2, a separate latch can be used as shown in Figure
4-3.

231318–28

Figure 4-1. Single-Step Circuit

231318–29

Figure 4-2. Single-Step Timing

53

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–30

Figure 4-3. Latching Port Data

Timing

The sequence of single-step operation is as follows:

1) The processor is requested to stop by applying a low
level on SS. The SS input should not be brought low
while SYNC is high. (The UPI samples the SS pin in
the middle of the SYNC pulse).

2) The processor responds to the request by stopping
during the instruction fetch portion of the next in-
struction. If a double cycle instruction is in progress
when the single-step command is received, both cy-
cles will be completed before stopping.

3) The processor acknowledges it has entered the
stopped state by raising SYNC high. In this state,
which can be maintained indefinitely, the 10-bit ad-
dress of the next instruction to be fetched is preset
on PORT 1 and the lower 2 bits of PORT 2.

4) SS is then raised high to bring the processor out of
the stopped mode allowing it to fetch the next in-
struction.The exit from stop is indicated by the proc-
essor bringing SYNC low.

5) To stop the processor at the next instruction SS must
be brought low again before the next SYNC pulseÐ
the circuit in Figure 4-1 uses the trailing edge of the
previous pulse. If SS is left high, the processor re-
mains in the ‘‘RUN’’ mode.

Figure 4-1 shows a schematic for implementing single-
step. A single D-type flip-flop with preset and clear is
used to generate SS. In the RUN mode SS is held high
by keeping the flip-flop preset (preset has precedence
over the clear input). To enter single-step, preset is re-
moved allowing SYNC to bring SS low via the clear
input. Note that SYNC must be buffered since the
SN7474 is equivalent to 3 TTL loads.

The processor is now in the stopped state. The next
instruction is initiated by stoppe state. The next instruc-
tion is initiated by clocking ‘‘1’’ the flip-flop. This ‘‘1’’
will not appear on SS unless SYNC is high (I.e., clear
must be removed from the flip-flop). In response to SS
going high, the processor begins an instruction fetch
which brings SYNC low. SS is then reset through the
clear input and the processor again enters the stopped
state.

54

UPI-41A/41AH/42/42AH USER’S MANUAL

EXTERNAL ACCESS

The UPI family has an External Access mode (EA)
which puts the processor into a test mode. This mode
allows the user to disable the internal program memory
and execute from external memory. External Access
mode is useful in testing because it allows the user to
test the processor’s functions directly. It is only useful
for testing since this mode uses D0–D7, PORTS 10–17
and PORTS 20–22.

This mode is invoked by connecting the EA pin to 5V.
The 11-bit current program counter contents then come
out on PORTS 10–17 and PORTS 20–22 after the
SYNC output goes high. (PORT 10 is the least signifi-
cant bit.) The desired instruction opcode is placed on
D0–D7 before the start of state S1. During state S1, the
opcode is sampled from D0–D7 and subsequently exe-
cuted in place of the internal program memory con-
tents.

The program counter contents are multiplexed with the
I/O port data on PORTS 10–17 and PORTS 20–22.
The I/O port data may be demultiplexed using an ex-
ternal latch on the rising edge of SYNC. The program
counter contents may be demultiplexed similarly using
the trailing edge of SYNC.

Reading and/or writing the Data Bus Buffer registers is
still allowed although only when D0–D7 are not being
sampled for opcode data. In practice, since this sam-
pling time is not known externally, reads or writes on
the system bus are done during SYNC high time. Ap-
proximately 600 ns are available for each read or write
cycle.

POWER DOWN MODE
(UPI-41AH/42AH ONLY)

Extra circuitry is included in the UPI-41AH/42AH
version to allow low-power, standby operation. Power
is removed from all system elements except the inter-

nal data RAM in the low-power mode. Thus the con-
tents of RAM can be maintained and the device draws
only 10 to 15% of its normal power.

The VCC pin serves as the 5V power supply pin for all
of the UPI-41AH/42AH version’s circuitry except the
data RAM array. The VDD pin supplies only the RAM
array. In normal operation, both VCC and VDD are
connected to the same 5V power supply.

To enter the Power-Down mode, the RESET signal to
the UPI is asserted. This ensures the memory will not
be inadvertently altered by the UPI during power-
down. The VCC pin is then grounded while VDD is
maintained at 5V. Figure 4-4 illustrates a recommended
Power-Down sequence. The sequence typically occurs
as follows:

1) Imminent power supply failure is detected by user
defined circuitry. The signal must occur early
enough to guarantee the UPI-41AH/42AH can save
all necessary data before VCC falls outside normal
operating tolerance.

2) A ‘‘Power Failure’’ signal is used to interrupt the
processor (via a timer overflow interrupt, for in-
stance) and call a Power Failure service routine.

3) The Power Failure routine saves all important data
and machine status in the RAM array. The routine
may also initiate transfer of a backup supply to the
VDD pin and indicate to external circuitry that the
Power Failure routine is complete.

4) A RESET signal is applied by external hardware to
guarantee data will not be altered as the power sup-
ply falls out of limits. RESET must be low until VCC
reaches ground potential.

Recovery from the Power-Down mode can occur as
any other power-on sequence. An external 1 mfd capac-
itor on the RESET input will provide the necessary
initialization pulse.

231318–31

Figure 4-4. Power-Down Sequence

55

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 5
SYSTEM OPERATION

BUS INTERFACE

The UPI-41A/41AH/42/42AH Microcomputer func-
tions as a peripheral to a master processor by using the
data bus buffer registers to handle data transfers. The
DBB configuration is illustrated in Figure 5-1. The UPI
Microcomputer’s 8 three-state data lines (D7–D0) con-
nect directly to the master processor’s data bus. Data
transfer to the master is controlled by 4 external inputs
to the UPI:

A0 Address Input signifying command or data

CS Chip Select

RD Read strobe

WR Write strobe

231318–32

Figure 5-1. Data Bus Register Configuration

The master processor addresses the UPI-41A/41AH/
42/42AH Microcomputer as a standard peripheral de-
vice. Table 5-1 shows the conditions for data transfer:

Table 5-1. Data Transfer Controls

CS A0 RD WR Condition

0 0 0 1 Read DBBOUT

0 1 0 1 Read STATUS

0 0 1 0 Write DBBIN data, set F1 e 0

0 1 1 0 Write DBBIN command set

F1 e 1

1 x x x Disable DBB

Reading the DBBOUT Register

The sequence for reading the DBBOUT register is
shown in Figure 5-2. This operation causes the 8-bit
contents of the DBBOUT register to be placed on the
system Data Bus. The OBF flag is cleared automatical-
ly.

Reading STATUS

The sequence for reading the UPI Microcomputer’s 8
STATUS bits is shown in Figure 5-3. This operation
causes the 8-bit STATUS register contents to be placed
on the system Data Bus as shown.

231318–33

Figure 5-2. DBBOUT Read

231318–34

BUS CONTENTS DURING STATUS READ

ST7 ST6 ST5 ST4 F1 F0 IBF OBF

D7 D6 D5 D4 D3 D2 D1 D0

Figure 5-3. Status Read

56

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–35

Figure 5-4. Writing Data to DBBIN

Write Data to DBBIN

The sequence for writing data to the DBBIN register is
shown in Figure 5-4. This operation causes the system
Data Bus contents to be transferred to the DBBIN reg-
ister and the IBF flag is set. Also, the F1 flag is cleared
(F1 e 0) and an interrupt request is generated. When
the IBF interrupt is enabled, a jump to location 3 will
occur. The interrupt request is cleared upon entering
the IBF service routine or by a system RESET input.

Writing Commands to DBBIN

The sequence for writing commands to the DBBIN reg-
ister is shown in Figure 5-5. This sequence is identical
to a data write except that the A0 input is latched in the
F1 flag (F1 e 1). The IBF flag is set and an interrupt
request is generated when the master writes a command
to DBB.

Operations of Data Bus Registers

The UPI-41A/41AH/42/42AH Microcomputer con-
trols the transfer of DBB data to its accumulator by
executing INput and OUTput instructions. An IN
A,DBB instruction causes the contents to be trans-
ferred to the UPI accumulator and the IBF flag is
cleared.

The OUT DBB,A instruction causes the contents of the
accumulator to be transferred to the DBBOUT register.
The OBF flag is set.

The UPI’s data bus buffer interface is applicable to a
variety of microprocessors including the 8086, 8088,
8085AH, 8080, and 8048.

A description of the interface to each of these proces-
sors follows.

231318–36

Figure 5-5. Writing Commands to DBBIN

DESIGN EXAMPLES

8085AH Interface

Figure 5-6 illustrates an 8085AH system using a UPI-
41A/41AH/42/42AH. The 8085AH system uses a
multiplexed address and data bus. During I/O the 8
upper address lines (A8–A15) contain the same I/O
address as the lower 8 address/data lines (A0–A7);
therefore I/O address decoding is done using only the
upper 8 lines to eliminate latching of the address. An
8205 decoder provides address decoding for both the
UPI and the 8237. Data is transferred using the two
DMA handshaking lines of PORT 2. The 8237 per-
forms the actual bus transfer operation. Using the UPI-
41A/41AH/42/42AH’s OBF master interrupt, the
UPI notifies the 8085AH upon transfer completion us-
ing the RST 5.5 interrupt input. The IBF master inter-
rupt is not used in this example.

8088 Interface

Figure 5-7 illustrates a UPI-41A/41AH/42/42AH in-
terface to an 8088 minimum mode system. Two 8-bit
latches are used to demultiplex the address and data
bus. The address bus is 20-lines wide. For I/O only, the
lower 16 address lines are used, providing an address-
ing range of 64K. UPI address selection is accom-
plished using an 8205 decoder. The A0 address line of
the bus is connected to the corresponding UPI input for
register selection. Since the UPI is polled by the 8088,
neither DMA nor master interrupt capabilities of the
UPI are used in the figure.

8086 Interface

The UPI-41A/41AH/42/42AH can be used on an
8086 maximum mode system as shown in Figure 5-8.
The address and data bus is demultiplexed using three

57

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–37

Figure 5-6. 8085AH-UPI System

231318–38

Figure 5-7. 8088-UPI Minimum Mode System

58

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–39

Figure 5-8. 8086-UPI Maximum Mode Systems

8282 latches providing separate address and data buses.
The address bus is 20-lines wide and the data bus is 16-
lines wide. Multiplexed control lines are decoded by the
8288. The UPI’s CS input is provided by linear selec-
tion. Note that the UPI is both I/O mapped and memo-
ry mapped as a result of the linear addressing tech-
nique. An address decoder may be used to limit the
UPI-41A/41AH/42/42AH to a specific I/O mapped
address. Address line A1 is connected to the UPI’s A0
input. This insures that the registers of the UPI will
have even I/O addresses. Data will be transferred on
D0–D7 lines only. This allows the I/O registers to be
accessed using byte manipulation instructions.

8080 Interface

Figure 5-9 illustrates the interface to an 8080A system.
In this example, a crystal and capacitor are used for
UPI-41A/41AH/42/42AH timing reference and pow-
er-on RESET. If the 2-MHz 8080A 2-phase clock were
used instead of the crystal, the UPI-41A/41AH/42/
42AH would run at only 16% full speed.

The A0 and CS inputs are direct connections to the
8080 address bus. In larger systems, however, either of
these inputs may be decoded from the 16 address lines.

The RD and WR inputs to the UPI can be either the
IOR and IOW or the MEMR and MEMR signals de-
pending on the I/O mapping technique to be used.

The UPI can be addressed as an I/O device using IN-
put and OUTput instructions in 8080 software.

8048 Interface

Figure 5-10 shows the UPI interface to an 8048 master
processor.

The 8048 RD and WR outputs are directly compatible
with the UPI. Figure 5-11 shows a distributed process-
ing system with up to seven UPI’s connected to a single
8048 master processor.

In this configuration the 8048 uses PORT 0 as a data
bus. I/O PORT 2 is used to select one of the seven

59

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–40

Figure 5-9. 8080A-UPI Interface

231318–41

Figure 5-10. 8048-UPI Interface

UPI’s when data transfer occurs. The UPI’s are pro-
grammed to handle isolated tasks and, since they oper-
ate in parallel, system throughput is increased.

GENERAL HANDSHAKING
PROTOCOL

1) Master reads STATUS register (RD, CS, A0 e (0,
0, 1)) in polling or in response to either an IBF or an
OBF interrupt.

2) If the UPI DBBIN register is empty (IBF flag e 0),
Master writes a word to the DBBIN register (WR,

CS, A0 e (0, 0, 1) or (0, 0, 0)). If A0 e 1, write
command word, set F1. If A0 e 0, write data word,
F1 e 0.

3) If the UPI DBBOUT register is full (OBF flag e 1),
Master reads a word from the DBBOUT register
(RD, CS, A0 e (0,0, 0)).

4) UPI recognizes IBF (via IBF interrupt or JNIBF).
Input data or command word is processed, depend-
ing on F1; IBF is reset. Repeat step 1 above.

5) UPI recognizes OBF flag e 0 (via JOBF). Next
word is output to DBBOUT register, OBF is set.
Repeat step 1 above.

60

UPI-41A/41AH/42/42AH USER’S MANUAL

231318–42

Figure 5-11. Distributed Processor System

61

UPI-41A/41AH/42/42AH USER’S MANUAL

CHAPTER 6
APPLICATIONS

ABSTRACTS

The UPI-41A/41AH/42/42AH is designed to fill a
wide variety of low to medium speed peripheral inter-
face applications where flexibility and easy implementa-
tion are important considerations. The following exam-
ples illustrate some typical applications.

Keyboard Encoder

Figure 6-1 illustrates a keyboard encoder configuration
using the UPI and the 8243 I/O expander to scan a
128-key matrix. The encoder has switch matrix scan-
ning logic, N-key rollover logic, ROM look-up table,
FIFO character buffer, and additional outputs for dis-
play functions, control keys or other special functions.

PORT 1 and PORTs 4–7 provide the interface to the
keyboard. PORT 1 lines are set one at a time to select
the various key matrix rows.

When a row is energized all 16 columns (i.e., PORTs
4–7 inputs) are sampled to determine if any switch in
the row is closed. The scanning software is code effi-

cient because the UPI instruction set includes individu-
al bit set/clear operations and expander PORTs 4–7
can be directly addressed with single, 2-byte instruc-
tions. Also, accumulator bits can be tested in a single
operation. Scan time for 128 keys is about 10 ms. Each
matrix point has a unique binary code which is used to
address ROM when a key closure is detected. Page 3 of
ROM contains a look-up table with useable codes (i.e.,
ASCII, EBCDIC, etc.) which correspond to each key.
When a valid key closure is detected the ROM code
corresponding to that key is stored in a FIFO buffer in
data memory for transfer to the master processor. To
avoid stray noise and switch bounce, a key closure must
be detected on two consecutive scans before it is consid-
ered valid and loaded into the FIFO buffer. The FIFO
buffer allows multiple keys to be processed as they are
depressed without regard to when they are released, a
condition known as N-key rollover.

The basic features of this encoder are fairly standard
and require only about 500 bytes of memory. Since the
UPI is programmable and has additional memory ca-
pacity it can handle a number of other functions. For
example, special keys can be programmed to give an
entry on closing as well as opening. Also, I/O lines are

231318–43

Figure 6-1. Keyboard Encoder Configuration

62

UPI-41A/41AH/42/42AH USER’S MANUAL

available to control a 16-digit, 7-segment display. The
UPI can also be programmed to recognize special com-
binations of characters such as commands, then
transfer only the decoded information to the master
processor.

Matrix Printer Interface

The matrix printer interface illustrated in Figure 6-2 is
a typical application for the UPI. The actual printer
mechanism could be any of the numerous dot-matrix
types and similar configurations can be shown for
drum, spherical head, daisy wheel or chain type print-
ers.

The bus structure shown represents a generalized, 8-bit
system bus configuration. The UPI’s three-state inter-

face port and asynchronous data buffer registers allow
it to connect directly to this type of system for efficient,
two-way data transfer.

The UPI’s two on-board I/O ports provide up to 16
input and output signals to control the printer mecha-
nism. The timer/event counter is used for generating a
timing sequence to control print head position, line
feed, carriage return, and other sequences. The on-
board program memory provides character generation
for 5 x 7, 7 x 9, or other dot matrix formats. As an
added feature a portion of the data memory can be used
as a FIFO buffer so that the master processor can send
a block of data at a high rate. The UPI can then output
characters from the buffer at a rate the printer can ac-
cept while the master processor returns to other tasks.

231318–44

Figure 6-2. Matrix Printer Controller

63

UPI-41A/41AH/42/42AH USER’S MANUAL

The 8295 Printer Controller is an example of an UPI
preprogrammed as a dot matrix printer interface.

Tape Cassette Controller

Figure 6-3 illustrates a digital cassette interface which
can be implemented with the UPI. Two sections of the
tape transport are controlled by the UPI: digital data/
command logic, and motor servo control.

The motor servo requires a speed reference in the form
of a monostable pulse whose width is proportional to
the desired speed. The UPI monitors a prerecorded
clock from the tape and uses its on-board interval timer
to generate the required speed reference pulses at each
clock transition.

Recorded data from the tape is supplied serially by the
data/command logic and is converted to 8-bit words by
the UPI, then transferred to the master processor. At
10 ips tape speed the UPI can easily handle the 8000
bps data rate. To record data, the UPI uses the two
input lines to the data/command logic which control
the flux direction in the recording head. The UPI also
monitors 4 status lines from the tape transport includ-
ing: end of tape, cassette inserted, busy, and write per-
mit. All control signals can be handled by the UPI’s
two I/O ports.

Universal I/O Interface

Figure 6-4 shows an I/O interface design based on the
UPI. This configuration includes 12 parallel I/O lines
and a serial (RS232C) interface for full duplex data
transfer up to 1200 baud. This type of design can be
used to interface a master processor to a broad spec-
trum of peripheral devices as well as to a serial commu-
nication channel.

PORT 1 is used strictly for I/O in this example while
PORT 2 lines provide five functions:

P23–P20 I/O lines (bidirectional)

P24 Request to send (RTS)

P25 Clear to send (CTS)

P26 Interrupt to master

P27 Serial data out

The parallel I/O lines make use of the bidirectional
port structure of the UPI. Any line can function as an
input or output. All port lines are automatically initial-
ized to 1 by a system RESET pulse and remain latched.
An external TTL signal connected to a port line will
override the UPI’s 50 KX internal pull-up so that an
INPUT instruction will correctly sample the TTL sig-
nal.

231318–45

Figure 6-3. Tape Transport Controller

64

UPI-41A/41AH/42/42AH USER’S MANUAL

Four PORT 2 lines function as general I/O similar to
PORT 1. Also, the RTS signal is generated on PORT 2
under software control when the UPI has serial data to
send. The CTS signal is monitored via PORT 2 as an
enable to the UPI to send serial data. A PORT 2 line is
also used as a software generated interrupt to the mas-
ter processor. The interrupt functions as a service re-
quest when the UPI has a byte of data to transfer or
when it is ready to receive. Alternatively, the EN
FLAGS instruction could be used to create the OBF
and IBF interrupts on P24 and P25.

The RS232C interface is implemented using the TEST
0 pin as a receive input and a PORT 2 pin as a transmit
output. External packages (A0, A1) are used to provide
RS232C drive requirements. The serial receive software
is interrupt driven and uses the on-chip timer to per-
form time critical serial control. After a start bit is de-
tected the interval timer can be preset to generate an
interrupt at the proper time for sampling the serial bit
stream. This eliminates the need for software timing

loops and allows the processor to proceed to other tasks
(i.e., parallel I/O operations) between serial bit sam-
ples. Software flags are used so the main program can
determine when the interrupt driven receive program
has a character assembled for it.

This type of configuration allows system designers flex-
ibility in designing custom I/O interfaces for specific
serial and parallel I/O applications. For instance, a sec-
ond or third serial channel could be substituted in place
of the parallel I/O if required. The UPI’s data memory
can buffer data and commands for up to 4 low-speed
channels (110 baud teletypewriter, etc.)

Application Notes

The following application notes illustrate the various
applications of the UPI family. Other related publica-
tions including the Microcontroller Handbook are avail-
able through the Intel Literature Department.

231318–46

Figure 6-4. Universal I/O Interface

65

