
'\

MCS-86™ MACRO
ASSEMBLY LANGUAGE
REFERENCE MANUAL

Manual Order Number 9800640-02

Copyright © 1978, 1979 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 r

www.ceibo.com

MCS-86 8086 – 8088 – 80C86 – 80C88

Ceibo

In-Circuit

Emulator

Supporting

MCS-86:

DS-186

http://ceibo.com/eng/products/ds186.shtml

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-ID4.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus J.(Scope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A-114/0979/15K FL

HOW TO USE THIS MANUAL I

This manual describes the MCS-86 Macro Assembly Language, and is intended to be
used by readers who have some familiarity with at least one assembly language, not
necessarily an Intel assembly language.

Figure 0-1 highlights MCS-86 Macro Assembly Language features (directives,
instructions, operands, labels, macros, etc.) and the chapters describing them. Refer
to the Table of Contents and the Index for more references.

Figure 1-1 in Chapter 1 shows the overall MCS-86 software development process,
and lists relevant manuals and their order numbers. If you are developing programs
for the 8086 andlor 8088, you will probably need most of these manuals.

This manual is primarily a reference manual, and as such is not intended to be read
cover-to-cover. However, in order to begin to understand this assembly language,
you should first familiarize yourself with the following topics:

• Language Overview (Chapter 1)

• Segmentation and Addressability (Chapter 2)

• Defining and Initializing Data (Chapter 3)

• Accessing Data (Chapter 4)

Several features of this language are unusual for an assembly language:

1. It is strongly typed, not unlike some high-level languages; data items (labels
identifying code, and variables identifying data) must be used as they are
declared. Table 3-1 in Chapter 3 provides a summary of these notions.

2. As an interface to the 8086 architecture, this language provides segmentation
and addressability mechanisms (in particular, the SEGMENT lENDS
statement-pair, and the ASSUME directive) which enable you to design your
own 64K-byte windows into the megabyte memory. Chapter 2 describes segmen
tation. You should be sure to read the description of the ASSUME directive and
that of "Anonymous References" in Chapter 2.

3. If you want to define, allocate, and initialize data items such as s; fuctures,
records, arrays, and combinations, refer to Chapter 3.

If you want to access these data items, refer to Chapter 4.

Chapter 5 gives an encyclopedia of instruction mnemonics. Appendix J provides
a convenient summary, including examples and flags affected.

4. MPL, the Macro Processor Language, is described both in Chapter 7 and in
Appendix L. You can write programs without it, .or you can speed up program
development with it.

Finally, a sample program in Appendix K illustrates many of the language's unique
features.

Input/Output is not discussed in this manual, except for the instructions IN and
OUT (Chapter 5). Readers interested in 110 configurations and programming
techniques are referred to the MCS-86 User's Guide, Order No. 9800722 and the
8086 Family User's Manual, Order No. 9800722 (which also describes the program
mable dual-channel 8089 and its assembly language).

Refer to the Intel Corporation publication, 8089 Assembler User's Guide, Order
No. 9800938 for a complete description of the 8089 assembly language and ASM89
assembler operation.

iii

How to Use This Manual

iv

CHAPTER 1

ASSEMBLY
LANGUAGE
OVERVIEW

CHAPTER 6

CODEMACROS

CHAPTER 5

INSTRUCTION
SET

APPENDIX L

CHAPTER 7

MACRO
PROCESSOR
LANGUAGE

CHAPTER 8

RECOMMENDATIONS
FOR GETTING

STARTED

(TASK4)

Figure 0-1. Structure of This Manual

8086 Assembly Language

CHAPTER 2

STRUCTURING
PROGRAM

ADDRESSABILITY

INTER SEGMENT REFS.

ACCESSING DATA
OPERANDS

OVERRIDING TYPES

CHAPTER 3

DEFINING AND
INITIALIZING

DATA

· " n

CHAPTER 1
OVERVIEW OF THE MCS-86 MACRO
ASSEMBL Y LANGUAGE
Why Write Programs in Assembly Language? 1-1
Is the Macro Processor Part of ASM86? 1-1
What Does the Assembly Language Offer? 1-3
How is the Instruction Set Designed? 1-3

Generic Instruction Mnemonics and Codemacros .. 1-4
Sample Instruction 1-5

How May Code and Data be Structured? 1-6
Structures 1-6
Arrays 1-7
Records 1-8
Combinations 1-8
Segmentation Concept 1-8
Procedures 1-10
Operand Possibilities 1-11

Registers 1-11
Addressing Modes 1-12

Macros 1-12

CHAPTER 2
STRUCTURING PROGRAMS
Relationship of Segmentation to Assembly Modules 2-1
Segmentation Control and Addressability 2-1

Formats of the SEGMENT/ENDS Directives 2-2
"Nested" or "Embedded" Segments 2-3
The ASSUME Directive 2-4
Loading Segment Registers 2-6
Segment Prefix 2-7
Anonymous References 2-8
Examples Using Anonymous (Split) Variables 2-8
String Instructions and Memory References 2-10
Groups (the GROUP Directive) 2-11
The LABEL Directive 2-12

Using LABEL with Variables 2-13
Using LABEL with Code 2-13
Label Addressability 2-13

Procedures (the PROC/ENDP Directives) 2-14
Advantages of Using Procedures 2-14
Calling a Procedure 2-14
Recursive Procedures, Nested Procedures, and

In-Line Procedures 2-15
Returning from a Procedure 2-16

Program Linkage Directives (NAME, END, PUBLIC,
EXTRN Directives) 2-16

The NAME Directive 2-17
The PUBLIC Directive 2-17
The EXTRN Directive 2-17

Placement of EXTRNs 2-18
A Systematic Way to Handle Externals 2-19

The END Directive 2-19
The Location Counter ($) and the ORG Directive ... 2-19

CONTENTS

CHAPTER 3
DEFINING AND INITIALIZING DATA
Identifiers 3-1
Data Items and Attributes 3-1
Data Definition Overview 3-2
Constants 3-4

Permissible Range of Values 3-4
Occurrence of Constants 3-4

Defining Variables (DB, DW, DD Directives) 3-5
General Form for DB, DW, and DD 3-5
Examples of DB, DW, DD Formats 3-6

Format 1: Initializing with a
Constant Expression 3-6

Format 2: Defining Variables with
Indeterminate Initialization 3-7

Format 3: Initializing an Address Expression
(DW & DD Only) 3-7

Format 4: Defining Strings Longer Than Two
Characters (DB Only) 3-8

Format 5: Defining and Initializing a Data List .. 3-8
Format 6: Replicating Initialization Values 3-9

Defining and Initializing Labels 3-9
Records 3-10

"Partial" Records 3-12
Record Allocation and Initialization 3-12
Record Allocation and Initialization Examples ... 3-13
Record Expressions 3-14

Structures 3-14
Initial (Default) Values for Structure Fields 3-16
Overridable (Simple) Structure Fields 3-16
Example of Structure Definition 3-16
Structure Allocation and Initialization 3-17

CHAPTER 4
ACCESSING DATA (OPERANDS AND
EXPRESSIONS)
Operands: Immediate, Register, Memory 4-1

Immediate Operands•......... 4-2
Register Operands 4-3

Registers as Explicit Operands 4-3
Segment Registers 4-4
Pointer and Index Registers 4-4
General Registers; Hand L Group 4-5
Registers as Implicit Operands 4-5
Flag Registers 4-5

Memory Operands 4-6
JMP and CALL Operands (Variables, Labels,

Registers, Address Expressions) 4-6
Using the SHORT Operator 4-8
Implicit SHORT Jumps/Calls 4-8

Variables 4-8
Simple Variables 4-9
Indexed Variables 4-9

Expressions as Subscripts 4-10

v

Double-Indexed Variables 4-10
Structures 4-10

Using Structures in Forward/Backward
Linked Lists 4-11

Attribute Operators 4-12
Attribute-Overriding Operators 4-12

PTR-the Pointer Operator 4-12
Segment Override 4-13
The SHORT Operator 4-13
The THIS Operator 4-14
The HIGH and LOW Operators 4-14

Value-Returning Operators 4-14
The SEG Operator 4-14
The OFFSET Operator 4-14
The TYPE Operator 4-15
The LENGTH Operator 4-16
The SIZE Operator 4-16

Record-Specific Operators 4-16
Shift-count 4-16
The MASK Operator 4-16
The WIDTH Operator 4-16

Expressions 4-17
Hierarchy (Precedence) of Operators 4-17

The EQU Directive 4-18

CHAPTER 5
THE INSTRUCTION SET

CHAPTER 6
CODEMACROS

CHAPTER 7
MACRO PROCESSOR LANGUAGE (MPL)
Conceptual Overview of Macro Processing 7-1
What is Macro-Time? 7-2
What is a Macro? 7-2

Macro Expansion and Side Effects 7-2
What is Macro Processing? 7-3
Why Use Macros? 7-4
Parameters and Arguments 7-5
Evaluation of the Macro Call 7-6
A Comment-Generating Macro 7-7
A Macro to Move Word Strings at Run-Time 7-8
Calling Move with Actual Arguments 7-9
A Macro to Move both Byte- and Word-Strings 7-10
MPL Identifiers 7-10
Numbers as Strings in MPL 7-10
Expression Evaluation; the EV AL Built-in

Function 7-11
Arithmetic Expressions 7-11

Range of Values 7-12
The Length Function (LEN) 7-12

vi

CONTENTS (Cont'd.)

String Comparator (Lexical-Relational) Functions .. 7-12
Control Functions (IF , REPEAT, WHILE) 7-13
The IF Function 7-13
The REPEAT Function 7-15
The WHILE Function 7-15
The MATCH Function 7-16
Console 110; Interactive Macro Assembly 7-17
The SET Function 7-18
The SUBSTR Function 7-18

CHAPTERS
MODELS OF COMPUTATION:
RECOMMENDED PRACTICES
Recommendations 8-1
Forward Referencing 8-2

Variables and Labels 8-2
Segments 8-3

PLM86 Linking Conventions 8-3

APPENDIX A
CODEMACRO DEFINITIONS

APPENDIXB
MEMORY ORGANIZATION

APPENDIXC
FLAG OPERATIONS

APPENDIXD
EXAMPLES

APPENDIXE
INSTRUCTIONS IN
HEXADECIMAL ORDER

APPENDIXF
PREDEFINED NAMES

APPENDIXG
RELOCATION

APPENDIXH
GETTING STARTED

APPENDIXJ
INSTRUCTIONS SET REFERENCE DATA

APPENDIXK
SAMPLE PROGRAM

APPENDIXL
MACRO PROCESSOR LANGUAGE

FIGURE TITLE PAGE

0-1
1-1

1-2
2-1

TABLE

2-1
2-2
3-1
3-2

Structure of This Manual iv
Software Development and the MCS-86

Macro Assembly Language 1-2
Analysis of Sample Instruction 1-6
Anonymous Variable References and

Segment Prefix Overrides 2-9

TITLE PAGE

String Instruction Mnemonics 2-10
Addressability of Jump/Call Target Labels 2-13
MCS-86 Assembly Language Data Items ... 3-3
Constants 3-4

ILLUSTRATIONS

FIGURE TITLE PAGE

2-2
3-1

3-2

TABLE

4-1
5-1
5-2

CALL/RET Control Flow 2-15
How to Define, Allocate, Initialize,

and Access Records 3-11
How to Define, Allocate, Initialize,

and Access Structures 3-15

TABLES

TITLE PAGE

Assembler-Generated Jumps and Calls 4-8
Symbols 5-1
8086 Conditional Transfer Operations 5-14

vii

· "

CHAPTER 1
OVERVIEW OF THE MCS-86

MACRO ASSEMBLY LANGUAGE
11

This chapter presents an overview of the MCS-S6 Macro Assembly Language, which
is expressly designed for writing programs for the I6-bit SOS6 processor. Figure 1-1
shows how the MCS-S6 Macro Assembler fits into the SOS6 software development
environment.

The MCS-S6 Macro Assembler, which creates object modules from these programs,
forms part of a family of MCS-S6 tools:

• CONVS6, which converts error-free SOSO/SOS5 source files to syntactically valid
SOS6 source files, and issues caution and error messages for conversions which
may require editing.

• PLMS6, which compiles programs written in PL/M-S6, a high-level language,
and creates object modules.

• LINKS6, which combines object modules into load modules.

• LOCS6, which binds load modules to absolute memory addresses.

• ICE-S6, which provides in-circuit emulation for the SOS6.

Manuals describing the languages and operation of MCS-S6-related software are
listed in the prefatory section to this manual, "How to Use This Manual."

The MCS-S6 Macro Assembly Language provides several powerful, yet relatively
simple-to-use means of structuring and writing programs which can then be as
sembled, linked, located, and executed on the I6-bit SOS6 microprocessor. If you are
not familiar with the design of the SOS6, you can read about it in the 8086 Family
User's Manual, Order No. 9S00722.

Why Write Programs in Assembly Language?

Although high-level languages (PL/M, BASIC, FORTRAN, PASCAL) can
decrease the development time needed for a program or system, they do not permit
the programmer to directly access many of the chip's features, such as registers, pro
cessor flags, and special instructions. Moreover, high-level language compilers and
interpreters tend to produce inefficient code for your algorithms. As a result, your
assembly-language program, while sometimes taking longer to code and debug,
usually runs much faster and occupies much less memory than the "equivalent"
program written in a high-level language. Since program development time is itself
expensive, however, the trade-off between development time and program per
formance should be analyzed for each application. The optimal solution is usually
found in writing some routines in high-level language, and the more time-critical and
space-critical routines in assembly language.

Is the Macro Processor Part of ASM86?

A single invocation of ASMS6 gives control to the MCS-S6 Macro Assembler, which
contains as its front-end the Macro Processor. The Macro Processor scans your
source file for macro definitions and macro calls written in Macro Processor
Language (MPL). Macro calls are expanded according to macro definitions, and the
resulting source assembly-language file is assembled by the MCS-S6 Macro
Assembler.

1-1

Overview of the MCS-86 Macro Assembly Language

ACTIVITY TOOL FILE REFERENCE

---~
I C~~~~RT ,

\ 8080 I
'----'

o
o
0)
o
(0

o
o

MCS-86 ASSEMBLY LANGUAGE CONVERTER OPERATING INSTRUCTIONS
FOR ISIS-II USERS (9800642)

CREDIT OPERATING INSTRUCTIONS FOR ISIS-II USERS (9800902)

ISIS-II USER'S GUIDE (9800306)

MCS-86 MACRO ASSEMBLY LANGUAGE REFERENCE MANUAL (9800640)

MCS-86 MACRO ASSEMBLER OPERATING INSTRUCTIONS FOR ISIS-II USERS
(9800641)

MCS-88 SOFTWARE DEVELOPMENT UTILITIES OPERATING INSTRUCTIONS FOR
ISIS-II USERS (9800639)

ICE-86 IN-CIRCUIT EMULATION OPERATING INSTRUCTIONS FOR ISIS-II USERS
(9800741)

8086 Assembly Language

Figure 1-1. Software Development and the MCS-86 Macro Assembly Language

1-2

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

Using the Macro Processor Language (MPL) described in Chapter 7, you can create
a library of powerful algorithms specific to your application from sequences of
assembly-language instructions. Indeed, the combined use of MPL and MCS-86
Assembly Language offers both the run-time efficiency of assembly language and
the decreased development time of high ... levellanguages.

References in this manual to the MCS-86 Macro Assembly Language refer to to the
assembly language proper; references to the MCS-86 Macro Assembler refer to the
software that processes both MPL and the assembly language proper.

What Does the Assembly Language Offer?

Each of the language's unique advantages is further highlighted later in this chapter.
They include:

• Powerful, yet human-engineered instruction set design.

• Sophisticated code and data structuring mechanisms usually found only in
high-level languages.

• An assembler that checks:

1. Consistency of data uses with data declarations. (This' 'strong typing" is
used in most high-level languages.)

2. Instruction forms to ensure shortest of valid forms is generated.

• A macro language rivalling any string manipulation language.

How Is the Instruction Set Designed?

Most assembly languages define a 1-1 correspondence between instruction
mnemonics (e.g. MOVB, ADDI) and operation codes (opcodes, usually given in
binary). The MCS-86 Macro Assembly Language establishes a one-to-many cor
respondence; a single instruction mnemonic can be assembled into one of several op
codes, depending on what types of operands (data items) are supplied with it. The
assembler then chooses the appropriate opcode, based on the operand types.

The MCS-86 Macro Assembly language is thus a "strongly typed" language:

• It is typed, because data can be declared to be of different types (for instance,
byte, word, doubleword).

• It is strongly typed, because mixed operand types are not permitted in the same
operation (for instance, moving a declared byte to a word register, or vice
versa).

Strong typing prevents you from inadvertently:

• Moving a word to a byte destination, and thus overwriting an adjacent byte.

• Moving a byte to a word destination, and thus leaving meaningless data in an
adjacent byte.

But strong typing does not prevent you from deliberately performing these same
operations. For instance, if DATA8 is declared type byte and if DATA16 is declared
type word and if:
• You want to move the contents of 16-bit register AX to DATA8, thus

overwriting the contents of DA T A8 + 1, then you code:

MOV WORD PTR DATA8, AX ; Move AX to word at DATA8.

1-3

Overview of the MCS-86 Macro Assembly Language 8086 Assembly Language

1-4

• You want to move the contents of 8-bit register AL to DATA 16, thus leaving
the high-order byte of DATA16 intact, then you code:

MOV BYTE PTR OATA16, Al; Move AL to byte at OATA16.

These examples use the PTR (pointer) operator to override (temporarily redefine)
the data types for the duration of the instruction's execution. Further references to
DATA8 or DATA16 revert to the original data types, unless a type-overriding
operator is again specified.

There are several ways to access typed data. If you need to access an array as both
bytes and words, you can do it using PTR as above, or you can specify your data
declaration as follows:

OATA8_ARRA Y LABEL BYTE
OATA16_ARRAY OW 100 OUP (0)

; Label used to access bytes in the following
; 100 words of O's.

Now to store the 8-bit register CH in the 10th byte (the first byte is byte 0) of the
array, code:

MOV OATA8_ARRA Y[9], CH

But to store the 16-bit register CX in the 10th and 11 th bytes of the array, code:

MOV OATA16 __ ARRAY[9], CX

Type-overriding is fully described in Chapter 4.

These examples use MOV, but apply to any two-operand mnemonic (e.g. ADD,
SUB, AND, XOR, etc.).

Generic Instruction Mnemonics and Codemacros

Thousands of distinct operations are represented by about 100 assembly-language
mnemonics. This means you do not have to remember different mnemonics for
"move word", "move byte", and "move immediate", for example; each is simply
MOV. You code the mnemonic that applies to an entire class of operations, and
from the operands (data items) you supply with it, the MCS-86 Macro Assembler
chooses the best machine code.

This "generic" instruction facility is provided by "codemacros", which are
described in Chapter 6. Codemacros should not be confused with macros (MPL,
described in Chapter 7); codemacros define the formats of assembled instructions,
whereas macros define transformations of source text into assembly language.

The assembler maps each assembly-language instruction into a machine-language
instruction by referencing that mnemonic's set of codemacros, each of which
specifies register, memory, displacement, opcode and type information. The
assembler compares the operands you give with the mnemonic against the
codemacros defined for that mnemonic, chooses the codemacro that matches your
operand types, and expands that codemacro to a machine instruction. This is the
fundamental assembly process.

Although you are free to redefine codemacros (and thus make up your own instruc
tion set), it is not necessary for you to understand codemacros in order to write pro
grams. If you want to know how an instruction is actually assembled, however,
codemacros are the ultimate authority. Appendix A gives the entire set of
codemacros for the MCS-86 Assembly Language. Chapter 5 shows assembled
instruction formats.

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

Sample Instruction

Quite a bit of information can be expressed in a single, easy-to-code instruction. As
an example of the power and simplicity of the language, consider the instruction:

ADD [BP][SI).STRUCFIELD3, DX

Without knowing anything about the language, you could deduce:

• That the contents of 16-bit register DX forms part of a sum.

• That the instruction performs a full-word addition operation.

• That the registers BP and SI are somehow used to calculate the address of the
other part of the sum.

• That the identifier STRUCFIELD3, together with the special character period
" . ", are also used in the address calculation.

Figure 1-2 completes the picture. Here is the key:

1. Since it is the second operand, DX is the "source", and is being added to the
contents of the word addressed by the expression [BP][SI] .STRUCFIELD3, the
"destination" .

2. Register BP, also called the stack marker, participates in the instruction by
forming the base address of the first operand. When BP is the base, the operand
by default resides in the current stack segment. Since SS is the segment register
for the stack segment, the 16-bit contents of SS yield the paragraph number
(also called the "frame number") of the stack segment.

3. The 16-bit contents of register SI is used here to index the address of the
"destination" operand. That is, BP and SI are added to form part of the effec
tive address of the first operand.

4. The dot operator" ." in this context refers to a structure. (Structure definition is
fully described in Chapter 3.) STRUCFIELD3, the identifier that follows, iden
tifies a structure field; its value gives the relative distance, in bytes, from the
beginning of the structure to STRUCFIELD3. (The assembler generates relative
offset values for each field of the structure relative to its beginning. The struc
ture can thus be used as "storage template", or pattern of relative offset
values.)

5. The address of the first operand, then, is:

16-bit Paragraph Number: SS
16-bit Offset: BP + SI + (relative offset of STRUCFIELD3)

20-bit Machine Address: 16*SS + BP + SI + (relative offset of STRUCFIELD3)

Thus, the effect of the instruction:

ADD [BP][SI).STRUCFIELD3, DX

is to add the contents of the 16-bit register DX to the word in the stack double-in
dexed by the 16-bit registers BP and SI, and offset by a structure-field displacement.
This instruction, including opcode, base register, index register, structure displace
ment and relative offset, typ<;: information, direction, and source register, assembles
into only three bytes.

1-5

Overview of the MCS-86 Macro Assembly Language 8086 Assembly Language

OPCODE

.-------- D = 0 ~ DESTINATION IS MEMORY

.------- W = 1 ~ OPERANDS ARE WORDS

.------ MOD = 01 ~ DISPLACEMENT 1 BYTE; SIGN-EXTEND

~ REG=DX

..,.... ADDRESSING MODE = (BP) + (SI) + DISP

I

I""' IT :~G= =0~:0
~ DISP-LOW

r_.Joooooo01101 010 0101

I
I
I
I

r-------I
I

INSTRUCTION
POINTER

...-+ - -
~ ~

SEGMENT REGISTERS
J ______________ ~~~:]CS I NEXT: ADD [BP] [SI]. STRUCFIELD3, DX

1-6

y

DATA FLOW FOR THIS
ADDITION OPERATION

..--.... 16-BIT SEGMENT BASE VALUE

1. ~ __ ... 16-BIT EFFECTIVE ADDRESS r (OFFSET) WITHIN SEGMENT

}
---. 8- OR 16-BIT INDEX OR

DISPLACEMENT VALUE
COMPRISING PART OF OFFSET

CODE SEGMENT BAse- DS
GENERAL REGISTERS

AX ES

~---~-~ ~--------~ BX SS
~---~-~ ~--------~

STACK BOTTOM

CX

1~:...{==t=jDX

STACK SEGMENT BASE

L

INDEX REGISTERS

-t u

-- I::
STACK MARKER

- f - -... IBp
STACK POINTER

TOP OF STACK I SP

Figure 1-2. Analysis of Sample Instruction

How May Code and Data Be Structured?

Structures

The next example shows how structures can be used to define storage templates in
order to access variables (whether in the stack or not). You can use structures to
group together logically related data items, as in the following:

The user-named structure PHYS allows a programmer to define individual fields of
size (in bytes) 1, 2, 2, 1, and 2 symbolically and have their relative offsets generated
by the assembler:

PHYS STRUC ; No storage reserved - use this as template for JONES below.
AGE DBO ; Reference to .AGE generates relative offset of O.
EYES DWO ; Reference to .EYES generates relative offset of 1.
HAIR DWO ; Reference to .HAIR generates relative offset of 3.
HTFT DBO ; Reference to .HTFT generates relative offset of 5.
HTIN DWO ; Reference to .HTIN generates relative offset of 6.
PHYS ENDS

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

Now the programmer can allocate real storage and initialize using PHYS as an
operator:

JONES PHYS < 22, 'Bl', 'BR', '5', '10' > ; Allocate 8 bytes, initialize

Notice that the user-assigned name PHYS is here used as an operator, and that the
structure is initialized using both integer data (22) and character data ('BL', '5').

The preceding use of PHYS as an operator is the assembly-time counterpart of the
following run-time initialization:

JONES DB 8 DUP(?)
MOV JONES.AGE, 22
MOV JONES.EYES, 'Bl'
MOV JONES. HAIR, 'BR'
MOV JONES.HTFT, '5'
MOV JONES.HTIN, '10'

; Allocate 8 bytes (uninitialized).
; Initialize .AGE field.
; linitialize .EYES field.
; Initialize .HAIR field.
; Initialize .HTFT field.
; Initialize .HTIN field.

Chapter 3 describes still another flexible feature you can use in defining structures -
that of initializing default value during the definition of the structure, and then over
riding (when necessary) these default values -during allocation of storage, all at
assembly time.

Structures provide an extremely valuable prograI11ming tool not usually found in
assembly languages. Chapter 3 describes structure definition, allocation and in
itialization. Chapter 4 describes how to access structures.

Arrays

You can define and initialize arrays of bytes, words, doublewords, structures, and
records (defined below) using the DB, DW, DD, structure-name, and record-name
directives, respectively:

BYTE_ARRAY DB 100 DUP(1)
WORD_ARRAY DW 256 DUP(O)
DWORD_ARRAY DD 200 DUP(?)
PHYS_ARRAY PHYS 1000 DUP«»

; Allocate 100 bytes, initialize each to 1.
; Allocate 256 words, initialize each to O.
; Allocate 200 doublewords, don't care initialize.
; Allocate 1000 initialized copies of PHYS.

An example of an initialized record array follows under "RECORDS."

In referencing array elements, be sure to take into account:

• Arrays are zero-origined; thus, the first byte of an array FOO is FOO[O], not
FOO[l]. The Nth byte is FOO[N-l].

• The index you code is interpreted as the number of BYTES from the start of the
array, whether the array elements are bytes, words, or doublewords.

Elements within the arrays can then be accessed several ways:

ADD AH, BYTE_ARRAY
ADD AH, BYTE_ARRAY[Oj
ADD AH, BYTE_ARRAY[7j
ADD AH, BYTE_ARRAY + 7
ADD AH, BYTE_ARRAY[Slj
MOV BX, WORD_ARRAY + 14
MOV BX, WORD_ARRA Y[14j
MOV WORD_ARR.A Y[BX][SI], 7
MOV WORD_ARRA Y[BX + SI], 7

; Add 1 st byte of array to AH.
; Add 1 st byte of array to AH.
; Add 8th byte of array to AH.
; Add 8th byte of array to AH.
; Add (SI + 1)st byte of array to AH.
; Move 8th word in array to BX.
; Move 8th word in array to BX.
; Move 7 to word at (BX + SI + 1)st byte of array.
; fv!ove 7 to word at (BX + SI + 1)st byte of array.

1-7

Overview of the MCS-86 Macro Assembly Language 8086 Assembly Language

1-8

Records

Records are analogous to structures, except that records deal with bit-offset values
of bit-fields, whereas structures deal with byte-offset values of byte-fields. A record
is a pattern defined to format a byte or word. You name each field within the record
and assign it a length in bits; then a reference to the field-name is recognized by the
assembler to be the shift count necessary to right-justify the field. You can isolate
the unshifted field using the record operator MASK.

For example, suppose you are dealing with data formatted in 16-bit words as
follows:

• Three I-bit flip-flops (FFI, FF2, FF3)

• One I-bit "Don't Care" field (DNC)

• Three 4-bit packed decimal digits (DIG I, DIG2, DIG3)

You could define the record as follows:

GONZO RECORD FF1:1 , FF2:1, FF3:1 , DNC:1, DIG1 :4, DIG2:4, DIG3:4

Although the RECORD definition itself allocates no storage, you can use the
record-name as an assembly-time operator to allocate copies of a defined record:

BUFFALO GONZO 100 DUP «» ;allocate 100 initialized copies

Now if you want to isolate the field corresponding to DIG2 from the second word of
the array BUFFALO, and leave it in Bits 0-3 of register AX, you can code:

MOV AX, BUFFALO[2]
AND AX, MASK DIG2
MOV CL, DIG2
SHR AX, CL

; Move bit-packed word to AX.
; Leaves DIG2 field as is, sets all other bits to zero.
; Record name provides shift count. Load it into CL.
; Right-justifies DIG2 field to Bits 0-3 of AX.

To isolate another field of BUFFALO corresponding to the pattern of GONZO, you
would use exactly the same code with the field-name in place of DIG2. (In general,
the Nth word of the word-array BUFFALO is specified by BUFFALO[2*(N-I»).

Chapter 3 describes yet another flexible feature of records - that of defining default
values for fields in the RECORD definition directive, and then optionally overriding
any or all of these values during allocation.

Records thus allow you to define and manipulate bit-packed bytes and words in a
way that is simple to program and modify, and easy to read. Indeed, few high-level
languages can match this feature.

Combinations
There is nothing to prevent you from defining arrays of records, or structures of
arrays. The following allocates and initializes 1000 copies of PHYS as defined above
under "STRUCTURES":

LOTSA_PHYS PHYS 1000 DUP«» ; Initialized 8000-byte array of 1000 PHYS copies.

More examples are given in Chapter 3.

Segmentation Concept

To aid in your memory management, the assembly language permits you to define
segments as a means of grouping related information within memory blocks, each of
which can be at most 64K-I (65535) bytes in size.

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

A segment is the smallest relocatable unit of memory. Each block is contiguous (that
is, there are no gaps allowed in a segment), but segments may be scattered
throughout memory.

You can define as many segments as you like at assembly-time, provided you define
at least one segment per assembly module. (Even if you omit segment definition
statements, the assembler assigns the 5-character name ??SEG to a default segment.)
Every instruction and every data item in your program must lie within some seg
ment. There is nothing to prevent you from mixing code and data in some segments,
although this practice is not always advisable. Some practical examples of segmenta
tion are:

• A segment for global data

• A segment for local data

• A segment for the stack

• A segment for your main program

• A segment for shared (reentrant) subroutines

• A segment for serially reusable subroutines

• A segment for interrupt vectors

• A segment for interrupt routines

A frame, or physical segment, in the 8086 memory consists of up to 65535 (64K - 1)
bytes starting at an absolute address divisible by 16. Such an address is called a
paragraph boundary. The paragraph numbers for the 8086 memory are thus 0, 16,
32, ... , 16*65535=1048560.

Since a logical segment (one you define) does not necessarily begin on a paragraph
boundary, logical segments do not necessarily correspond to physical segments.

Since each segment begins in some paragraph, the four 16-bit segment registers (CS,
DS, ES, and SS) are used to hold paragraph numbers where segments begin. There
are therefore four "current" segments at anyone time, and the paragraph (frame)
number of each is called the segment base value, and is contained in its segment
register as follows:

• CS register - always defines the current code segment

• DS register - usually defines the current data segment

• SS register - always defines the current stack segment

• ES register - can define an auxiliary data segment

At run-time, every 8086 memory reference requires two components in order to be
physically addressed by the hardware:

1. A 16-bit segment base value which must be contained in one of the four segment
registers CS, DS, ES, or SS, and

2. A 16-bit effective address giving the offset of the memory reference from the
segment base value.

Effective addresses are usually calculated at assembly-time; segment base addresses
can be specified at assembly-time, locate-time, or run-time. It is the responsibility of
the programmer to maintain reliable segment base addresses in the segment
registers. This procedure is described in Chapter 2.

When a data item is fetched from memory, 8086 CPU hardware combines the 16-bit
effective address and 16-bit segment base address of the data item as follows:

20-bit address = 16*(segment base address) + effective address

1-9

Overview of the MCS-86 Macro Assembly Language 8086 Assembly Language

1-10

For instance, if GONZO is assembled at offset 1200H in your data segment, and
that segment is paragraph-aligned (the default), and if you load segment register DS
with the value 5DOOH, then the absolute address of GONZO is:

16*5DOOH + '1200H = 5E200H

In practice, the assembly-language programmer need not be concerned with absolute
20-bit addresses. As a general rule it is best to deal with symbolic segment base
addresses and symbolic effective addresses. In particular, performing arithmetic on
segment base addresses is not recommended.

Procedures

The assembly language implements the subroutine concept using procedure defini
tion. Whereas most assembly languages offer a starting-label and a return instruc
tion as subroutine-building tools, the MCS-86 Macro Assembly Language takes into
account the notion of a procedure as a block of code (and possibly data), and pro
vides PROC and ENDP statements to demarcate the subroutine block. Thus, there
can be no confusion as to the extent of the procedure:

READFILE PROC
o
o
o
RET
o
o
o
RET

READFILE ENDP

Procedures can be nested (one completely within another) but cannot overlap.

READFILE PROC
o
o
o
RET
GETLINE PROC

o
o
o
RET
GETCHAR PROC

o
o
o
RET

GETCHAR ENDP
o
o
o

GETLINE ENDP
o
o
o

READFILE ENDP

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

Operand Possibilities

The 8086 instruction set (described in Chapter 5) provides several different ways to
address operands. Most two-operand instructions allow either memory or a register
to serve as the first, or "destination", and either a memory, register or a constant
within the instruction to serve as the second, or "source" operand. Memory-to
memory operations are excluded.

Operands in memory can be addressed directly with a 16-bit offset address, or
indirectly with base (BX or BP) and/or index (SI or D I) registers added to an
optional 8- or 16-bit displacement constant.

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any operand except
immediate constants. (For instance, there is no Push Immediate instruction.) Vir
tually all 8086 operations may specify either 8- or 16-bit operands.

Registers

Registers are classed as follows:

• Segment 16-bit (CS, DS, SS, ES)

• General 16-bit (AX, BX, CX, DX, SP, BP, SI, DI)

• General 8-bit (AH, AL, BH, BL, CH, CL, DH, DL)

• Base and Index 16-bit (BX, BP, SI, DI)

• Flag I-bit (AF, CF, DF, IF, OF, PF, SF, TF, ZF)

As described above, segment registers contain segment paragraph numbers. These
registers are programmer-initialized, and beyond that are of no concern to the pro
grammer except as described in Chapter 2 under "Segment Prefix".

Each of the general 8-bit, general 16-bit, and pointer and index 16-bit registers can
participate in arithmetic and logical operations. Thus, although AX is frequently
referred to as "the accumulator", the 8086 has eight distinct 16-bit accumulators
(AX, BX, CX, DX, SP, BP, SI, DI) and eight distinct 8-bit accumulators (AH, AL,
BH, BH, CH, CL, DH, DL), although each 8-bit accumulator is either the high
order byte (H) or the low-order byte (L) of AX, BX, CX, or DX.

The flags are updated after each instruction to reflect conditions detected in the pro
cessor or any accumulator. Appendix C describes flag operation. The instruction
encyclopedia of Chapter 5 lists the flags affected for each instruction. Appendix J
provides a summary of the instructions, including how flags are affected.

The flag-register mnemonics stand for:

AF - Auxiliary-carry
CF - Carry
OF - Direction
IF - Interrrupt-enable
OF - OverflOW

PF - Parity
SF -Sign
TF - Trap
ZF -Zero

•

1-11

Overview of the MCS-86 Macro Assembly Language 8086 Assembly Language

1-12

Addressing Modes

Operands (data items) can be addressed several different ways using various com
binations of the following:

• Base registers - BX and BP

• Index registers - SI and DI

• Displacement - 8- or 16-bit value added to a base and/ or index register

• Direct offset - 16-bit address without a base or index register

Using two-operand instructions (e.g. MOV, ADD, SUB, AND, OR, etc.), the
source (rightmost) operand can be an immediate value (a constant contained in the
instruction itself, such as MOV AX, 5), a register, or a memory reference. When the
source is an immediate value, then the destination (leftmost) operand can be either a
register or a memory reference.

If the source operand is not an immediate value, then one of the two operands must
be a register. The other can be either a register or a memory reference.

When no register is specified in addressing a data item, the reference is termed
direct. Examples:

ADD SUM, OX ; SUM is addressed by 16-bit direct offset.
MOV BL, JONES.HTFT ; Offset of JONES plus HTFT is 16-bit direct offset.

When a register is specified in addressing a data item, the reference is termed
indirect. Examples:

ADD SUM[BX], OX
MOV AX, [BP][SI]
OR AL, [BX][SI] + 20
MOV [BP][SI + 2], CH
MOV [BX-1][SI + 2], OX
XOR BITS[BP][DI], AH
MOV AL, BITS[BX][DI + 1]

; Dest. is base reg. plus 16-bit displacement.
; Source is sum of base reg. and index reg.
; Source is sum of base reg., index reg., 8-bit disp.
; Dest. is sum of base reg., index reg., 8-bit disp.
; Dest. is sum of base reg., index reg., 8-bit disp.
; Dest. is sum of base reg., index reg*, 16-bit disp.
; Source is sum of base reg., index reg., 16-bit disp.

The rules for specifying valid operand expressions are detailed in Chapter 4,
"Accessing Data".

Macros

The Macro Processing Language (MPL) provides a way for you to define shorthand
function names for arbitrary text strings: constants, expressions, operands, direc
tives, one or more instructions, comments, and so on. Moreover, you can define
your functions using parameters, so that if you define a function to perform text
string replacement of an instruction, say:

PLOP: MOV FOO[BX][SI].FIELDC, WHATSIS XOR MASK DUKE; Second operand immediate.

You can define any or all of the fields of the instruction to be parameters of the
function. And, since you can nest function calls, you can build a side-file of your
most frequently used operators, operands, expressions, mnemonics, labels, com
ments, and instruction sequences to use as you see fit.

You can use MPL to create data definition directives as well, and thus build a library
of macro calls for defining bytes, words, doublewords, strings, records, and struc
tures. A macro-time console 110 facility gives you the opportunity to assemble
interactively.

8086 Assembly Language Overview of the MCS-86 Macro Assembly Language

An example in Chapter 7 shows how you can define an MPL function to inter
actively define, allocate storage for, and initialize a record array.

MPL's built-in functions include many of the string-manipulation capabilities
heretofore available only in high-level languages, and a few that you might not be
familiar with, such as MATCH, which you can use to parse strings.

MPL can be as simple or as complex as you want it to be; it's simply a question of
what functions you want to define. And, in combination with the program- and
data-structuring facilities of the MCS-86 Assembly Language, program develop
ment time can rival that of the high-level languages, without the concomitant expen
sive overhead of burgeoning memory requirements and inefficient code.

1-13

CHAPTER 2
STRUCTURING PROGRAMS

This chapter describes how to structure your MCS-86 Assembly Language programs
according to the following topics (and their associated directives):

• Segmentation control and addressability (the SEGMENT lENDS, ASSUME,
and GROUP directives), including loading of segment registers, coding segment
prefixes, and string instruction considerations (e.g. MOVS, MOVSB, MOVSW)

• Label definition (the LABEL directive)

• Procedure definition (the PROC, ENDP directives)

• Program linkage (the NAME, END, PUBLIC, and EXTRN directives)

• Location counter control (the ORG directive and the '$' symbol)

The EQU directive is defined and described in Chapter 4.

Chapter 1 introduces the concepts of segments and procedures. It is recommended
that you read those sections first. Appendix L, when folded out, shows the sample
program listing SAMPLE.LST containing examples of the SEGMENT lENDS,
ASSUME, PROC/ENDP, NAME, END, and EXTRN directives. This chapter
contains examples as well.

Relationship of Segmentation to Assembly Modules

Your assembly module can result in:

• A part of a segment

• A segment

• Parts of several segments

• Several segments

or a combination of these, depending on your use of SEGMENT lENDS directives.
After assembly, you can combine segment fragments having the same name, and
entire segments having appropriate combinability characteristics, using the LINK86
program, as described in MCS-86™ Software Development Utilities Operating
Instructions for ISIS-II Users, Order No. 9800639.

Segmentation Control and Addressability

Formats of the SEGMENT lENDS Directives

At run-time, each instruction and each variable of your program lies within some
segment. If you do not name a segment, the assembler creates one, and names it
??SEG. To name your own segments, as well as to control their alignments, com
binability, and contiguity (adjacency), you need the SEGMENT and ENDS direc
tives, whose formats are as follows:

[seg-name] SEGMENT [align-type] [combine-type] ['c1assname']
o
o
o

[seg-name] ENDS

2-1

Structuring Programs 8086 Assembly Language

2-2

where the optional fields, if present, must be in the order shown, and:

align-type

specifies on what sort of boundary the segment must be located. The choices are:

1. PARA (the default) - specifies that the segment begins on- a paragraph
boundary, i.e., an address divisible by 16 (that is, least significant hexadecimal
digit equal to OH).

2. BYTE - specifies that the segment can begin anywhere.

3. WORD - specifies that the segment begins on a word boundary, i.e. an even
address (least significant bit equal to OB).

4. PAGE - specifies that the segment begins on a page boundary (an address
whose two least significant hexadecimal digits are equal to OOH). This control is
included for 8080 compatibility.

5. INP AGE - specifies that the entire segment occupies less than 256 bytes and
that, when located, it must not overlap a page boundary. (Page boundaries
are OOH, 100H, 200H, ... , OFFFOOH.) This control is included for 8080
compatibility.

combine-type

specifies how this segment may be combined with other segments for linking and
locating. For details on comb inability using LINK86, refer to MCS-86™ Software
Development UtJ1ities Operating Instructions for ISIS-II Users, Order No. 9800639.

The choices for combine-type are:

1. Not Combinable (Default) - If no combine-type is specified, the assembler
assumes that this segment is not intended to be linked (using LINK86) with
other segments. (If such an attempt is made, LINK86 will issue an error
message.)

2. PUBLIC - specifies that this segment will be concatenated (made adjacent) to
others of the same name when linked. You control the concatenating order dur
ing linkage using the LINK86 program.

3. COMMON - specifies that this segment and all other segments of the same
name that are linked together (using LINK86) will begin at the same address,
and thus overlap (as in a FORTRAN COMMON). The length of a linked
COMMON is the maximum of the linked segments.

4 . AT expression - specifies that this segment is to be located at the 16-bit
paragraph number evaluated from the given expression. For example, if you
specify AT 4444H, the segment begins at paragraph 4444, or absolute memory
address 44440H. The expression can be any valid expression resulting in a con
stant (see "Expressions", Chapter 4), but no forward references are allowed.

5 . STACK - specifies that this segment is to be part of the run-time stack
segment, accessed last-in first-out (LIFO) using the assembler instructions
PUSH, POP, CALL, INT, IRET, and RET. Stack segments are overlaid
against high memory (all begin at the same address) and grow "downward".
The storage allocated to the stack segment is the sum of storage allocations for
each individual segment, since each might fill its own portion.

6. MEMORY - specifies that this segment is to be located "above" (at a higher
address than) all other segments being linked together. If several segments
having the combine-type MEMORY are linked together, only the first one
encountered is treated as a MEMORY segment; all others are treated as
COMMON segments.

8086 Assembly Language Structuring Programs

'classname'

specifies a classname for the segment, and must be enclosed in single quotes. Speci
fying a classname gives you another means of collecting similarly specified segments
at locate-time. (The first means is by segment name.)

Segments generated by the PL/M-86 compiler are given the following predefined
classnames:

• CODE

• CONST

• DATA

• STACK

• MEMORY

If you are not linking or locating with PL/M-86 modules, you are free to make up
your own classnames. By specifying a classname, you can manipulate the class of
segments (possibly including PL/M-86-generated segments) at locate-time. (Refer to
the manual, MCS-86™ Software Development Utilities Operating Instructions for
ISIS-II Users, Order No. 9800639, for descriptions of how LINK86 and LOC86
treat classnames.)

"Nested" or "Embedded" Segments

Segments are never physically nested or embedded, although it is permissible for you
to code a portion of a segment, start another and end it, and then resume coding the
first. When this is done, the assembler concatenates (appends) the second portion of
the segment to the first. The segments are said to be lexically nested (but not
physically nested).

For example, the following sequence of code is permitted, and results in two
separate segments (DATAl will not be embedded in CODEl):

CODE1 SEGMENT
ASSUME CS:CODE1, DS:DATA1

o
o
o

DATA1 SEGMENT
o
o
o

DATA1 ENDS
o
o
o

CODE1 ENDS

Overlapping segments are not permitted; that is, each lexically nested segment (i.e.,
one lies' 'inside" another in the program listing) must be ended with an ENDS direc
tive before the enclosing SEGMENT directive is closed by an ENDS directive.

2-3

Structuring Programs 8086 Assembly Language

2-4

For example, the following is NOT permitted:

CODE3 SEGMENT
o
o
o

CODE4 SEGMENT
o
o
o

CODE3 ENDS
o
o
o

CODE4 ENDS

; Start segment.

; Start segment.

; End first inside second - *** ERROR ***

The ASSUME Directive

At run-time, every 8086 memory reference requires two components in order to be
physically addressed by the hardware:
1. A 16-bit segment base value which must be contained in one of the four segment

registers CS, DS, ES, or SS, and
2. A 16-bit effective address giving the offset of the memory reference from the

segment base value.

The ASSUME directive builds a symbolic link between:
• Your assembly-time definition (placement) of instructions and data in logical

segments (between SEGMENT lENDS pairs), and
• The run-time event of physically addressing instructions and data in memory

through segment registers.

In other words, ASSUME is a "promise" to the assembler that instructions and data
are run-time addressable through certain segment registers. The actual loading and
manipulation of values in segment registers is the responsibility of the programmer;
ASSUME enables the assembler to check that every data item and every instruction
is addressable through the segment registers.

The format of the ASSUME directive is:

ASSUME seg-reg:seg-name [, ... J

or:

ASSUME NOTHING

where:

• Seg-reg is one of CS, DS, ES, or SS

• Seg-name is:
1. A segment name, as in:

ASSUME CS:CODE4, DS:DATA4

2. A previously-defined GROUP name, as in:

ASSUME DS:DGROUP2, CS:DGROUP2

3. The expression SEG variable-name or SEG label-name, as in:

ASSUME CS:SEG BEGIN, DS:SEG FOO

4. The keyword NOTHING, as in:

ASSUME ES:NOTHING

8086 Assembly Language Structuring Programs

Note that ASSUME NOTHING is equivalent to:

ASSUME CS:NOTHING, DS:NOTHING, ES:NOTHING, SS:NOTHING

A given "seg-reg : seg-name" pair stays in effect until a subsequent ASSUME
assigns a different segment (or NOTHING) to the given "seg-reg". The keyword
NOTHING cancels any previous ASSUMEs for the indicated registers. If a
variable's segment-name is not specified in an ASSUME directive currently in effect,
each reference to that variable must specify a segment prefix, or it will be flagged as
an error. (See "Segment Prefix" in this chapter.)

Most of the time, you will need an ASSUME directive of the form:

ASSUME CS:code-segment, DS:data-segment

as, for example, in the following:

ARRAYS SEGMENT
FOO DW 100 DUP (0) ; Array of 100 words, initially O's.
SAl DW 500 DUP (0) ; Array of 500 words, initially O's.
AXOLOTL DW 800 OUP (0) ; Array of 800 words, initially O's.

ARRAYS ENDS
SUM SEGMENT

ASSUME CS:SUM, DS:ARRAYS ; SUM is addressable through CS.
START: MOV AX, FOO ; FOO addressable - defined in ARRAYS.

ADD AX, SAl ; SAl addressable - defined in ARRAYS.
MOV AXOLOTL, AX ; AXOLOTL addressable - defined in ARRAYS.

SUM ENDS

The ASSUME directive in the above example tells the assembler that:

1. The instructions in the segment "SUM" are addressable through CS. Note that
since CS is not loaded by this program fragment, we are assuming that CS is set
to point to the segment SUM before control is passed to it (through the label
START). In general, CS is initialized by means of a long jump, long call, inter
rupt, or hardware RESET. Each of these loads a new segment base address into
CS.

2. The symbolic references FOO, BAZ, and AXOLOTL are addressable through
DS (they are defined in the segment ARRAYS).

As a second example, if F002 were defined in SUM, BAZ2 in ARRAYS, and
AXOLOTL2 in a third segment POGUE, addressed by ES, you would code:

SUM SEGMENT
ASSUME CS:SUM, DS:ARRAYS, ES:POGUE

F002 DW 5
START: MOV AX, F002 ; F002 addressable-defined in SUM.

ADD AX, SAl2 ; SAl2 addressable-defined in ARRAYS.
MOV AXOLOTL2, AX ; AXOLOTL2 addressable-defined in POGUE.

SUM ENDS

Your ASSUME thus "covers the bases", and you have fulfilled the "promise" that
ASSUME makes to the assembler:

Every instruction and every named data item is addressable through the seg
ment registers specified in the ASSUME directive, unless overridden by a seg
ment prefix. Actual loading of the segment registers is the responsibility of the
programmer.

2-5

Structuring Programs 8086 Assembly Language

2-6

Loading Segment Registers

As stated earlier, the CS register can be loaded by:

• A long jump (JMP)

• A long call (CALL)

• An interrupt (INT n, or external interrupt)

• A hardware RESET

The addressability of long jumps/calls is discussed in this chapter under "Label
Addressability" .

The instruction INT N causes the instruction pointer (IP) to be loaded with the 16-
bit value stored at absolute memory location 4*N, and causes the CS register to be
loaded with the 16-bit value stored at absolute memory location 4*N + 2.

A hardware RESET sets CS to OFFFFH and IP to O.

You load the stack segment register, SS, as follows:

STACK1 SEGMENT
DW 1000 DUP (0) ; 1000-word stack of zeroes initially.

STACK_BOTTOM LABEL WORD; Stack grows toward low memory
STACK1 ENDS
STACK_INIT SEGMENT

ASSUME CS:STACK_JNIT
MOV AX, STACK1
MOV SS, AX ; Never move immediate value to seg-reg.
MOV SP, OFFSET STACK_BOTTOM; bottom = top initially.

STACK_INIT ENDS

The next example shows how to load DS. ES can be loaded similarly.

DATA and DATA2 are segment names, which are treated as numbers and assem
bled as immediate values. Thus, segment names do not require segment registers in
order to be addressable. Note that DS is loaded using the first two instructions in
segment CODE, and ES by the next two. The segment DATA appears in an
ASSUME directive (and is declared to be addressed by DS), but segment DATA2 is
not covered by an ASSUME.

But Faa (in DATA) and BAZ (in DATA2) both need to be covered by ASSUME.
So, although the segment registers are handled properly by the code, the assembler
still reports an error for the line MOV BAZ, 99 because BAZ is not covered by either
ASSUME.

DATA SEGMENT
FOO DB 0
DATA ENDS

DATA2 SEGMENT
SAZ DB
DATA2 ENDS

CODE SEGMENT
ASSUME CS:CODE
MOV AX,DATA ; Move base of segment DATA
MOV DS,AX ; Into segment register DS.
MOV AX,DATA2 ; Move base of segment DATA2
MOV ES,AX ; Into segment register ES.

8086 Assembly Language Structuring Programs

ASSUME
MOV

MOV

DS:DATA
FOO, 99

BAl,99

; Inform assembler of base value in DS.
; Addressable, since FOO is in DATA,
; and base of FOO is in DS.
; GIVES AN ERROR - BAl is not
; addressable, since we haven't told
; the assembler that ES contains
; the base value of DATA2.

When your program references a variable without a segment prefix, the assembler
determines the segment containing that variable, and then examines your ASSUMEs
to determine which segment register addresses that segment. If no ASSUME
specifies the required segment, the assembler issues an error message. If ASSUME
specifies the required segment, or if a segment prefix is specified with the variable
reference (as described in the next paragraph), the assembler generates the correct
code to address the given variable.

Segment Prefix

If a reference to a named variable is not covered by an ASSUME directive, you can
inform the assembler of the variable's segment register by explicitly coding a seg
ment prefix of the form:

seg-reg:

where "seg-reg" is one of CS, DS, ES, or SS in front of the variable reference, as in:

DS:BAl

Although this construct has the advantage of not requiring an ASSUME directive
for the variable reference, it has two disadvantages:

1. Its scope is one instruction; that is, in lieu of an ASSUME, the segment prefix
must be coded for every reference to a variable.

2. It is more error-prone than ASSUME, since it refers to a segment register and
not to a segment name, and also because it is easy to leave out.

Thus, the following are equivalent, and assemble correctly:

SUM SEGMENT
ASSUME CS:SUM,DS:ARRAYS

MOVAX, FOO
ADD AX, BAl
MOV AXOLOTL, AX

SUM ENDS

SUM SEGMENT
ASSUME CS:SUM

MOV AX, DS:FOO
ADD AX, DS:BAl
MOV DS:AXOLOTL, AX

SUM ENDS

where ARRAYS, for both assemblies, is defined to be:

ARRAYS SEGMENT
FOO DW
BAl DW
AXOLOTLDW

ARRAYS ENDS

100 DUP (0); 100 words O's
500 DUP (0); 500 words O's
800 OUP (0); 800 words O's

The segment prefix is like a temporary ASSUME for the single instruction in which
it is used. The segment register assignment specified in an ASSUME directive,
however, stays in effect until a subsequent ASSUME directive reassigns the segment
register (or deassigns it using ASSUME NOTHING).

2-7

Structuring Programs 8086 Assembly Language

2-8

Anonymous References

Variable references such as:

[BX]
[BP]
WORD PTR [DI]
[BX].FIELDNAME
BYTE PTR rBP]

are termed "anonymous references" because no variable name is given from which
a segment can be determined. (The structure field in the fourth example has a type
and offset, but no segment associated with it.)

Segment registers for anonym'Ous (also called "split") references are determined by
hardware defaults, unless you explicitly code a segment prefix operator. The hard
ware defaults are:
• [BX] normally defaults to segment register DS
• [BP] normally defaults to segment register SS
• When an index register is used without a base register (as in WORD PTR [DI] or

[SI + 5]), the default segment register is DS
• When an index register is used with a base register (as in [BP][SI] or BYTE PTR

[BX][DI]), the default segment register is that of the base register (SS or DS, in
these cases).

There are two variable-referencing exceptions for defaults:
1. Operations which implicitly reference the stack (PUSH, POP, CALL, RET,

INT, and IRET) always use SS, and cannot be overridden. (The construct [SP]
is not an addressing mode, and thus you cannot assemble e.g. MOV [SP], BX,
much less override it.)

2. String instructions always use ES as a segment register for operands pointed to
by DI.

Special care must be taken to ensure that the correct segment is addressed when an
anonymous offset is specified. Unless you code a segment prefix override, the hard
ware default segment will be addressed, and the anonymous offset applied to it.

Thus, if a programmer's declared variables all reside in segment SEG 1:

SEG1 SEGMENT
o
o
o

FOO DW 500 DUP (0) ; 500 words of O's
o
o
o

SEG1 ENDS

and if his ASSUME directive in segment CODE! is as follows:

ASSUME CS:CODE1, DS:SEG1

then all references to named variables in segment SEG 1 will assemble correctly. But
suppose our programmer elects to use BP as an index register to access elements of
Faa in SEG 1, as follows:

MOV BP, OFFSET FOO ; Load BP with offset of FOO in SEG1.
MOV AX, [BP] ; Put first word of FOO into AX.

; No assembly-time error, but wrong
; seg-reg (SS instead of DS) at run-time.

8086 Assembly Language Structuring Programs

Because no variable name is present (for ASSUME to check), and because no seg
ment override prefix is specified, the [BP] reference, by default, specifies an offset
address that will be combined with the SS segment register, and not the DS, as
intended. The code should read:

MOV BP, OFFSET FOO
MOV AX, DS:[BP)

; Load BP with offset of FOO in SEG1.
; Use DS seg-reg for SEG1, put
; first word of FOO into AX.

Figure 2-1 shows single- and double-in.dexed anonymous references for the four cur
rent segments.

CS: [BP + DIJ os: [BP + DIJ

cs: [BP + SIJ os: [BP + SIJ

cs: [BP] os: CBPJ

cs: [BX +DIJ [BX + OIJ

cs: [BX + SI] [BX+ SIJ

cs: [BXJ

cs: [DIJ

CS os ES SS

NOTE: USE PTR OPERATOR TO ACCESS ANONYMOUS VARIABLE TYPES
UNLESS OTHER OPERAND DETERMINES TYPE:

MOV AX, [BXJ; AX IMPLIES WORD
MOV AL, SS: [BX + DIJ; BYTE

BUT MOV WORD PTR [BXJ, 0

ES: [BP + DIJ [BP + DIJ

ES: [BP + SIJ

ES: CBPJ

ES: [BX + DIJ

ss: [BX + SIJ

ss: [BXJ

ss: [DIJ

ss: [SIJ

KEY:

--..... 16-BIT SEGMENT
BASE VALUE

~ 16-BIT OFFSET
HARDWARE
DEFAULT

~ BYTE (WORD
ADDRESSABLE
(AS SHOWN)
WITHOUT SEGMENT

P@ifIi) ~;~~~~~: PREFIX

SEGMENT
OVERRIDE PREFIX

BP

Figure 2-1. Anonymous Variable References and Segment Prefix Overrides

Examples Using Anonymous (Split) Variables

ADD AX, [BP) is t;he same as ADD AX, SS:[BP)
MOV [BX+2), AX is the same as MOV DS:[BX+2], AX
XOR [BX + SI], ex is the same as XOR DS:[BX + SI], ex
AND [BP+SI], ex is the same as AND SS:[BP + SI], ex
MOV BX, [DI).FLD is the same as MOV BX, DS:[Dlj.FLD
AND [SI], ex is the same as AND DS:[SI], ex
SUB [SPj, DX is the same as SUB SS:[SP], DX

ADD AX, DS:[BPj overrides ADD AX, SS:[BPj
MOV eS:[BX+2], AX overrides MOV DS:[BX+2], AX
XOR SS:[BX+SI], ex overrides XOR DS:[BX + SI], ex
AND DS:[BP+SI], ex overrides AND SS:[BP + SI], ex
MOV BX, eS:[Dlj.FLD overrides MOV BX, DS:[DIj.FLD
AND ES:[SI], ex overrides AND DS:[SI], ex

2-9

Structuring Programs 8086 Assembly Language

2-10

String Instructions and Memory References

Table 2-1 shows the mnemonics of the string instructions, which can be coded
without operands (MOVSB, MOVSW, etc.) or with operands (MOVS, etc.).

Table 2-1. String Instruction Mnemonics

Operation Mnemonic if Mnemonic if Mnemonic if
Being Operand Is Operand Is Symbolic Operands

Performed Byte String Word String Are Coded·

Move MOVSB MOVSW MOVS
Compare CMPSB CMPSW CMPS
Load ALI AX LOOSB LOOSW LOOS
Store from ALI AX STOSB STOSW STOS
Compare to ALI AX SCASB SCASW SCAS

*If symbolic operands are coded, the assembler can check their addressability. Also, their
TYPEs determine the opcode generated.

The string instructions are unusual in several respects:

1. Before coding a string instruction, you must:

• Load SI with the offset of the source string

• Load DI with the offset of the destination string

2. One of the forms of REP (REP, REPZ, REPE, REPNE, REPNZ) can be coded
immediately preceding (but separated from by at least one blank) the primitive
string operation mnemonic (thus, REPNZ SCASW is one possibility). This
specifies that the string operation is to be repeated the number of times deter
mined by CX. (Refer to instruction descriptions in Chapter 5.)

3. Each can be coded with or without symbolic memory operands.

• If symbolic operands are coded, the assembler can check the addressability
of them for you.

• Anonymous references which use the hardware defaults should be coded
using the operand-less forms (e.g. MOVSB, MOVSW), to avoid the
cumbersome (but otherwise required):

MOVS ES:BYTE PTR [01], [SI]

as opposed to the simple:

MOVSB

• Anonymous references which do not use the hardware defaults require both
segment and type overriding:

MOVS ES:BYTE PTR [01], SS:[SI]

• Never use [BX] or [BP] addressing modes with string instructions.

4. If the instruction mnemonic is coded without operands (e.g. MOVSB,
MOVSW), then the segment registers are as follows:

• SI defaults to an offset in the segment addressed by DS

• DI is required to be an offset in the segment addressed by ES

Thus, the direction of data flow for the default case in which no operands are
specified is from the segment addressed by DS to the segment addressed by ES.

5. If the instruction mnemonic is coded with operands (e.g. MOVS, CMPS), the
operands can be anonymous (indirect) or they can be variable references.

8086 Assembly Language Structuring Programs

Groups (the GROUP directive)

You can use the GROUP directive to specify that certain segments lie within the
same 64K bytes of memory. The format of this directive is:

name GROUP segnam [, ...]

where:

name is a unique identifier

segnam can be:

• The name field of a SEGMENT directive.

• An expression of the form SEG variable-name (refer to the SEG operator
defined in Chapter 4).

• An expression of the form SEG label-name (refer to the SEG operator defined
in Chapter 4). .

[, ...] denotes an optional list of segnams separated by commas.

The GROUP directive defines a group with the given name as a collection of the
given segnam's. You can use the group-name is almost all the ways you can use a
segment name, except that a group-name cannot appear as a segnam in another
GROUP statement.

Three uses are noteworthy:

1. As an immediate value, loaded first into a general register, and then into a
segment register (never load an immediate value directly into a segment
register):

MOV AX, OGROUP
MOV OS, AX

This loads the gro~p base into DS. The group base is computed by LOC86 as a
base value which covers all the named segments.

2. In an ASSUME statement, to indicate that all the segments named in the group
are covered by the segment register:

ASSUME OS:OGROUP
3. As an operand prefix, to specify that the group base value or offset is to be used

(rather than the default segment base value or offset), as in the following:

MOV BX, OFFSET OGROUP:FOO

OW OGROUP:FOO

DO OGROUP:FOO

Refer to the OFFSET operator in Chapter 4 for further information on how it per
tains to groups.

The assembler cannot check to see if all the segments named will fit in 64K, but it
causes such a check to be made by LOC86. If they do not fit, LOC86 will tell you.
This directive does not specify where segments are loaded; the classname parameter
in the SEGMENT directive does that. As an example of the GROUP directive:

BUNCH GROUP OATA2, STACK3

The appropriate ASSUME directive could be:

ASSUME CS:COOE1, OS:BUNCH, SS:BUNCH

2-11

Structuring Programs 8086 Assembly Language

2-12

Forward references to GROUPs are not permitted.

If contiguity (adjacency) of segments is desired, the classname parameter of the
SEGMENT directive can achieve this goal more easily than use of the GROUP
directive.

The order of the segments in the GROUP directive is not necessarily the order of the
segments in memory. It is possible to address all the segments in a group from a
single segment register (CS). However, great care should be taken in doing this,
because offsets within the group do not correspond to offsets within a segment,
notably assembly-time offsets. You should debug using LOC86 offsets, not ASM86
offsets.

LABEL Directive

The LABEL directive creates a name for the current location of assembly, whether
data or instruction. The format of this directive is:

name LABEL type

where name is assigned the following attributes:

1. Segment - the current segment being assembled

2. Offset - the offset within the current segment

3. Type - the operand to LABEL

and type can be:

• NEAR or FAR, if executable code follows (usually). The label can be used in
jumps or calls, but not in MOVs or other data manipulation instructions.
Subscripting labels (of type NEAR or FAR) is not allowed.

• BYTE, WORD, DWORD, structure-name, or record-name, if data follows
(usually). You can subscript an identifier declared using the LABEL directive if
the directive assigns it a variable type, e.g. BYTE, WORD, etc. (See the example
below under "Using LABEL with Variables. ") In this case the name is a
variable and is valid in MOVs, ADDs, etc., but not directly in jumps or calls.
(An indirect jump or call uses a variable of type WORD or DWORD, as
described in Chapter 4.)

Usage, rather than the assembly language, dictates the two instances of "(usually)"
above in LABEL type declaration. The language does not prevent you from coding a
NEAR or FAR label to precede data definition, nor does it prevent you from coding
BYTE, WORD, etc. labels preceding code. However, great care should be taken in
using data as code or vice versa.

The label/variable attributes segment, offset, and type are fully described in
Chapter 3, "Defining and Initializing Data."

A name defined to be a variable using the LABEL directive is assigned LENGTH=I
and SIZE=TYPE (BYTE, WORD, DWORD, or N for structures, where N is the
number of bytes defined for a given structure).

The principal uses for LABEL are:

1. To access variables (particularly arrays) by BYTE or WORD as needed. (An
example is given below.)

2. To define a FAR label.

3. To provide an existing NEAR label (one with a colon) with a label having the
same segment and offset values, but with the FAR distance attribute, so that the
code is accessible from other segments as well. (An example is given below.)

8086 Assembly Language Structuring Programs

Using LABEL with Variables

The LABEL directive can be used to associate another name and type to a location
so that the data can be referenced in another way without using the PTR operator
(defined in Chapter 4). For example, if you need to treat the same area of memory as
both a byte and word array, you could define:

ARRAYB
ARRAYW

LABEL
OW

BYTE
1000 DUP (0)

Then in referencing this array, you could code:

ADD AL, ARRAYB[99]
ADD AX, ARRAYW[98]

Using LABEL with Code

; Add 100th byte in array to AL.
; Add 50th word in array to AX.

A label definition for types NEAR and FAR is allowed only when the segment cur
rently being assembled is addressed by the CS segment register. This means that you
must provide an ASSUME directive of the form:

ASSUME CS:name

where "name" is either the name of the current segment or the name of a group con
taining the current segment. (If a group-name is used, the label's offset is taken from
the base of the group.)

When you already have a NEAR label (one with a colon) in your code, and you want
to make that piece of code accessible from other segments, you can insert a LABEL
directive (with a different name) and declare it FAR (you will also need a PUBLIC
directive if access is desired from code in another assembly module):

ADD_MORE_ENTRY _POINT LABEL FAR
ADD_MORE: ADD AX, FOO[BX]

o
o
o

Label Addressability

Labels, as the operands of jumps and calls, present a much simpler case (to you and
to the assembler) than variables (data), since the only relevant segment register is
CS. The addressability of a label depends on how it is declared and how it is used:

1. Declaration - Is the target label (the target being jumped to or called) declared
as NEAR or FAR?

2. Use - Are the jump/call instruction and its target assembled under the same
ASSUME CS: directive?

Table 2-2 summarizes what the assembler generates in each case:

Table 2-2. Addressability of Jump/Call Target Labels

Target Label Target Label
Declared NEAR Declared FAR

Jump/Call Assembled NEAR Jump
Under Same ASSUME CS: NEAR Jump/Call FAR Call

Jump/Call Assembled FAR Jump
Under Different ASSUME CS: ***ERROR*** FAR Call

2-13

Structuring Programs 8086 Assembly Language

2-14

In using this table, recall that NEAR jumps and calls are assembled with a 2-byte
displacement (with wraparound, so that all 64K-I bytes of a segment are
addressable), whereas FAR jumps and calls are assembled using a 4-byte displace
ment (l6-bit offset and 16-bit paragraph number, so that the entire one million bytes
of memory are addressable).

The assembler uses the ASSUME CS: information to ensure that instructions at the
target of the jump or call are in fact addressable when control is transferred.
Moreover, if the ASSUME CS: information is different at the target, and the target
is declared FAR, the assembler automatically generates a FAR (4-byte displacement)
jump or call to satisfy the target ASSUME CS: information.

Procedures (the PROC/ENDP Directives)

The assembly language provides procedures to implement the concept of
subroutines. Procedures can be executed in-line (control "falls through" to them),
jumped to, or invoked by a CALL. Calls are recommended as a better programming
practice.

The format of the PROC/ENDP directives is:

name

name

PROC
o
o
o

RET
o
o
o

ENDP

[NEAR I FAR]

where "name" is an identifier which must appear in both the PROC and ENDP
directives'. It is assigned type NEAR or FAR, whichever is specified. If neither is
specified, the type defaults to NEAR. You should specify FAR if the procedure will
be called from code which has another ASSUME CS value. The procedure type
determines whether RET is assembled NEAR (2-byte offset) or FAR (2-byte offset
and 2-byte segment base value).

Advantages of Using Procedures

Although any algorithm can be implemented without procedures, procedures are
recommended because:

• They form the basis for modular programming.

• They are easier to read, update, and document.

• They can comprise your program libraries.

• They can reduce your program's total object code.

Calling a Procedure

When you call a NEAR procedure, the instruction pointer (IP, the address of the
next sequential instruction) is automatically pushed on the stack, and control is
transferred to the first instruction in the procedure.

When you call a FAR procedure, the CS register is automatically pushed on the
stack first, then the IP, and control is transferred to the first instruction in the
procedure.

8086 Assembly Language Structuring Programs

Multiple entry points to a procedure are allowed; you should declare these as FAR
labels if they are referenced from another segment. If referenced only from their
own segment, the labels can default to NEAR. Entry points can be mixed NEAR
and FAR, but doing so requires great care, since all returns assembled will be of the
same type as the enclosing procedures.

Figure 2-2 shows procedure CALL/RET control flow.

KEY:

(START) CD ® 0
CAN BE FROM SP-SP-2 SP-SP-2 IP_ [SP]

HARDWARE RESET [SP] _IP [SP]- CS SP_SP+2
EXTERNAL INTERRUPT IP _ OFFSET ABC CS-SEG 2 CS- [SP]

INTN, SP-SP-2 SP_SP+ 2
CALL BX, [SP]_IP AND
NEAR/FAR IP- OFFSET XYZ SP_ SP+ 8

JUMP/CALL, (FOR RET 8)
BUT IN ANY CASE

CS- SEG 1
IP _ OFFSET OPENERS

Figure 2-2. CALL/RET Control Flow

Recursive Procedures, Nested Procedures,
and In-Line Procedures

0
IP_ [SP]
SP- SP+ 2

Procedures can call other procedures; the same rules for declaration, calling, and
returning apply.

A recursive procedure (a procedure which calls itself, or which calls another pro
cedure which in turn calls the first, etc.):

• Must be coded reentrantly; that is, it must manipulate its local variables on the
stack, using [BP] addressing modes

• Must discard its local variables from the stack before returning.

Recursion is not recommended when there is an obvious solution by iteration, i.e.,
internal looping.

The size of your stack segment determines the' 'nesting limit" - that is, how many
levels of calls can be nested. Remember that FAR calls take up two words on the
stack, and NEAR calls one word. Any values passed on the stack (and any local
variables stored on the stack) should also be taken into account. (For example, if

2-15

Structuring Programs 8086 Assembly Language

2-16

your procedure is called by another procedure that has placed a value (an argument,
sometimes called a parameter) on the stack, and your procedure issues a return
without popping that value off the stack, that argument will still be on the stack
after the return. Rather than having the calling procedure pop arguments after every
call, you can issue a RET 2 and the top 2 bytes of the stack will be discarded upon
returning. (See the description of RET in Chapter 5.)

If one procedure is declared within the PROC/ENDP directive-pair of another, that
procedure will execute in-line (control "falls through" to it) unless control is
directed around it using a jump or call. It is better programming practice to call a
procedure (and return from it) than to execute it in-line or jump to/from it. Jumps
and fall-throughs fail to take the stack into account, and this may result in returns to
unexpected locations.

Returning from a Procedure

There is no automatic or implicit return from a procedure. Returns are normally
specified using the RET instruction; returns from interrupt routines are specified
using the IRET instruction.

More than one RET (or IRET) instruction can appear in a procedure; the RET (or
IRET) instruction need not be the last in the procedure.

A return from a FAR procedure pops the word at the top of the stack into IP, then
pops the next word into CS, thus accomplishing the return of control to the next
sequential instruction following the point of call.

A return from a NEAR procedure pops the word at the top of the stack into IP, thus
returning control.

If the procedure (or any procedure it calls) uses the stack for storage of temporary
data items, these data items must be discarded (by popping or directly adjusting SP)
before (or during) the return; otherwise, the IP /CS registers will receive them upon
"return" -- which in this case may transfer control to an unexpected location.

Program Linkage Directives (NAME/END,
PUBLIC, and EXTRN)

MCS-86 relocation and linkage (R & L) facilities enable you to combine several dif
ferent assembly modules into a single load module for execution. (R & L facilities
are LINK86 and LOC86, described in MCS-86™ Software Development Utilities
Operating Instructions for ISIS-II Users, Order No. 9800641-03).

To identify intermodular symbolic references for program linkage, your assembly
module can use these three program linkage directives:

• NAME - assigns a name to the object module generated by this assembly.

• PUBLIC - specifies symbols defined in this assembly module whose attributes
are to be made available to other modules at link-time.

• EXTRN - specifies symbols defined in other assembly modules (and declared
PUBLIC by them) whose attributes are needed by this assembly module at
link-time.

NOTE
Unlike other assemblers, ASM86 interprets an EXTRN according to its con
text, i.e. placement. Refer to the section below, "Placement of EXTRNs"

8086 Assembly Language Structuring Programs

The NAME Directive

The NAME directive assigns a name to the object module generated by this
assembly. The format of the directive is:

NAME module-name

Example:

NAME MOD123

The NAME directive is not permitted a label. Thus,

MODNAME: NAME MOD123; Not acceptable

is INVALID.

If the NAME directive is miscoded or missing, the assembler supplies a default
module name consisting of the source file name. Thus, if no valid NAME directive
appears in a source file PSHBIT .S86, the resulting module name is PSHBIT.

The PUBLIC Directive

The PUBLIC directive specifies which symbols in this module are to be made
available to other modules at link-time. Its format is:

PUBLIC symbo1[, ...]

where symbol is defined in this assembly module to be a number, a variable, or a
label (including PROC labels).

For example,

PUBLIC FOO, AXOLOTL, GET_RECORD

The PUBLIC directive itself is not permitted a label. Thus,

OVER_HERE: PUBLIC BAZ ; Not acceptable

is INVALID.

PUBLIC directives can appear on any line of an assembly module. Any symbol
declared PUBLIC which is not defined is flagged as an error.

The EXTRN Directive

The EXTRN directive informs the assembler of the types, and, optionally, the seg
ment attributes of certain symbols which are referenced within this module but are
defined elsewhere, presumably in modules to be linked with this one. (Each must be
declared as PUBLIC in the module which defines it.) The linkage process supplies
the missing attributes - usually just the OFFSET, but potentially the SEG as well.

2-17

Structuring Programs 8086 Assembly Language

2-18

The format of this directive is:

EXTRN name:type [, ...]

where "name" is the symbol defined elsewhere

and "type" must match the declaration of "name" in the module declaring it
PUBLIC, and must be one of:

• BYTE, WORD, DWORD, structure name, or record name (for variables)

• NEAR or FAR (for labels or procedures)

• ABS (for pure numbers)

For example,

EXTRN FOO:WORD, BAZ:BYTE, COMPUTE_AVERAGE:FAR, LEN:ABS

where FOO is declared using DW or RECORD, BAZ is declared using DB or
RECORD, COMPUTE_AVERAGE is declared using PROC FAR or LABEL
FAR, and LEN appears as a value, for instance in an EQU directive (EQU is defined
and described in Chapter 4).

As with the other linkage directives, EXTRN cannot itself have a name. Thus
NOT_HERE EXTRN SIN is not allowed.

Placement of EXTRNs

Where you place an EXTRN for a given external symbol depends on whether you
know which segment contains the definition of the given external symbol. If a given
segment does not contain the definition of a symbol, do not place an EXTRN for
that symbol in any part of the given segment.

If you know the segment in which a given external symbol (variable or label) is
defined, declare it in an EXTRN directive inside another SEGMENT lENDS pair
using the same segment name. This sets the SEG attribute of all symbols in the
EXTRN list to the current segment. The external variable or label can then be
accessed in the same fashion as "normal" variables or labels.

If, however, you do not know the segment in which a given external symbol is
defined, declare it in an EXTRN directive at the top of your program, outside all
SEGMENT lENDS pairs.

Then, to address an external symbol so declared outside all segments:

1. Load the 16-bit segment part into a segment register using the SEG operator
(described in Chapter 4):

MOV AX, SEG FOO
MOV ES, AX

2. AND:

; Load segment base value into AX
; and thence to ES.
; (NEVER load immediate values
; directly into segment registers.)

• EITHER: Use an ASSUME with "SEG external-name" where the segment
name is normally required, e.g. ASSUME ES:SEG FOO. Then all subse
quent references to FOO (e.g. MOV BX, FOO) should assemble correctly.

• OR: Use a segment register override operator for each reference to that
external (e.g. MOV BX, ES:FOO).

In either case, make sure the segment register contains what you say it does.

8086 Assembly Language Structuring Programs

A Systematic Way to Handle Externals

A good programming practice to follow for declaring external labels and variables is
to create an INCLUDE file for each assembly module to contain the EXTRN
declarations for the symbols declared PUBLIC therein. The INCLUDE file should
contain SEGMENT PUBLIC/ENDS pairs for each segment and between them an
EXTRN directive listing the variables (with their types) for that segment. In doing
this, you make these variables and labels easily available to other assembly modules,
since the externals can now be referenced as if they were ordinary locally-defined
variables. For example:

DATA SEGMENT PUBLIC
EXTRN

DATA ENDS
BUFFER_SIZE:WORD, BUFFER:BYTE, ERROR_STATUS:BYTE

CODE SEGMENT PUBLIC
EXTRN

CODE ENDS
ADD __ TO_BUFFER:NEAR, OPEN_BUFFER:NEAR, CLOSE_BUFFER:NEAR

The END Directive

The END directive identifies the end of the source program and terminates the
assembler. The format is:

END [label-name]

where "expression" results in values for CS and IP. For example,

END START1

Exactly one END directive must appear in each assembly-language source file, and it
must be the last source statement. If it is not, remaining statements are ignored.

If the optional label-name is present, it is used as the starting address for program
execution. When several modules are to be linked together, only one can specify a
starting address. That module is the main module.

The Location Counter ($) and the ORG Directive

The location counter is the assembly-time counterpart of the instruction pointer.
That is, the location counter contains a value (symbolically represented by the
dollar-sign ($» that tells the assembler at what offset from the current segment to
assemble the next instruction or data item. If a segment is reopened with a
SEGMENT directive whose name-field was encountered before, the location
counter is set to the value that was saved when the last ENDS directive was
encountered for that segment.

You can set the location counter to a nonnegative number using the ORG directive.
Its format is:

ORG expression

where "expression" is evaluated modulo 65536 and must not contain any forward
references. You may include '$' (the current value of the location counter) in the
expression; for instance,

ORG OFFSET $ + 1000

2-19

Structuring Programs 8086 Assembly Language

2-20

adds the decimal value 1000 to the current value of the location counter. The effect
is to reserve 1000 uninitialized bytes from the last assembled byte.

It is not recommended that you specify values such as:

ORG OFFSET $ -1000

since the effect would be to overwrite your last 1000 bytes of assembly (or to re-ORO
high in the current segment, if $ - 1000 is negative).

The directive cannot be assigned a name or label; thus START: ORO 0 and SKIP
ORO 2000 are both invalid.

CHAPTER 3
DEFINING AND INITIALIZING DATA

This chapter describes how you define and initialize data items in your MCS-86
Assembly Language program. Chapter 1 highlights several data definition and
initialization features; it can be used as an adjunct to this chapter. Chapter 4
describes how to access data items as operands in instructions. Chapter 5 contains an
encyclopedia of instruction mnemonics.

Identifiers

Identifiers are used to name entities within programs such as data items, segments,
procedures, etc. An identifier has the following characteristics:

1. It starts with a-letter or one of the three special characters:

• Question mark (?), with hexadecimal value 3FH.

• Commercial at (@), with hexadecimal value 40H.

• Underscore (_), with hexadecimal value 5FH. (On some keyboards, this
character is represented by a back -arrow.)

2. It may contain letters, digits, and the three cited special characters.

3. It is considered unique only up to 31 characters, but can be any length.

Data Items and Attributes

The data items you define form a basis for the operands you code to your program
instructions and assembler directives, and therefore influence greatly the form your
program ultimately takes. Code manipulates the data values, but the forms that you
give data items, rather than values taken on, shape the code.

The various kinds of data items definable in a language are like different kinds of
containers for data; choosing the "right" containers for your program data makes
for more efficient and orderly transfer and manipulation of data, and hence better
code.

The attributes of data items are analogous to the accessibility and intended use of
containers.

This assembly language recognizes three basic kinds of data items-constants,
variables? and labels. A constant is simply a name associated with a pure number
which has no distinguishing characteristics other than its value. A constant has no
attributes.

Variables identify data items that are manipulated; they form the operands of MOV,
ADD, AND, MUL, etc.

Labels identify executable code; they form the operands of CALL, lMP, and the
conditional jumps.

Variables and labels have distinguishing characteristics called attributes, which
answer the questions:

• Where is the variable/label defined?
Because of the addressing scheme of the 8086, this is a two-part question:

1. In which SEGMENT is the variable/label defined?

3-1

Defining and Initializing Data 8086 Assembly Language

3-2

2. What is the OFFSET of the variable/label within that segment? That is,
how many bytes from the segment base does the definition of the
variable/label reside? (In traditional assemblers, variables and labels are
indistinguishable, and the offset of a variable/label is its only attribute.)

• How is the variable/label intended to be used?

For a variable, this means the declared size, in bytes, and is called the TYPE
attribute.

For a label, this refers to whether segments other than the label's "home" seg
ment can refer to it, and is called the DISTANCE attribute. (This concerns itself
with size, since it really means, "Does a reference to the label require a 2-byte
pointer or a 4-byte pointer?' ')

Data Definition Overview

You can define constants, variables, labels, structures, and records, Structures and
records are special cases of variables.

• A CONSTANT is a pure number without attributes, for example:

FOO EQU 5 ;Let FOO represent the constant 5.

This statement defines a value but no location or intended use for FOO, which
can be assembled as a byte (8 bits), a word (2 bytes), or a doubleword (4 bytes),
as needed. Thus the constantFOO has no attributes.

• A VARIABLE is defined to reside at a certain OFFSET within a specific
SEGMENT, and is declared to reserve a fixed storage-cell TYPE-a byte, a
word, a doubleword, or more (as for structures). For example, the statement:

BAZ OW '7 ;Declare BAZ a WORD having initial value 0007H.

is assembled in the current segment at an offset equal to the value of the location
counter ($), and reserves two bytes of memory. Notice that no colon is used to
define a variable.

• A LABEL is also defined at a certain OFFSET within a specific SEGMENT
(called here its "home" segment), and identifies executable code. If the label is
referenced only from within its "home" segment, it can be declared to have a
DISTANCE attribute of NEAR. A label can be implicitly declared by its
presence, suffixed by a colon, in front of a line of code; such a label is always
NEAR. If a CALL or JMP in another segment references the label, its
DIST ANCE attribute must be declared to be FAR. For example,

UPDATE ___ MASTER LABEL FAR ; JMP/CALL here from other segments
OPEN_M_FILE: MOV OX, BX ; JMP/cond'i. jump/CALL here from this

; segment.
o
o
o

Here the LABEL directive declares UPDATE_MASTER to be a FAR label,
meaning that code in another segment references it, presumably in a CALL or
JMP instruction. OPEN_M_FILE is also a label, since it is suffixed with a
colon and precedes code, but it is a NEAR label and can only be referenced
from this segment. UPDATE_MASTER and OPEN_M_FILE have the
same segment and offset attributes, but different distance attributes, since
OPEN_M_FILE is NEAR, and UPDATE_MASTER is declared FAR.

Labels can also "be declared using the PROC directive, described in Chapter 2.
Chapter 4 describes various ways to CALL and JMP tv labels.

8086 Assembly Language Defining and Initializing Data

The remammg kinds of data items-records and structures-are defined as
variables, in terms of bytes, words, and doublewords.

Expressions can evaluate to a constant (3*4+7), a variable (TABLE + 5), or a label
(GETBUF + 3); they are described at the end of Chapter 4.

Table 3-1 summarizes the attributes of data items.

Table 3-1. MCS-86™ Assembly Language Data Items

Data Item:

Identifies:

SEGMENT

OFFSET

3rd Attribute:

Pertains to:

Possibilities:

Defined using:

VARIABLE LABEL

Data Executable Code

For both variables and labels, the SEGMENT attribute is the "base value"
of the segment in which the variable or label is defined. This is a run-time
value which must be in a segment register in order for the variable or
label to be addressed. At assembly-time, the SEGMENT attribute is
represented by a segment name; the assembler ensures run-time
addressability of variables and labels by correlating ASSUME CS, DS, ES,
and SS (and segment prefix) information with variable and label
references. The 2-byte "base value" fields set up by the assembler can
be filled in at assembly-time, link-time, locate-time, or run-time, but
ultimately are destined for one of the segment registers. Segment "base
values" for labels are destined for CS, while those for variables may
eventually be loaded into CS, DS, ES, or SSe You can use the SEG
operator (see Chapter 4) to isolate the locate-time 16-bit segment base
value of a variable or label's segment.

For both variables and labels, the OFFSET attribute is the 16-bit value
representing the number of bytes from the base (start) of the segment in
which the variablellabel is defined, to the pOint of definition. Here the
run-time value may be different from the assembly-time value, depending
on the alignment and combine-type (see SEGMENT directive, Chapter 2)
of the segment. You can use the OFFSET operator (see Chapter 4) to
isolate the 16-bit offset value of a variable or label. When debugging, use
LOC86 offsets, not ASM86 offsets.

TYPE

Declared size

BYTE
WORD
DWORD
RECORD
STRUC

(or 1)

(or 2)

(or4)
(1 or 2)
(n)

DB (for bytes)
DW (for words)
DD (for doublewords)
record-name
structure-name

DISTANCE

Intrasegment reference(s)

NEAR if referenced only in
segment in which it is defined

FAR if referenced from any
other segments

Identifier followed by colon (:)
preceding code is a NEAR
label*. Declare FAR or (default)
NEAR with:

• LABEL directive
• PROC directive

* Not quite always. The RECORD definition (in this chapter) uses a colon to separate
field-name from field-width .. Also, the EXTRN directive uses a colon to separate iden
tifier and type/distance attribute. And ASSUME, of course, uses a colon to separate
seg-reg from seg-name.

3-3

Defining and Initializing Data 8086 Assembly Language

3-4

Constants

In general, constants can be binary, octal, decimal, hexadecimal, or ASCII, as
shown in table 3-2.

Table 3-2. Constants

CONSTANT TYPE RULES FOR FORMATION EXAMPLES

Binary A sequence of O's and 1 's followed by the 11 B
(Base 2) letter 'B' 10001111 B

Octal A sequence of digits 0 through 7 followed 77770
(Base 8) by either the letter '0' or the letter 'Q' 4567Q

77777Q

Decimal A sequence of digits 0 though 9, 3309
(Base 10) optionally followed by the letter '0' 33090

Hexadecimal A sequence of digits 0 through 9 and/or 55H
(Base 16) letters A through F followed by the letter 2EH

'H'. (Sequence must begin with 0-9) OBEACH
OFEH

ASCII Any ASCII string enclosed in quotes 'A', 'BC'
(More than 2 chars. valid for DB only.) 'UPDATE. EXT'

Permissible Range of Values

The permissible range of values for constants is given with the individual data defini
tion directives DB, DW, and DD. The maximum range of values a number can have
is -OFFFFH through OFFFFH. All assembly-time arithmetic operations are per
formed using signed two's complement arithmetic on 17-bit values.

Occurrence of Constants

Constants can appear as self-defining 8-bit or 16-bit values in an instruction, for
instance:

MOVAH,5
MOV AX, 256

; 8-bit immediate value.
;16-bit immediate value.

Or they can appear as values assigned to symbols, using the EQU directive:

FIVE EQU 5
MOVAH, FIVE

;5 used wherever FIVE referenced.
;Assembles the same as MOV AH, 5.

These constants are interpreted as decimal constants since no other base is specified.
EQU is fully defined at the end of Chapter 4.

Basically, its format is:

symbol EQU expression

where expression can be any assembly-language item or expression. For example:

PARM1 EQU [BP].P1

8086 Assembly Language Defining and Initializing Data

Defini~g Variables (DB, OW, DO Directives)

The DB, DW, and DD directives can be used to define variables and/or initialize
memory. Variable names should NOT be suffixed with a colon, as is common in
many assembly languages. Thus:

VARIABLE OW 678 ; No colon for DB, OW, or DO.
VARIABLE: OW 678 ; ***ERROR***

These directives allocate and initialize memory in units of BYTES (8 bits), WORDS
(2 bytes), and DWORDS (doublewords, or 4 bytes), respectively. If the optional
variable-name field is present, a variable with that name is defined and given the
following attributes:

• SEGMENT -the variable is associated with the current segment

• OFFSET -the variable is assigned the current offset from the start of the
segment.

• TYPE
• BYTE or 1, if DB is specified

• WORD or 2, if DW is specified

• DWORD or 4, if DD is specified

A wide variety of constructs is possible using the DB, DW, and DD directives. The
general form is given first, embracing six forms in all:

Formats for DB, DW, and DD Expressions

1. Constant expression

2. Indeterminate initialization (the reserved symbol '?')

3. Address expression

4. ASCII character string of more than two characters (DB only)

5. Data-initialization list

6. Replicated values (a DUP clause)

Rather than studying the general form, you may find it more convenient to inspect
the examples (under FORMAT 1, FORMAT 2, ... , FORMAT 6) following it.

General Form For DB, OW, and DO

The general form for the DB, DW, and DD directives is:

{) {

iexp [, ...] }
[variable-name] DB I DW I DD

exp' DUP (iexp [, ...])

where:

variable-name

is an identifier (colons are NOT permitted)

{DB I DW I DD)

means you must code DB or DW or DD, but only one of these

iexp [, ...]

3-5

Defining and Initializing Data 8086 Assembly Language

3-6

means you must code at least one iexp (described below), and if you code more than
one, you must separate them with commas

iexp

is one of the following:

1. A constant expression (see examples under FORMA T 1 below)

2. The character '1 for indeterminate initialization (see examples under FORMAT 2
below)

3. An address expression (see examples under FORMAT 3 below)

4. An ASCII string longer than 2 characters (DB only, see examples under
FORMAT 4 below)

5. A data-initialization list (see examples under FORMAT 5 below)

6. exp' DUP (iexp [, ...])

specifies a replication count of "exp" copies of "iexp [, ...]", where exp'
evaluates to a positive number and "iexp [, ... J' is as just described for the first
case. (See examples under FORMAT 6 below.)

Examples of DB, OW, DO Formats

Formats 1-6 below are keyed to forms 1-6 above.

FORMAT 1: INITIALIZING WITH A CONSTANT EXPRESSION

[variable-name] {DB I DW I DD} expression

• DB-DEFINE BYTE

• ALLOCATION: A DB followed by a constant (other than a string)
allocates one byte. (DB strings are described under FORMAT 4 below. As
many bytes are allocated for strings as characters specified.)

• STRINGS: DB permits strings of any length. Examples are given under
FORMAT4below.

• RANGE: DB accepts values in the range -256 through 255. Any value
between -256 and --129 inclusive is stored as a nonnegative value between 0
and 127 inclusive. The mapping is: -129=127, ... , -255=1, -256=0.

• DW-DEFINE WORD

• ALLOCATION: If DW is specified, one word (2 bytes) is allocated. Bytes
are swapped within each word, with the least significant byte (LSB) occupy
ing the lower-addressed byte, and the most significant byte (MSB) occupy
ing the higher-addressed byte. Thus, OAABBH is stored OBBH in the least
significant byte (LSB), followed by OAAH in the most significant byte
(MSB).

• STRINGS: Two-character ASCII strings are inverted similarly. Thus, 'AB'
is stored as 4241H. (DW 'BA' defines the same storage pattern as DB 'AB'.)
Strings longer than two characters are not permitted with DW.

• RANGE: DW accepts values in the range -65536 through 65535. Any value
between -65536 and -32769 inclusive is stored as a nonnegative value
between 0 and 32767 inclusive. The mapping is: -32769=32767, ... ,
-65535=1, -65536=0.

8086 Assembly Language Defining and Initializing Data

• DD-DEFINE DOUBLEWORD

• ALLOCATION: If DD is specified, two words (4 bytes) are allocated.

• STRINGS: The low-order word is assigned the same value as if a DW were
specified. The high-order word is set to O. ASCII strings of more than two
characters are not permitted with DD.

• RANGE: Same as DW.

Examples of Initialized Constant Expressions

In the following examples, note the absence of colons:

AB
BA
OFFAB
FEH
OFF _FEH
SEG_FEH

NUMBER
PARM1

MIDDLE_C
INCHES_PER_MILE
DEGREE_AT_EQUATOR

DB 'AB' ; Stored as 4142H.
DW 'AB' ; Stored as 4241 H.
DW AB ; Assembly-time offset of variable AB.
DW OFEH ; Word having value 254.
DW OFFSET FEH ; Offset fixed-up at locate-time.
DW SEG FEH ; Segment fixed-up at locate-time.

; See Chapter 4 for OFFSET, SEG operators.
DW 1234H ;34HatNUMBER,12HatNUMBER+1.
DW OFFFFH ; 16 bits of 1 'so
DB 100 ; Unnamed byte having value 01100100B.
DW 523 ; Word having value 10BH.
DW 5280*12 ; Assembler performs arithmetic.
DW 25000/360 ; ASM86 computes (no rounding) 69 or 0045H.

; Assembler performs arithmetic.

FORMAT 2: DEFINING VARIABLES WITH INDETERMINATE INITIALIZATION

A single unquoted question mark (1) is a reserved symbol; you use it to tell the
assembler that you do not care how memory is initialized. The values occupying cells
initialized using the question mark are unpredictable; do not count on their being
consistent from one assembly or run to the next, or even within the same assembly or
run. When you code the question mark, you are in effect saying, "I do not require
initialization here; moreover, I do not expect any consistency with respect to the
initial contents of this cell at run-time."

In the following examples, note the absence of colons:

SUM DW? ; Define and allocate a word, contents indeterminate.
DW? ; Allocate a nameless word, contents indeterminate.

WHATEVER DB? ; Define and allocate a byte, contents indeterminate.
LOTSA_DBS DB 1000 DUP(?) ; 1000 bytes. See DUP clause under FORMAT 6 below.

FORMAT 3: INITIALIZING AN ADDRESS EXPRESSION (DW & DD ONLY)

[variable-name] {DW I DD I addr-expr

where "addr-expr" is subject to the following rules:

• Absolute numbers may always be added or subtracted from variables or
absolute numbers. When a number is added to a variable, the result is a variable
of the same type, having an offset equal to the sum of the number added plus
the offset of the original variable within its segment.

• Variables cannot be added to variables or labels. Labels cannot be added to
variables or labels.

• Variables and labels can be subtracted from variables and labels. The result is a
pure number without attributes.

3-7

Defining and Initializing Data 8086 Assembly Language

3-8

• For DW, the OFFSET part of a label or variable is the initial value assigned.
This value is filled in at locate-time. The effect is as if an OFFSET operator
(described in Chapter 4 under "Attribute Operators") were applied to the
address expression. Be sure to refer to the description in Chapter 4 if you are
using GROUPs.

• For DD, the effect is as if the low-order word were assigned the value of
OFFSET of the address expression, and the high-order word were assigned the
value of the SEG of the address expression. These values are filled in a locate
time. These operators are defined in Chapter 4. Be sure to refer to them if you
are using GROUPs.

Examples of Initializing Using Address Expressions

In the following examples, note the absence of colons:

OW TABLE ; 16-bit offset of TABLE.
STATUS_BYTE OW TABLE + 3 ; Offset of 4th byte in TABLE.
STATUS_PREFIX OW TABLE-1 ; Offset of byte preceding TABLE.
DWORD_PTR_TABLE DO TABLE ; 16-bit offset followed by16-bit segment base value.

; (Offsets and seg base values are filled in by
; LOC86).

FORMAT 4: DEFINING STRINGS LONGER THAN TWO CHARACTERS (DB ONLY)

DB permits strings of up to 255 characters. Successive characters occupy succes
sively increasing locations. Thus, 'ABC' is stored as 414243H. Strings must be
enclosed by single quotes ('). If you want to include a single quote in a string, code it
as two consecutive single quotes.

LETTER DB ' ABCDEFGHIJKLMNOPQRSTUVWXYZ' ; 26 bytes allocated.
DIGIT DB '0123456789'
SPECIAL DB '?_@'

HEX_DIGIT DB '0123456789ABCDEF'
SINGLE_QUOTE DB ; 1 byte allocated.
DATE DB '08/15/79'
QUOTE DB
FORTUNE DB 'FAINT HEART NEVER WON FAIR MAIDEN'

FORMAT 5: DEFINING AND INITIALIZING A DATA LIST

[variable-name] DB I DW I DD expr [, ...]

This directive initializes bytes, words, or doublewords in consecutive memory loca
tions. Up to 16 items may be specified.

In the following examples, note the absence of colons:

PRIMES DW 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
FIBONACCI DW 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610
WINNERS DB 1,5,6,11,17,19,21,27,29,31
CUBES DW 0,1,8,27,64,125,6*6*6,7*7*7,8*8*8,9*9*9
EQUIDISTANT DW TABLE + 5, TABLE + 10, TABLE + 15

MESSAGE DB 'HELLO, FRIEND.', ODH, OAH

; Max. no. items 16.
; 16 words.
; 10 bytes
; 10 words.

; Offset values, 3 words.
; 14-byte text plus <CR><LF>

8086 Assembly Language Defining and Initializing Data

FORMAT 6: REPLICATING INITIALIZATION VALUES (DUP)

The reserved symbol DUP specifies an "iexp" (or list of "iexp"s) to be repeated a
number of times. The format is:

exp' DUP (iexp)

where exp' is the replication count (which must evaluate to a positive number), the
parentheses must be coded, and iexp can be:

• An expression (numeric, or, if DW or DD, address as well)

• A question mark

• A list of items

• More DUP replications

ZIPS DB 100 DUP (0) ; 100 bytes initialized to O.
DB 2DUP(0,3DUP(1)) ;8unnamedbytes:0,1,1,1,0,1,1,1.

NUMS DW 100 DUP (5 DUP (4), 7) ; 100 copies of words ~.ith values 4,4,4,4,4,7.
HI DB 1000 DUP (,WELCOME', ODH, OAH) ; Friendly sign-on with <CR><LF>'s.

Defining and I nitializing Labels
Chapter 2 defines and describes labels more completely under the heading "The
LABEL Directive". This is a summary included for completeness of this chapter.

Labels identify locations of executable code in your assembly, and as such can be the
operands of jumps and calls. They have three attributes: SEGMENT, OFFSET, and
DISTANCE. The DISTANCE attribute can be NEAR (if the label is referenced only
from its "home" segment) or FAR (if any other segment references it).

A NEAR label is defined by its appearance, suffixed by a colon, preceding
executable code, as in:

DO_lT._AGAIN: XOR AX, BUFFER[BX] ; Set AX=O ifAX=BUFFER[BX]

• Or by the presence of a LABEL directive specifying (or defaulting to) type
NEAR:

ROUTINE_XYZ LABEL NEAR
MOV AX, DX

o
o
o

• Or by the presence of a PROC directive specifying type NEAR:

COMPUTE_STAND_DEV PROC NEAR

(If no type is specified, NEAR is the default.)

Entry points can be declared as FAR labels using the LABEL or PROC directive:

SIGMA PROC FAR
o

o
SIGMA_ENTRY LABEL FAR

DO_IT: MOV AX, [BX] ; Label with colon is always NEAR.
o
o
o

SIGMA ENDP

3-9

Defining and Initializing Data 8086 Assembly Language

3-10

Records

This section describes how to define a record, and how to allocate storage and
initialize it for one or more records. Chapter 4 describes how to access records and
record fields as operands. The sample program in Appendix K shows record defini
tion, allocation, initialization, and access examples. Chapter 6 and Appendix A
describe how how codemacros use records.

A record is a bit pattern you define in order to format bytes and words for bit- pack
ing. The record definition itself does not allocate storage, however. You can allocate
and initialize any number of 8- or 16-bit records using the definition's record-name
as an assembly-time operator, as described below.

Figure 3-1 uses an example to outline record definition, initialization, allocation,
and access.

The format of the record definition statement is:

record-name RECORD field-name: expression [=exp'] [, ...]

where:

• record-name is a unique identifier, and must be present

• Each field-name is a unique identifier, and must be present

• The colon (:) is coded as shown, between field-name and expression

• expression evaluates to a constant in the range 1 to 16, inclusive, and specifies
the number of bits defined by field-name. (If symbols are present, they must not
be forward references.)

• The sum of expression's (record field-widths) must evaluate to a constant in the
range 1 to 16 inclusive. If the sum is 8 or less, a record of width 8 bits is defined.
If the sum is between 9 and 16 inclusive, a record of width 16 bits is defined. In
either case, the user-defined record fields are right-justified (in the least signifi
cant bit-positions) of the byte or word. Word records format bits 0:7 in LSB,
bits 8:15 in MSB.

• The optional clause =exp' gives a default value for the field. The default value
has the following characteristics:

1. It can be retained or overridden when storage is allocated using the
record-name.

2. If no default value is specified, zero is used.

3. If specified, the default value:

• Either evaluates to a positive integer expressible in the number of bits
defined by the field. (For example, a field three bits wide can hold 7
(lIIB), but not 8 (lOOOB).)

• Or, if the record-field is exactly 8 bits wide, it may be initialized to a
character. The character so used must be enclosed in single quotes, as
in: FIELDC:8='A')

For example, the record definition CHIPS defines a pattern as follows:

CHIPS RECORD RAM:?, EPROM:4, ROM:5

8086 Assembly Language Defining and Initializing Data

CD DEFINE a RECORD pattern consisting of 3
fields of various widths (must add up to 8 or 16),
initialized to "default values."

o ALLOCA TE storage either as one copy or as an
array of records using DUP; optionally override
"default values". The record-name from CD
acts as an assembly-time operator.

CD LOAD the record copy you want in a register of
the same size (but 'not CL, CX, or a segment
register).

8) MASK out the irrelevant fields using the MASK
operator on the field-name.

CD LOAD the shift count into CL. (The field-name
acts as an assembly-time operator to return the
shift count.)

@ SHIFT the desired field into the low-order bits of
the register.

15 13 12 9 8 0

11111100011000000011MODEL3

MODEL3 RECORD X:3=7, Y:4=8, Z:9=257

I---{--~r------l MANY _MODEL3[0]

=--~---,~~_-=:=..-==-.........:: MANY _MODEL3[2]

'------'_--' ____ --' MANY _MODEL3[198]

MANY _MODEL3 MODEL3 100 DUP«,15,3»

15 13 12 9 8 0

1111 11111 1000000011 1 DX

MOV DX, MANY _MODEL3[40]

15 13 12 9 8 0

CWo 11111loooooooooIDX
AND DX, MASK Y

(before)

10 0 0 01 00 11 CL

MOVCL, Y

15 4 3 0 (after)

10 0 0 0 0 0 0 0 0 0 0 011 1 1 1 I 10 000 0 0 0 0 I CL

SHR DX, CL

Figure 3-1. How to Define, Allocate, Initialize, and Access Records

Thus, when storage is allocated, the fields have the following characteristics:

Field Name Field Width Bit Positions Maximum Value

RAM 7 15-9 2**7·1 === 127

EPROM 4 8-5 2**4-1 = 15

ROM 5 4-0 2**5-1 = 31

This pattern partitions 16 bits as follows:

15 9 8 5 4 o

....

______ ..L-______ _____ ~I CHIPS (definition, not storage)
(RAM) (EPROM) (ROM).

7-bit field 4-bit field 5-bit field

Using the default-value clause of the definition, CHIPS2 could be defined as:

CHIPS2 RECORD RAM2:7=4, EPROM2:4=2, ROM2:5=25

Both CHIPS and CHIPS2 define a record pattern consisting of (MSB to LSB) a
7-bit field, a 4-bit field, and a 5-bit field. The difference between them is that
CHIPS2 is defined with default values for its fields, which become the initial values
(if not overridden) when actual storage is allocated and initialized using the record
name CHIPS2 as an operator.

3·11

Defining and Initializing Data 8086 Assembly Language

3-12

"Partial" Records

As mentioned in the description of the RECORD directive, if a record's user-defined
fields do not occupy an entire byte or word, the assembler right-justifies the user
defined fields in the least-significant bit-positions of the byte or word defined by the
record. Thus, the record definition:

QUASI RECORD A:6, B:6

formats a word as follows:

15 12 11 6 5 o

L..

_____ ---'-_______ ..L-__ (_B_)_---II QUASI (definition, not storage) (undefined) (A) _

4 bits 6 bits 6 bits

Record Allocation and Initialization

You can allocate and initialize records (after you have declared them) by using the
record name as an operator. The general format is:

{

< [exp] [, ...] > }
[name] record-name

exp' DUP « [exp] [, ...] »

where:

[name]

denotes an optional name for the first byte or word (depending on the RECORD
definition) of the allocated storage;

record-name

specifies the name (user-assigned) of the record from the RECORD directive defin
ing the format and optional default field values

<[exp][, ...]>

specifies a (possibly empty) list of field-initialization or optional override values
such that trailing fields default, as in:

<> means retain originally defined values from RECORD directive.

<5> means override first record field initial value with 5.

<5,5> means override first and second fields' initial values with 5.

<,5> means override second field initial value with 5.

<,,5> means override third field initial value with 5.

<5,,5> means override first and third fields' initial values with 5.

<,5,5> means override second and third initial values with 5.

8086 Assembly Language Defining and Initializing Data

exp

specifies a constant, a constant expression, or the indeterminate initialization
character? If a constant expression is coded, it must evaluate to a number expres
sible in binary within the width of the given record field, or else the number is trun
cated on the left.

exp' DUP « [exp] [, ...] »
where exp' is a constant or constant-expression specifying the number of copies of
the record to be allocated. The replication count exp' must evaluate to a positive
integer. The pattern of record field override values between angle-brackets «» is
exactly as described above. The angle-brackets must be enclosed in parentheses, as
shown.

Record Allocation/Initialization Examples

In order to contrast record initialization with/without default initial values, consider
the two RECORD definitions used earlier, which define field-formatting, but do not
allocate storage:

CHIPS RECORD RAM:7, EPROM:4, ROM:5 ; Fields are 7-bit, 4-bit, 5-bit.

and the similarly-defined, bllt with default values:

CHIPS2 RECORD RAM2:7=4, EPROM2:4=2, ROM2:5=25 ; Default values 4, 2, 25.

Using CHIPS as an operator, storage can be allocated and formatted like CHIPS:

SYSTEM CHIPS 100 DUP«127,11 ,31» ; Allocate 100 copies of CHIPS, override initial
; values

allocates 1 00 words and initializes each to the values RAM = 127, EPROM = 11,
ROM = 31 in the format of CHIPS given above.

If, however, you have specified record-field default values in the RECORD direc
tive, you can allocate and initialize using some or all of the default values. For
instance, the directive:

SYSTEM2 CHIPS2 100 DUP«» ; Allocate 100 copies of CHIPS2, keep default values.

allocates 100 words formatted as in the definition of CHIPS2 above, and initializes
each word according to the default values specified in the definition of CHIPS2.
Thus, for each copy, RAM2=4, EPROM2=2, and ROM2=25.

As indicated in the general form for record allocation and initialization, default
values for record fields can be selectively overridden. Thus, a third array of records
SYSTEM3 could be allocated and initialized to the default values RAM2 = 4 and
EPROM2 = 2, while ROM2 could be overridden to 18 by specifying:

SYSTEM3 CHIPS2 100 DUP«,,18» ;Override ROM2 default value, keep others.

Notice that leading commas must be present just as if values were specified. Any
default values can be overridden this way. Thus, if 50 copies of words formatted like
CHIPS2 and having initial values RAM = 4, EPROM = 3, ROM = 25 were required,
the directive:

SYSTEM4 CHIPS2 50 DUP«,3» ; Override EPROM2, keep others

3-13

Defining and Initializing Data 8086 Assembly Language

3-14

Records in Expressions

A record can be used as part or all of an expression, as in the following:

R RECORD CHAR1 :8, CHAR2:8

0

0

0

MOV AX, R< OABH , 'C' > ; Load AX with OAB43H.
MOV BX,R<5,7>+ R<3,4> ; Load BXwith 080BH.
MOV CX, R< 86H, 23H > XOR R< 135, 35> ; Load CX with 100H.

0

0

0

Structures
This section describes how to define, allocate storage for, and initialize structures.
Chapter 4 describes how to access data using structure-fields. The sample program
in Appendix K shows structure definition, allocation, initialization, and access
examples. Figure 3-2 outlines, using an example, how to define, allocate, initialize,
and access structure-fields.

Structures enable you to define storage templates of offset values. The STRUC and
ENDS statements define the extent of the storage template; between them, your DB,
DW, and DD directives determine the spacing of offsets within the structure
template definition.

The format of the STRUC/ENDS statement-pair and enclosed DB, DW, and DD
directives is as follows:

structure-name STRUC
o
o

[field-name] {

0 } {exp [, ...] }
DBIDWIDD

exp' DUP (exp [, ...])
o
o
o

structure-name ENDS

where DB, DW, and DD expressions are as described earlier in this chapter, except
that no forward references are permitted. It is essential that matching
STRUC/ENDS pairs have the same structure-name. Field-names are optional, but
must be unique identifiers.

An example of a structure follows:

S STRUC
F1 DB 0
F2DW ?
F3 DB 1,2,3
F4 DO TABLE
F5DW 100 DUP (5)
F6DB '10/05/79'
F7DW 5,?,OEACH

S ENDS

The structure-name S, when used to allocate storage, defines a variable of type 224
(the number of bytes it defines).

8086 Assembly Language

Q) DEFINE a STRUCTURE template by enclosing a
list of data-definition directives between
STRUC/ENDS. Initial default values will be
assigned to structure fields unless overriddendur
ingallocation. (Multiple fields, e.g., THIRD, can
not be overridden.)

BLUEPRINT STRUC
FIRST DW
SECOND DW
THIRD DB
FOURTH DB
FIFTH DB
SIXTH DW

BLUEPRINT ENDS

15

0 F F

OFFFEH
BUFFER
7,5
'A'
?
257

o
E

OFFSET (BUFFER)

0 5 I 0 7

*INDET I 4 1

0 1 0 1

.FIRST

.SECOND

.THIRD

.FOURTH

.SIXTH

G) REFERENCE structure fields as shown. Effective
address of structure field is offset of structure
copy plus relative displacement of field:

MOV AL,B1.THIRD
ADD AL,B2.THIRD + 1 ;for multiple field item
ADD AL,B3.FIFTH[20] ;3rd copy in array,

or [(N-1)*TYPE B3]

*INDETERMINATE

Defining and Initializing Data

Q) ALLOCATE storage for single or multiple copies
using the structure-name from CD as an
assembly-time operator. The list in angle-brackets
tells the assembler which default values to over
ride. Trailing fields default to values in Q).

(B1 BLUEPRINT< »

OFF E

OFFSET (BUFFER)

o 5 0 7
*INDET 4

o 0

(B2 BLUEPRINT <,0",255»

o
0 F F E

0 0 0 0

0 5 I 0 7

F F I 4 1

0 1 0 1

B1.FIRST

B1.SECOND

B1.THIRD

B1.FOURTH

B1.SIXTH

B2.FIRST

B2.SECOND

B2.THIRD

B2.FOURTH

B2.SIXTH

(B3 BLUEPRINT 5 DUP «",,50»)

o
0 F F E B3.FIRST[0]

OFFSET (BUFFER) B3.SECOND[O]

0 5 0 7 B3.THIRD[0]

3 2 4 B3.FOURTH[0]

0 1 0 1 B3.SIXTH[0]

0 F E B3. FIRST[10]

B3.SECOND[10]

3 2 1

0 0 1 B3.SIXTH[30]

0 F F E B3.FIRST[40]

OFFSET (BUFFER) B3.SECOND[40]

0 5 0 7 B3.THIRD[40]

3 2 4 B3.FOURTHI40]

0 0 B3.SIXTH[40]

Or, load BX with offset B3, SI with multiple of 10 (sinct'
10 bytes in structure), and ripple through:

MOV BX, OFFSET B3
MOV SI,30 ;in general, use (N-1)*TYPE B3
ADD AL,[BX][SI].FIFTH ;4th copy, 5th field

Assuming B3 is addressed through DS. Otherwise, use
segment override.

Figure 3-2. How to Define, Allocate, Initialize, and Access Structures

3-15

Defining and Initializing Data 8086 Assembly Language

3-16

Initial (Default) Values for Structure Fields

Any initial values specified in the DB, DW, or DD directives specify default values
for the structure fields. They have no immediate effect, since no storage is allocated
by the STR U C/ENDS pair.

However, if storage is subsequently allocated using the structure-name as an
operator, these values can be used to initialize the allocated storage, and are called
structure-field def aul t values.

Overridable (Simple) Structure Fields

Certain structure-field default values can be overridden when storage is allocated;
these overridable fields are called simple fields. A simple field can be defined by a
DB, DW, or DD, but it cannot be a multiple specification (e.g. a list or a DUP
clause). An exception to this restriction is that a DB character string is overridable.
Several examples should clarify what is overridable, and what is not:

SUPER STRUC
DB ? ; A simple field, overridable.
DB 1,2,3 ; A multiple field, not overridable.
DW 10 DUP (?) ; A multiple field, not overridable.
DB 'MESSAGE' ; A long simple field, overridable by a string.
DO TABLE ; A simple field, overridable.
DW TAB-8 ; A simple field, overridable.
DW TAB, TAB+4 ; A multiple field, not overridable.
DB ?,2,3 ; A multiple field, not overridable.

SUPER ENDS

Example of Structure Definition

A structure is a convenient way to group a collection of byte and word offsets so that
they may be referenced from any base. Suppose, for example, that your subroutine
is passed the address of a control block in register BX, and you wish to reference its
various fields:

15 8 7 o
-[BX]

(FOO) (BAZ)

(LASZLO) (FUM)

(AXOLOTL)

By defining a structure of the same form in your subroutine and assigning the same
field-names to its fields, you set up an offset-tracking mechanism at assembly-time:

BX_BLOCK STRUC
BAZ DB 100 ; Default values can be overridden
FOO DB 0 ; later in this assembly.
FUM DB OFFH
LASZLO DB 0
AXOLOTL DW 3

BX_BLOCK ENDS

8086 Assembly Language Defining and Initializing Data

Storage need not be allocated for structure offsets to be referenced, as in the follow
ing reference to .FUM:

MOV AL, [BX].FUM

The anonymous variable [BX] .FUM assembles to type BYTE, and in this case
references the byte at offset (BX)+2 within the DS-addressed segment.

On the other hand, a reference to .AXOLOTL, as in:

ADD OX, [BP][Slj.AXOLOTL

The anonymous variable [BP] lSI] .AXOLOTL assembles to type WORD, and in
this case references the word at offset (BP)+(SI)+4 within the SS addressed segment.

Structure Allocation and Initiialization

You can allocate and initialize structures (after you have declared them) by using the
structure-name as an operator. The general format is similar to that for record
initialization:

{

<[exP][""]> }
[name] structure-name

exp' DUP « [exp] [, ...] »
where:

[name]

denotes an optional name for the N bytes defined by the structure (depending on the
STRUC/ENDS definition) of the allocated storage

structure-name

specifies the user-assigned name from the STRUC/ENDS directives enclosing tili'!

DB I DW I DD directive(s).

< [exp] [, ...] >

specifies a (possibly empty) list of field-initialization or optional override values
such that trailing fields default, as in:

<> means retain originally defined values from STRUC/ENDS directives.

<5> means override first structure-field initial value with 5.

<5,5> means override first and second structure-fields' initial values with 5.

<,5> means override second structure-field initial value with 5.

<,,5> means override third structure-field initial value with 5.

<5,,5> means override first and third structure-fields' initial values with 5.

<,5,5> means override second and third structure-fields' initial values with 5.

exp

specifies a constant, a constant expression, a string, or the indeterminate initializa
tion character? .

3-17

Defining and Initializing Data 8086 Assembly Language

3-18

If a string is used:

1. Strings of 1 or 2 characters can be used anywhere an expression can be used as
an override (2-character strings cannot override a byte).

2. Strings of more than 2 characters can override only DB fields containing strings,
and then only when the overriding string is no longer than the string to be
overridden. If a shorter string is given, it is padded out using the MSBs of the
default string. If a longer string is given as an override, it is truncated to the field
length.

exp' DUP « [exp] [, ...] »
where exp' is a constant or constant-expression specifying the number of copies of
the structure to be allocated. The replication count exp' must evaluate to a positive
integer. The pattern of structure field override values between angle-brackets «» is
exactly as described above. The angle-brackets must be enclosed in parentheses, as
shown.

Recalling the definition of BX_BLOCK:

BX_BLOCK STRUC
BAZ DB 100 ; Default values can be overridden
FOO DB 0 ; later in this assembly.
FUM DB OFFH
LASZLO DB 0
AXOLOTL DW 3

BX ___ BLOCK ENDS

Storage is allocated using BX_BLOCK, the user-assigned name, and the default
values specified above can be defaulted or overridden:

BX_BLOCK1 BX_BLOCK 5 DUP «» ; Make 5 copies, keep default values.
BX __ BLOCK2 BX_BLOCK <,7> ; Make 1 copy, override FOO=O with

; FOO=?
BX_BLOCK3 BX_BLOCK <1,2,3,4> ; Make 1 copy, override all values as

; shown.
MANY __ BX ___ BL BX __ BLOCK 1000 DUP «",,0» ; Override AXOLOTL=O in 1000 copies.

CHAPTER 4
ACCESSING DATA

(OPERANDS AND EXPRESSIONS)

This chapter describes how to specify operands in the context of various instructions
and directives. Operands of the string instructions (MOVS, MOVSB, MOVSW,
etc.) are special cases, and are described in Chapter 2.

Also described (at the end of this chapter) are expressions, operator precedence
(hierarchy), and the EQU directive.

Operands: Immediate, Register, Memory

The 8086 instruction set (described in Chapter 5) provides several different ways to
address operands. Most two-operand instructions allow either memory or a register
to serve as the first operand (the "destination"), and either memory, a register, or a
constant within the instruction to serve as the second operand (the "source").
Memory-to-memory operations are excluded.

Operands in memory can be addressed directly with a 16-bit offset address, or
indirectly with base (BX or BP) and/or index (SI or DI) registers added to an
optional 8- or 16-bit displacement constant.

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any register or
memory operand (but not immediate constants; for inst-ance, there is no Push
Immediate instruction). Virtually all 8086 operations may specify either 8- or 16-bit
operands.

Operands are described here as follows:
• Immediate Operands
• Register Operands
• Memory Operands

• Labels (Defined in Chapter 2)
• JMP/CALL Operands (Labels and Variables)
• Variables (Defined in Chapter 3)

• Simple
• Indexed (Subscripted Arrays)
• Structures

• Attribute Operators
• Attribute-Overriding Operators

• The Pointer (PTR) operator
• Segment Override
• The SHORT Operator
• The THIS Operator
• The HIGH and LOW Operators

• Value-Returning Operators
• The OFFSET, SEG, and TYPE Operators
• The LENGTH and SIZE Operators

• Record-Specific Operators
• Shift Count (Field Name)
• The MASK Operator
• The WIDTH Operator

4-1

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-2

Immediate Operands

Every two-operand instruction except multiply, divide, and the string operations can
specify an immediate value as an expression as the rightmost (source) operand. The
general forms are:

[label:] mnemonic memory-reference, expression [;comment]

and

[label:] mnemonic register, expression [;comment]

where:

• label (optional) is an identifier

• mnemonic is any two-operand mnemonic (e.g. MOV, ADD, XOR)

• memory-reference is as defined under "Memory Operands" in this chapter, and
is summarized by:

• Direct 16-bit offset address

• Indirect through BX or BP, optionally with an 8-bit or a 16-bit
displacement

• Indirect through SI or DI, optionally with an 8-bit or a 16-bit displacement

• Indirect through BX plus SI or DI, or through BP plus SI or DI, optionally
with an 8-bit or a 16-bit displacement.

• register is any general-purpose register (not a segment register)

• expression is as defined under "Expressions" at the end of this chapter. Rules
of formation of constants are given in Table 3-2, Chapter 3.

The assembler determines if the destination is of type BYTE or WORD, evaluates
the expression using 17-bit arithmetic, and, if the destination operand can
accommodate the result, encodes the value of the expression using 2's complement
arithmetic as an 8-bit or 16-bit field (depending on the type, BYTE or WORD, of the
destination operand) in the instruction being assembled. Sixteen-bit values are
assembled low-order-byte-first.

Examples of Addressing Modes Using Immediate Values

MOV AL,3
ADD BX,5
XOR WORD PTR PROFILE, OFOH
AND BYTE PTR PROFILE, 101 B
SUB WORD PTR [BX], 7770
ADD BYTE PTR [BP], 99
AND FOO[BX],OFOFH

OR BYTE PTR FOO[BX], OFOH
XOR WORD PTR [BX][SI], OF3F1 H
XOR BYTE PTR [BX + 01], OF1 H
AND BYTE PTR [BP + SI + 1], OF3H

AND FOO[BX + 01 + 200], 1

; 8-bit immediate value to register.
; 16-bit immediate value to register.
; 16-bit imm. val. to 16-bit direct offset.
; 8-bit imm. val. to 16-bit direct offset.
; 16-bit imm. val. through BX, no displacement.
; 8-bit imm. val. through BP, no displacement.
; 16-bit imm. val. (assuming FOO to be type WORD here)
; through BX, 16-bit displacement.
; 8-bit imm. val. through BX, 16-bit disp.
; 16-bit imm. val. through BX + SI, no disp.
; 8-bit imm. val. through BX + 01, no disp.
; 8-bit imm. val. through BP + SI,
; 8-bit displacement for + 1 in [].
; 16-bit imm. val. through BX + 01 + (FOO + 200).

8086 Assembly Language Accessing Data (Operands and Expressions)

Register Operands

Registers are as follows:
• Segment 16-bit (CS, DS, SS, ES)
• General 16-bit (AX, BX, CX, DX, SP, BP, SI, DI)
• General 8-bit (AH, AL, BH, BL, CH, CL, DH, DL)
• Pointer and Index 16-bit (BX, BP, SI, DI)
• Flag I-bit (AF, CF, DF, IF, OF, PF, SF, TF, ZF)

Segment registers contain segment base values. These registers are programmer- in
itialized, and beyond that are of little concern to the programmer except as described
in Chapter 2 under "Anonymous References".

Each of the general 8-bit, general I6-bit, and pointer and index I6-bit registers can
participate in arithmetic and logical operations. Thus, although AX is frequently
referred to as "the accumulator", the 8086 has eight distinct I6-bit accumulators
(AX, BX, CX, DX, SP, BP, SI, DI) and eight distinct 8-bit accumulators (AH, AL,
BH, BL, CH, CL, DH, DL), although each 8-bit accumulator is either the high
order byte (H) or the low-order byte (L) of AX, BX, CX, or DX.

The flags are updated after each instruction to reflect conditions detected in the pro
cessor or any accumulator. The instruction encyclopedia of Chapter 5 lists the flags
affected for each instruction.

Appendix C describes flag operation. Appendix J lists how each instruction affects
the flags.

The flag-register mnemonics stand for:

AF - Auxiliary-carry
CF - Carry
OF - Direction
IF - Interrrupt-enable
OF - Overflow

PF - Parity
SF - Sign
TF - Trap
ZF - Zero

Registers as Explicit Operands

Two-operand instructions explicitly specifying registers take the forms:
• Register to register

[label:] mnemonic reg, reg [;comment]
For instance:

ADD AX, SI; AX = AX+SI

• Immediate to register
[label:] mnemonic reg, imm [;comment]

For instance:
AND BH, 40H ; Mask out all but Bit 6.

• Memory to register
[label:] mnemonic reg, mem [;comment]

For instance:
LOAD_STRUC_~FIELD: MOV AX, [Dll.AXOLOTL; Assuming .AXOLOTL type WORD

• Register to memory
[label:] mnemonic mem, reg [;comment]

For instance:
ADD FOO[BX][SI], 01 ; FOO[BX + Sil = FOO[BX + SI] + (01)

One-operand instructions explicitly specifying registers take the form:
[label:] mnemonic reg [;comment]

For instance:

DEC SI ; SI = SI-1

4-3

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-4

Segment Registers

The segment registers CS, DS, ES, and SS are described in Chapter 2, with special
attention to their manipulation under the heading "Loading Segment Registers".

Segment registers may also be specified in operands as segment prefixes either to
override an ASSUME for a named variable, or to override a hardware-default seg
ment for an anonymous reference (e.g. [BX]). This source fragment shows both
uses:

SEG1

SEG1
OATA1

BAZ

OATA1

SEGMENT
ASSUME
MOV

0

0

0

AOO
0

0

0

ENOS
SEGMENT

0

0

0

OW(?)
0

0

0

ENOS

CS:SEG1,
AX,OS:BAZ

SI, CS:[BX]

; Without OS:, BAZ gets ASM86 error message.
; (Assuming OS contains OATA1.)
; (See Chapter 2 for more information.)

; Without CS:, [BX] defaults to OS-segment.
; (See" Anonymous References" in Chapter 2.)

These topics are covered in greater detail in Chapter 2.

Pointer and Index Registers

The pointer (BX, BP) and index (SI, DI) registers are 16-bit registers that can par
ticipate in logical and arithmetic operations. They are distinguished, however, in
their use in addressing modes, as described in Chapter 2 and summarized here:

• Anonymous references, for instance:

MOV AX, [BX] ; Move word at OS:(BX) to AX.
MOV AX, [BP] ; Move word at SS:(BP) to AX.
MOV AX, [BX][SI] ; Move word at OS:(BX + SI) to AX.
MOV AX, [BX][OI] ; Move word at OS:(BX + 01) to AX.
MOV AX, [BP][SI] ; Move word at SS:(BP + SI) to AX.
MOV AX, [BP][OI] ; Move word at SS:(BP + 01) to AX.

Since no named variable is specified, segments are hardware-defaulted unless
overridden by segment prefixes. See" Anonymous References" in Chapter 2 for
more information.

• Indexed variable references, for instance:

MOV AX, FOO[BX]
MOV AX, FOO[BP]
etc.

; Move word in SEG FOO:((OFFSET FOO) + (BX)) to AX.
; Move word in SEG FOO:((OFFSET FOO) + (BP)) to AX.

Here the named variable, in conjunction with the ASSUME directive, deter
mines the segment. See Chapter 2 for more information. The SEG and OFFSET
directives are described later in this chapter, under "Value-Returning
Operators" .

8086 Assembly Language Accessing Data (Operands and Expressions)

General Registers; Hand L Group

When one operand of a two-operand instruction specifies a 16-bit general register,
or pointer/index register, the other operand of the instruction:

• If memory, must be a WORD reference, as in:

MOV DI, FOO ; FOO declared type WORD.

• If register, must be a WORD register, as in:

MOV DX, DI ; Both 16-bit registers.

• If immediate, must evaluate to an 8-bit or a 16-bit quantity:

MOV SI, 5 ; SI = 0000000000000101 B

or

MOV SI, OFFFFH ; SI = 1111111111111111 B

Similarly, when one operand of a two-operand instruction specifies an 8-bit general
register (AH, AL, BH, BL, CH, CL, DH, DL), the other operand of the instruction:

• If memory, must be a BYTE reference, as in:

ADD DL, BYTE PTR FOO ; Pick up byte at FOO, not WORD (as declared).

• If register, must be a BYTE register, as in:

XOR BL, AH ; BL = (BL OR AH) AND NOT (BL AND AH) ; Registers must be same size.

• If immediate, must evaluate to an 8-bit value, as in:

AND DH, OF1 H ; Mask out Bits 1 :2:3.

The general registers, pointer and index registers, and Hand L group (8-bit
subregisters of AX, BX, CX, and DX) are described in detail in the MCS-86™ User's
Manual and the 8086 Family User's Manual.

Registers as Implicit Operands

Some instructions use registers implicitly:

Instruction Implicitly Uses

AAA, AAD, AAM, AAS AL, AH
CBW, CWD AL, AX or AX:DX
DAA, DAS AL
IN, OUT AL or AX
MUL, IMUL, DIV, IDIV AL, AX or AX:DX
LAHF, SAHF AH
LES ES
LDS DS
Shifts, Rotates CL
String ex, SI, DI
XLAT AL, BX

Flag Registers

The I-bit flag registers are never specified as operands; they are manipulated either
by flag instructions (e.g. STC, CLC, CMC) or by instructions which implicitly affect
them (e.g. INC, DEC, ADD, MUL, DIV).

Appendix C describes flag operation; Appendix J provides a summary of how flags
are affected by each instruction.

4-5

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-6

Memory Operands

A memory operand is either a label or a variable; Chapter 2 defines both.

JMP and CALL Operands
(Variables, Labels, Registers, and Address Expressions)

The operands of JMP and CALL can be a label, a variable, a register, or an address
expression. In what follows, the" JMP /CALL target" means the code location to
receive CPU control as a result of a JMP or CALL.

Jumps and calls can be direct or indirect:

• The operand of a direct JMP /CALL is a label identified with the JMP /CALL
target. The format is:

[name:] JMP I CALL label [;comment]

For instance:

JMP GET_CHAR ; GET_CHAR identifies code.

• The operand of an indirect JMP/CALL is not the JMP/CALL target itself, but
is instead a WORD or DWORD pointer to the JMP /CALL target. (A WORD
pointer consists of a I6-bit offset; a DWORD pointer consists of a I6-bit offset
followed by a I6-bit segment base value. If you use DW and DD respectively to
define these pointers, LOC86 fills in the fields at locate-time. The assembly-time
values in your ASM86 listing do not reflect these LOC86-assigned values.) The
format is:

[name:] JMP I CALL addr-expr [;comment]

where addr-expr can be:

• A register containing the offset (in the current CS-addressed segment) of the
JMP /CALL target, as in:

JMP BX ; Pass control to CS:(BX).

• A WORD variable containing the offset (in the current CS-addressed
segment) of the JMP ICALL, as in:

CALL NEAR_LABEL_ARRAY[OI) ; References entry in

o
o

o

; array of routine addresses.

NEAR_LABEL_ARRAY OW ROUTINE1 ; Offset of ROUTINE1 in this segment.

OW ROUTINE2 ; Offset of ROUTlNE2 in this segment.

o
o

o

Use caution when indexing arrays. No matter what the type (WORD or
DWORD), the expression in square-brackets (DI above) is interpreted as the
number of BYTEs into the array. Remember too that the first entry begins
at byte 0, not 1.

• A DWORD variable pointing to the JMP /CALL target in any segment, as
in:

CALL

o
o
o

; References DWORD entry (see
; declaration below).

8086 Assembly Language Accessing Data (Operands and Expressions)

FAR_LABEL_ARRAY DO FAR_PROC1 ; DWORD is 16-bit OFFSET,
; 16-bit SEG.

DO FAR_PROC2 ; Values are LOC86-supplied.
o
o
o

The same caution applies here concerning indexed arrays: subscripts are
treated as BYTE displacements.

• The expression [BX], which is treated as a pointer to a WORD (offset) or
DWORD (offset and segment) variable, which in turn points to the
JMP /CALL target (thus embodying two levels of indirection), as in:

TARG1_ADDR

TARG2_ADDR

MOV BX, OFFSET TARG1_ADDR ; Load offset of pointer

o
o
o

JMP WORD PTR [BX]

o
o
o

; to NEAR routine in BX.

; Go to WRITE_BUFFER
; in this segment.

MOV BX, OFFSET TARG2_ADDR ; Load offset of pOinter
; to FAR procedure.

0

0

0

CALL

0

0

0

OW

DO

DWORD PTR [BX]

WRITE_BUFFER

CLOSE_MASTER

; Execute FAR procedure
; CLOSE __ MASTER.

; LOC86-supplied offset
; value.
; LOC86-supplied offset
; value followed by
; LOC86-supplied
; segment value.

The two levels of indirection in JMP /CALL DWORD PTR [BX] are schematically
depicted as follows:

JMP/CALL DWORD PTR [BX]

I~FFSET ADTARG I BX

~
-----~ ----~----~-~-.. ADTARG (DWORD)

OFFSET TARGET

4-7

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-8

The type of JMP or CALL generated by the assembler depends on how much the
assembler knows about the target. Table 4-1 shows the possibilities.

Table 4-1. Assembler-Generated Jumps and Calls

Target Label Target Label
Declared NEAR Declared FAR

Jump/Call Assembled NEARJump
Under Same ASSUME CS: NEAR Jump/Call FAR Call

Jump/Call Assembled FAR Jump
Under Different ASSUME CS: ***ERROR*** FAR Call

Using the SHORT Operator. When a jump is to a location within the same seg
ment and the relative displacement of the jump lies within the range -128 to 127
bytes, and the target label has not yet been defined, you can save a byte by coding
the SHORT operator before the target label in the instruction, as in:

JC SHORT WRAPUP ; Distance from end of jump
o
o
o

WRAPUP: PUSH BX ; to here < 128 bytes.

In a case like this, the label operand is assembled as a I-byte signed (2's complement)
displacement. If you code the SHORT operator and the displacement is outside the
range [-128, 127], an error message is issued.

Implicit SHORT Jumps/Calls. If a NEAR jump/call is to a label already
encountered by the assembler (including expressions using $, the location counter),
and the relative displacement is within the range [-128, 127], the jump/call is
assembled with a I-byte displacement just as if you had coded the SHORT operator,
as in:

TRY_IT: XOR FOO[BX], AX
o
o
o

JNZ TRY_IT

Variables

; If distance < 129 from end of jump

; jump is assembled
; with 1-byte self-relative displacement.

Before reading this section, you should be familiar with how to define and initialize
variables, as described in Chapter 3. This section describes how to specify the
following kinds of variables as operands to instructions:

• Simple

• Indexed

• Structures

Records are described under "Record-Specific Operators" in this chapter.

8086 Assembly Language Accessing Data (Operands and Expressions)

Anonymous variables (indirect memory references which do not specify a user
named symbol) are discussed in Chapter 2 under "Anonymous References".
Examples of anonymous variables are in the following:

MOV ex, [BP][SI]
AND AX, ES:[BX + 01]
XOR BX,OS:[BP-1]

Simple Variables. As an operand, a simple variable is an unmodified identifier
which is used the same way it is declared. For example,

SIMP1 DB 5
SIMP2 OW 5

0

0

0

MOV AL, SIMP1 ; Move byte to byte register.
MOV AX, SIMP2 ; Move word to word register.

To mix types within an instruction (moving a byte to a word register, for instance)
requires a type-overriding operator (in this case PTR). Type-overriding is described
under" Attribute Overriding Operators" in this chapter.

Indexed Variables. An indexed variable is a simple variable suffixed by square
brackets which enclose:

• A constant or a constant expression (e.g [5])

• A base register (BX or BP) or an index register (SI or D I)

• A base or index register plus or minus a constant expression (in any order)

• A base register plus an index register plus or minus a constant or constant
expression (in any order)

Indexed variables are similar to the high-level language concept of subscripted
variables or arrays, with three important distinctions:

1. Indexing is zero-based; thus, FOO[O] is the same as Faa (FOO[I] is the second
byte in the array)

2. The offset of an indexed variable is the sum of:

• The offset of the simple variable, plus

• The number of BYTES (no matter what type the variable is) that the
square-bracketed expression evaluates to.

3. The type of the resulting operand is the same as the type of the simple variable
(BYTE or WORD)

Thus, for example, if you have defined:

FOO OW 500 OUP (?)

and later in your program, when these values have meaning, you reference memory
as follows:

MOV AX, FOO[BX]

Then the value of BX does not select the corresponding element of the array Faa; it
selects the word beginning BX bytes past the offset of Faa.

4-9

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-10

Expressions as Subscripts. You can use expressions as subscripts to index arrays,
for instance:

ADD FOO[100*TYPE FOO], 9 ; Add 9 to 101 8t element of FOO.

Using TYPE (which returns 2 if FOO is declared WORD, etc.), you need not con
cern yourself with counting bytes, so long as you remember that indexing is zero
based (the first element begins at FOO[O».

The TYPE operator is described later in this chapter.

Double-Indexed Variables. A double-indexed variable is of the form:

simple-variable [base] [index]

or

simple-variable [index] [base]

with the restrictions that:

• Base must be:

• A constant or a constant expression

• BX or BP
• BX or BP plus or minus a constant or a constant expression in any order

• Index must be:

• A constant or a constant expression

• SI or DI
• SI or DI plus or minus a constant or a constant expression in any order

The effect of double-indexing is the same as if index and base were summed between
a single pair of square-brackets. Thus,

FOO[BX-5][SI + 3]

is the same as:

FOO[BX + SI-2]

which in fact is acceptable. So is

FOO[-2+ BX+SI]

Structures. Each structure field defined within a structure defines a type, and a par
tial offset value within the structure. This value is simply the number of bytes from
the beginning of the structure to the beginning of the structure field.

The partial offset value and TYPE defined by a structure field are referenced by the
structure field name prefixed by a dot (.) or period. Thus, if S is a structure defined
by:

S STRUC
A DB 0
B OW 0
C DO 0
0 OW 0
E DB 0

S ENDS

8086 Assembly Language Accessing Data (Operands and Expressions)

Then a reference to .A results in a partial offset value of 0, to .B results in 1, to .C in
3, to .D in 7, and to .E in 9.

These structure field references can be suffixed to any memory reference.

The memory reference M.F, where F is a structure field, has the following
attributes:

• Segment - the same as M
• Offset - the offset of M plus the partial offset value of F
• Type - the same as F

The following examples use partial offset values from the structure S defined above:

Operand Segment Offset Type

FOO.C same as FOO OFFSET(FOO) + 3 DWORD

FOO[BX].D same as FOO OFFSET(FOO) + BX + 7 WORD

[BX].B DS-addressed BX + 1 WORD

[BP - 4].E SS-addressed BP + 5 BYTE

Using Structures in Forward/Backward-Linked Lists. As a further example of
structures, consider the simple definition:

LINK STRUC
TO DW
FROM DW
INFO DB

LINK ENDS

o
o
96 DUP (?)

This structure template defines three fields:

• TO, a word to point to the next link in the list
• FROM, a word to point to the preceding link in the list
• INFO, a 96-byte field for application-specific information

An array of 500 copies of LINK can be allocated as follows:

CHAIN LINK 500 DUP«» ; 500 copies of LINK.

At run-time, CHAIN can easily be transformed into a forward-and-backward linked
list. The following sequence of code shows how to initialize the FROM fields (with
the first containing zero):

MOV BX, OFFSET CHAIN

MOV [BX] .FROM, 0

; Point BX at CHAIN [OJ.

; First .FROM

MOV SI, TYPE CHAIN ; Number of bytes in one structure (100 here).
MOV CX, LENGTH CHAIN -1 ; Number of structure copies -1.

PLUG: MOV [BX+SI].FROM, BX ; Put ptr. to CHAIN[n] in CHAIN[n+1].FROM.
ADD BX, SI ; Bump BX by no. bytes in structure.
LOOP PLUG ; CX = CX-1, then jump if CX <> O.

The TO fields can be filled in similarly.

Linked lists provide an efficient means of storing/retrieving ordered items in a list
that is frequently updated, such as a list of control blocks for prioritized tasks, or a
queue of users contending for a system resource.

4-11

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-12

Attribute Operators

Just as indexing, structure, arithmetic and logical operators can appear in operands,
so maya class of operators termed attribute operators appear. Attribute operators
can be used to:

• Override (alter for one instruction) an operand's attributes

• Yield the values of operand attributes

• Isolate record fields

Attribute-Overriding Operators

It is sometimes necessary to override the segment, offset, and type or distance of
variables or labels in order to use them more efficiently, or to access them in several
ways. The assembly language provides attribute-overriding operators so that this
degree of freedom can be achieved. These operators are:

• PTR (pointer) -- overrides the'type (BYTE, WORD, DWORD) of a variable or
the distance (NEAR, FAR) of a label

• Segment override -- overrides the segment of a variable

• SHORT -- overrides NEAR or FAR for very short jumps/calls

• THIS -- creates an operand of any type or distance at an offset equal to the
current value of the location counter

• HIGH and LOW -- for 8080 assembly language compatibility

PTR-the Pointer Operator. PTR is an infix dyadic (two arguments) operator. Its
form is:

type PTR addr-expr

where:

1. type -- BYTE, WORD, DWORD, NEAR, FAR, or structure-name

2. addr-expr -- variable, label, or number

In general, the effect of PTR is to assign the attribute specified on the left to the
variable, label, or number specified on the right.

Specifically, PTR assigns the following attributes to "exp" when the expression:

type PTR exp

is encountered:

When "exp" .. .then attributes of result are:
isa: SEGMENT OFFSET

variable same as "exp" same as "exp"
or label SEG exp OFFSET exp

number none, undefined exp itself

PTR is quite useful, as the following examples show:

• Increment a byte or word in memory:

INC BYTE PTR [BX]
INC WORD PTR [SI]

TYPE

type

type

8086 Assembly Language Accessing Data (Operands and Expressions)

• Move an immediate value to a byte or word in memory:

MOV WORD PTR [01], 99
MOV BYTE PPR [01], 99

• Jump through two levels of indirection:

JMP OWORO PTR [BX] ; BX pOints to 2-byte offset followed by
; 2-byte segment base.

• Pick up a word from a byte array or vice versa:

FOOW OW 100 DUP (?)

FOOB DB 200 DUP (?)

o
o
o
ADD AL, BYTE PTR FOOW[101]
ADD OX, WORD PTR FOOB[20]

; Add low-order byte of 50th word to AL.
; Add word at 21 st byte to OX.

• With extreme care, treat data as code, as in:

JMP NEAR PTR FOO

• Create an anonymous variable at a given offset from a segment,; as in:

MOV AL, DS:BYTE PTR 5 ; Move Byte 5 in OS-addressed segment to AL.

and

MOV BX, SEG3: WORD PTR 3000 ; Move word at Byte 3000 in SEG3 to BX.

Segment Override. Chapter 2 discusses the segment override operator, denoted by
the colon (:). This operator takes three forms:

• seg-reg: addr-expr

• segment-name: addr-expr

• group-name: addr-expr

You use the segment override operator to override the SEGMENT attribute of a
label, variable, or address-expression. The table that follows shows how all three
attributes are affected; the first two forms perform a direct override, while the third
(group-name:addr-exp) recalculates the offset from the GROUP base.

Segment Override SEGMENT OFFSET TYPE
Form Used of Result of Result of Result

seg-reg:addr-exp seg-reg OFFSET(addr··expr) TYPE(addr-expr)
(unchanged) (unchanged)

seg-name:addr-expr seg-name OFFSET(add r-expr) TYPE(addr-expr)
(unchanged) (unchanged)

group-name :add r-expr group-name adjusted to give TYPE(addr-expr)
offset from (unchanged)
GROUP base

The SHORT Operator. The SHORT operator accepts one argument, an offset
addressable through the CS segment register. SHORT is used in conditional jumps,
jumps, and calls when the target code is within a I-byte signed (2's complement) self
relative displacement. That is, the target must be no more than 128 bytes behind the
beginning of the jump/call instruction, and no more than 127 bytes ahead of it.
SHORT saves you a byte; you don't even need to code it when the target definition
precedes (lexically, i.e. to the assembler) the jump. (SHORT is also described earlier
in this chapter at the end of the section, "JMP and CALL Operands.")

4-13

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-14

The THIS Operator. THIS accepts one argument, a type (BYTE, WORD,
DWORD) or distance (NEAR, FAR) attribute. THIS defines a data item with a
specified TYPE at the current location of assembly. The format of THIS is:

THIS type I distance

The data item thus defined has the following attributes:

• Segment - the current segment being assembled

• Offset - the current offset in assembly

• Type or distance - as specified

For example, THIS can be inserted:

• To allow flexibility in referencing a byte/word array:

FOOB EQU THIS BYTE
FOOW OW 120 OUP (?)

In this example, the EQU directive is equivalent to:

FOOB LABEL BYTE

• To allow flexibility in referencing a label:

FAR_OUT EQU THIS FAR
NEAR_IN: MOV AX, FOO

o
o
o

• Finally, as a point of interest, the location counter symbol '$' is equivalent to
THIS NEAR. THIS permits you to type the current value of the location
counter.

The HIGH and LOW Operators. These operators are called the byte isolation
operators. Each accepts a number or addr-expr as an argument. HIGH returns the
high-order byte; LOW the low-order. These operators are included in the assembly
language to support 8080-to-8086 conversion, and are not intended for straight 8086
programming.

HIGH and LOW can be applied to themselves; if Q is a relocatable quantity, the
following identities hold:

LOW LOW Q= LOWQ
LOW HIGH Q = HIGH Q
HIGH LOW Q=O
HIGH HIGH Q = 0

Value-Returning Operators

These operators are passive; they return values, but they do not override attributes.
They are:

• SEG-when applied to a variable or label, returns the segment value of the
variable or label. This operator can be useful in building ASSUME directives, or
for initializing segment registers, both of which are described in Chapter 2.

• OFFSET -when applied to a variable or label, returns the offset of the variable
or label. This value is resolved at locate-time, when final alignment of the seg
ment is frozen. Since the assembly-time offsets generated on your listing can
change if your segment is combined with pieces of the same segment defined in
other assembly modules, or is not aligned on a paragraph boundary, the
OFFSET operator gives you valuable access to locate-time offsets that might
otherwise be in error, were you to calculate them from listings.

8086 Assembly Language Accessing Data (Operands and Expressions)

OFFSET is useful in accessing variables indirectly, as in:

FUM OW 500 DUP (?)

0

0

0

MOV BX, OFFSET FUM
MOV SI,O

AGAIN: 0

0

0

ADD AX, [BX][SI] ; Same as [BX + SI]
0

0

ADD SI,2
JMP AGAIN

If you are using the GROUP directive, do not expect the OFFSET operator to
yield the offset of a variable within the group, as it will return the offset of the
variable within its segment instead. If you need the offset of the variable within
the group, use the GROUP override operator instead, as in:

DGROUP GROUP
DATA SEGMENT

0

0

0

FOO DB
0

0

0

OW
OW
DO
DO

DATA ENDS
ASSUME
MOV
MOV

0

0

0

DATA, ??SEG

o

FOO
DGROUP:FOO
FOO
DGROUP:FOO

CS:??SEG,DS:DGROUP
BX, OFFSET FOO
BX, OFFSET DGROUP:FOO

; Gives offset within segment.
; Gives offset within group.
; ***INCORRECT***
; ***CORRECT***

; Loads seg offset of FOO.
; Loads group offset of FOO.

The GROUP statement must precede all other uses of the group-name; that is,
no forward references to group-names are permitted.

In most assembly languages, the only attribute of a variable is its offset, so that
a reference to a variable's name is a reference to its offset. Since this assembly
language defines three attributes for a variable, the OFFSET operator is
required to isolate the offset value.

However, OFFSET is not required in a DW directive (described in Chapter 2),
as for example in:

TABLE_PREFIX_BYTE OW TABLE -1 ;Offset of byte preceding TABLE.

An implicit OFFSET is applied to variables in address expressions appearing in
DW and DD directives.

• TYPE accepts one argument, which can be either a variable or a label. For
variables, TYPE returns 1 for type BYTE, 2 for type WORD, 4 for type
DWORD, and N (the number of bytes) in a variable declared with a structure
type. For labels, TYPE returns either NEAR or FAR.

4-15

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-16

TYPE is useful in array calculations, as in:

MOV BX, OFFSET ARRAY
MOV CX, lENGTH ARRAY ; lENGTH = # elements.
MOV SI, 0

XOR AX,AX
AGAIN: ADD AX, [BX + SI]

o
o
o

ADD SI, TYPE ARRAY
lOOP AGAIN

; AX=O
; Same as [BX] [SI].

• LENGTH accepts one argument, a variable, and returns the number of units
(not necessarily bytes) allocated for that variable. For example,

FEE DB 150 (?) ; lENGTH FEE = 150
FUM OW 150 (?) ; lENGTH FUM = 150

• SIZE returns the total number of bytes allocated for a variable, and is related to
LENGTH and TYPE by the identity:

SIZE = LENGTH*TYPE

Examples of LENGTH and TYPE are given earlier in this chapter under
"Structures in Forward/Backward-Linked Lists".

Record-Specific Operators
Records are defined in Chapter 3. The record-specific operators are:

• Shift-count, which is the field-name of th record. Refer to the example below.

• The MASK operator, which accepts a record-field as its only argument and
returns a bit-mask defined to be 1 's in bit positions included by the field and O's
elsewhere. Refer to the example below.

• The WIDTH operator, which returns the width of a record or a record field as
the number of bits in the record or field.

A record is either of type BYTE or WORD, depending on whether its definition for
mats 8 or 16 bits.

To isolate a record field in a register, two record-specific operators are used:

• the MASK operator, which takes a record field-name as a (right) operand, and
yields a (byte or word) bit-pattern consisting of 1 's in the record-field bit posi
tions and O's elsewhere, and

• the record-field name itself, which provides the shift-count needed to
right-justify the record-field.

For example, if DITTO is a word in memory with a bit-pattern the same as that
defined by the record PATTERN, and PATTERN is defined as:

PATTERN RECORD A:3, B:1, C:2, 0:4, E:6

where A through E are record field names (from high-order to low-order) and each
field's length is as specified.

To isolate the field in DITTO corresponding to C in PATTERN, write:

MOV OX, DITTO
AND OX, MASK C
MOV Cl, C
SHR OX, Cl

; Use any general register but CX.
; Mask out fields A, B, 0, E.
; Must use Cl or CX for count (10 here).
; Now field C of DITTO is Bits 0:1 of OX.

8086 Assembly Language Accessing Data (Operands and Expressions)

Expressions

Expressions are evaluated left-to-right. Operators with higher precedence are
evaluated before other operators that immediately precede or follow them. Paren
theses can be used to override the normal order of operator precedence, as shown in
item 4 below.

Hierarchy (Precedence) of Operators

The classes of operators in order of decreasing precedence are:

1. Parenthesized expressions, angle-bracket (record) expressions, square-bracket
expressions, the structure "dot" operator (.), and the operators LENGTH,
SIZE, WIDTH, and MASK.

2. PTR, OFFSET, SEG, TYPE, THIS, and "name:" (segment override).

3. HIGH, LOW.

4. MUltiplication/division: *, /, MOD, SHL, SHR.

These are infix operators, for instance:

MOV AX, 100 MOD 17; AX = 15 = OOOFH, since 100 = 5*17 + 15.

(MOD accepts only absolute-number operands.)

MOV AX, 1018 SHL (2*2) ; AX = 010100008 (shift left 4 bits).

Since operators are evaluated left-to-right,

1018 SHL (2*2) = 010100008

while

1018 SHL 2*2 = 001010008

5. Addition/subtraction (both unary/binary): +, -.

6. Relational: EQ, NE, LT, LE, GT, GE.

These ("is equal to", "is not equal to", "is less than", "is less than or equal
to", "is greater than", and "is greater than or equal to", respectively)
operators yield a 16-bit result of all 1 's for TRUE (OFFFFH), and all O's for
FALSE (OOOOH), for instance:

MOV AX, 3 EQ 118 ; AX = OFFFFH, since 3 = 11 B.

Given two assembly-time values X and Y, the following defines an array having
as many bytes as the lesser value of X and Y:

MIN D8 -(X LE Y)*X + -(V LT X)*Y DUP (0) ; Length = minimum of X and Y.

7. Logical NOT.

NOT forms the 1 's complement, e.g.

NOT(1 01 011118)=(010100008)

8. Logical AND.

AND is infix and maps 1 's in corresponding positions into 1, and O's elsewhere
in the result, for instance:

101100118 AND 110011018 = 100000018

4-17

Accessing Data (Operands and Expressions) 8086 Assembly Language

4-18

9. Logical OR, XOR.

OR and XOR are both infix. OR maps O's in corresponding positions into 0,
and 1 's elsewhere in the result, for instance:

11011001 B OR 10011011 B = 11011011 B

XOR maps corresponding bits equal in value into 0, and corresponding bits
unequal in value into 1, for instance:

10111011 B XOR 11011101 B = 01100110B

If A is any assembly-time value, A XOR A = 0.

A XOR B == (A OR B) AND NOT(A AND B).

10. SHORT is defined in this chapter.

The EQU Directive

You can assign an assembly-time value to a symbol using EQU. The format is:

name EQU expression

where expression can be:

• A symbol, as in:

A EQU PARAMETER_12

In this special case only (the expression as a symbol), a symbol may be a for
ward reference.

• An indexing reference, as in:

B EQU [BP + 8]

You could then code:

MOV AX, B.FOO

and save a few keystrokes.

• The segment prefix operator":" and its operands, as in:

P8 EQU DS:[BP + 8]

This sort of EQU is handy for retrieving items from the data segment with
BP as base register, since BP defaults to the SS-addressed segment.

• Instruction names, as in:

CBD EQU AAD
CBD

• Record expressions:

; The instruction AAD ASCII adjust for division.
; Converts AX to binary-coded-decimal.

BAUDOT RECORD A:5, B:5, C:5 ; 5-level triplet code.
B333 EQU BAUDOT<3, 3, 3>
B505 EQU BAUDOT<5, 0, 5>

MOV AX, B505 XOR B333

• Other assembly-time expressions, such as:

E1 EQU (MASK F1) XOR (OFOH AND MASK F2)
E2 EQU E1 MOD 10

CHAPTER 5
THE INSTRUCTION SET

The descriptors and notation explained below and used in this chapter are not all
valid in source statements. They are used here as a shorthand, and explained in the
English text that accompanies each instruction description. The code examples,
however, are valid source statements.

Table 5-1. Symbols

MeS-86 Meaning Descriptor

AX Accumulator (16-bit) (8080 Accumulator holds only 8-bits)

AH Accumulator (high-order byte)

AL Accumulator (low-order byte)

BX Register BX (16-bit) (8080 register pair HL), which may be split and
addressed as two 8-bit registers.

BH High-order byte of register BX.

BL Low-order byte of register BX.

CX Register CX (16-blt) (8080 register pair BC), which may be split and
addressed as two 8-bit registers.

CH High-order byte of register CX.

CL Low-order byte of register CX.

OX Register OX (16-bit) (8080) register DE) which may be split and
addressed as two 8-bit registers.

DH High-order byte of register OX.

DL Low-order byte of register OX.

SP Stack Pointer (16-bit)

BP Base Pointer (16-bit)

IP Instruction Pointer (8080 Program Counter) (16-bit)

Flags 16-bit register space, in which nine flags reside. (Not directly
equivalent to 8080 PSW, which contains five flags and the contents
of the accumulator.)

01 Destination Index register (16-bit)

SI Stack Index register (16-bit)

CS Code Segment register (16-bit)

OS Data Segment register (16-bit)

ES Extra Segment register (16-bit)

SS Stack Segment register (16-bit)

REG8 The name or encoding of an 8-bit CPU register location.

R,EG16 The name or encoding of a 16-bit CPU register location.

LSRC, RSRC Refer to operands of an instruction, generally left source and right
source when two operands are used. The leftmost operand is also
called the destination operand, and the rightmost is called the
source operand.

reg A field which specifies REG8 or REG16 in the description of an
instruction.

EA Effective add ress (16-bit)

5-1

Instruction Set

5-2

rIm

MCS-86
Descriptor

mode

w

d

(...)

(BX)

((BX))

(BX) + 1, (BX)

((BX) + 1, (BX))

Concatenation, e.g.,
((OX) + 1: (OX))

addr

addr-Iow

addr-high

addr + 1: addr

data

data-low

data-high

disp

disp-Iow

disp-high

+

%

&

I

"

8086 Assembly Language

Table 5-1. Symbols (Cont'd.)

Meaning

Bits 2, 1, 0 of the MODRM byte used in accessing memory
operands. This 3-bit field defines EA, In conjunction with the mode
and w fields.

Bits 7, 6 of the MODRM byte. This 2-bit field defines the
addressing mode.

A 1-bit field in an instruction, identifying byte instructions (w=O),
and word instructions (w=1)

A 1-bit field in an instruction, "d" identifies direction, i.e. whether
a specified register is source or destination.

Parentheses mean the contents of the enclosed register or
memory location.

Represents the· contents of register BX, which can mean the
address where an a-bit operand is located. To be so used in an
assembler instruction, BX must be enclosed only in square
brackets.

Means this a-bit operand, the contents of the memory location
pointed at by the contents of register BX. This notation is only
descriptive, for use in this chapter. It cannot appear in source
statements.

Means the address (of a 16-bit operand) whose low-order 8-bits
reside in the memory location pOinted at by the contents of
register BX and whose high-order 8-bits reside in the next se
quential memory location, (BX) + 1.

Means the 16-bit operand that resides there.

Means a 16-bit word which is the concatenation of two 8-bit bytes,
the low-order byte in the memory location pointed at by OX and
the high-order byte in the next sequential memory location.

Address (16-bit) of a byte in memory.

Least significant byte of an address.

Most significant byte of an address.

Addresses of two consecutive bytes in memory, beginning at
addr.

Immediate operand (8-bit if w=O; 16-bit if w=1).

Least significant byte of 16-bit data word.

Most significant byte of 16-bit data word.

Displacement

Least significant byte of 16-bit displacement.

Most significant byte of 16-bit displacement.

Assignment

Addition

Subtraction

Multiplication

Division

Modulo

And

Inclusive or

Exclusive or

8086 Assembly Language Instruction Set

Instruction and Data Formats
The formats described briefly here reflect the assembly language processed by the
Intel-supplied assembler, ASM-86, used with the Intellec development systems.

Assembly language instructions are written one per line. If a semicolon occurs other
than in a string, then the remainder of that line is taken as a comment. If a line
begins with an ampersand ("&"), it is considered a continuation of the previous line
(instruction or directive, not comment).

Any instruction is made up of a series of tokens. Each token may be one of three
types:

Name
Constant
Delimiter

If two consecutive tokens together might be interpreted as some other token, they
must be separated by a space; if not, spaces have no meaning and may be omitted.
However, extra spaces may be inserted if desired; the computer ignores them. Com
ments may be made any number of lines long, but a semicolon must start each line
of a comment. The assembler ignores comments and blank lines. It does not
distinguish between capitals and lower-case letters.

An exception to the above rules is the character string. The assembler recognizes all
of the characters, spaces, and blanks that are contained within the string.

Instruction Set Encyclopedia
Page 5-157 is an alphabetical index to this chapter. In these lists, all instructions are
referenced to the assembly-language mnemonks. Although there is not a unique
mnemonic for each instruction code, there is enough information in the instruction,
source, and destination mnemonics for the assembler to identify the correct code.
This means, for example, that you don't have to keep in mind which of the different
MOV codes is needed for different source and destination operands. When you
write

EXAMPLE: MOV BETA, AL

~ ~~--r--t -------,.
------~-------~ ~----------------------------------T------,

ADDRESS I DISPLACEMENT I 11010101110 0 o ° 1 ° 01 0 1 0 1 11 1 °
OP CODE o W MOD REG RIM FOR BETA ______ l. ______ J

p ____ t _____ :~TE MODE USING AL REGISTER

..... - ---------FROM REGISTER - USING,AL AS SOURCE

The assembler takes care of:

D (direction bit)
W (word bit)
MOD (mode field)
Displacement

The assembler chooses the correct mode to perform your intended operation. This
chapter describes how those codes function.

5-3

Instruction Set 8086 Assembly Language

5-4

Addressing Modes

The 8086 instruction set provides several different ways to address operands. Most
two-operand instructions allow either memory or a register to serve as one operand,
and either a register or a constant within the instruction to serve as the other
operand., Memory to memory operations are excluded.

Operands in memory may be addressed directly with a 16-bit offset address, or in
directly with base (BX or BP) andlor index (SI or DI) registers added to an optional
8- or 16-bit displacement constant. This constant can be the name of a variable or a
pure number. When a name is used, the displacement constant is the variable's off
set (see Chapter 1).

The result of a two-operand operation may be directed to either memory or a
register. Single-operand operations are applicable uniformly to any operand except
immediate constants. Virtually all 8086 operations may specify either 8- or 16-bit
operands.

Memory Operands. Operands residing in memory may be addressed in four ways:

• Direct 16-bit offset address

• Indirect through a base register, BX or BP, optionally with an 8- or 16-bit
displacement

• Indirect through an index register, SI or DI, optionally with an 8- or 16-bit
displacement

• Indirect through the sum of one base register and one index register, optionally
with an 8- or 16-bit displacement.

The location of an operand in an 8086 register or in memory is specified by up to
three fields in each instruction. These fields are the mode field (mod) the register
field (reg), and the registerlmemory field (rim). When used, they occupy the second
byte of the instruction sequence.

The mode field occupies the two most significant bits 7, 6 of the byte, and specifies
how the rim field (bits 2, 1, 0) is used in locating the operand. The rim field can
name a register which holds the operand or can specify an addressing mode (in com
bination with the mod field) which points to the location of the operand in memory.
The reg field occupies bits 5, 4, 3 following the mode field, and can specify that one
operand is either an 8-bit register or a 16-bit register. In some instructions, this reg
field gives additional bits of information specifying the instruction, rather than only
encoding a register (see also Chapter 6 and Appendix A).

Description: The effective address (EA) of the memory operand is computed ac
cording to the mod and r/m fields:

if mod = 00 then OISP =0*, disp-Iow and disp-high are absent
if mod = 01 then OISP == disp-Iow sign-extended to 16 bits,

disp-high is absent
if mod = 10 then OISP = disp-high:disp-Iow
if rIm = 000 then EA = (BX) + (SI) + OISP
if rIm = 001 then EA = (BX) + (01) + OISP
if rIm = 010 then EA = (BP) + (SI) + OISP
if rIm = 011 then EA = (BP) + (01) + OISP
if rIm = 100 then EA = (SI) + OISP
if rIm = 101 then EA = (01) + OISP
if rIm = 110 then EA = (BP) + OISP*
ifrlm =111 thenEA=(BX) + OISP

*except if mod = 00 and rIm = 110 then
EA = disp-high: disp-Iow

Instructions referencing 16-bit objects interpret EA as addressing the low-order
byte; the word is addressed by EA + I,EA.

8086 Assembly Language Instruction Set

Encoding:

I mod reg rim I disp-Iow disp-high

Segment Override Prefixes. General register BX and pointer register BP may serve
as base registers. When BX is the base the operand by default resides in the current
Data Segment and the DS register is used to compute the physical address of the
operand. When BP is the base the operand by default resides in the current Stack
Segment and the SS segment register is used to compute the physical address of the
operand. When both base and index registers are used the operand by default resides
in the segment determined by the base register, i.e., BX means DS is: used, BP means
SS is used. When an index register alone is used, the operand by default resides in
the current Data Segment. The physical address of most other memory operands is
by default computed using the DS segment register (exceptions are noted below).
These assembler-default segment register selections may be overridden by preceding
the referencing instruction with a segment override prefix.

Description: The segment register selected by the reg field of a segment prefix is
used to compute the physical address for the instruction this prefix precedes. This
prefix may be combined with the LOCK andlor REP prefixes, although the latter
has certain requirements and consequences-see REP.

En~oding:

10 0 1 reg 1 1 0 I
reg is assigned according to the following table:

Exceptions:

Segment

00 ES
01 CS
10 SS
11 OS

The physical addresses of all operands addressed by the SP register are computed
using the SS segment register, which may not be overridden. The physical addresses
of the destination operands of the string primitive operations (those addressed by
the DI register) are computed using the ES segment, which may not be overridden.

Register Operands: The four 16-bit general registers and the four 16-bit pointer
and index registers may serve interchangeably as operands in nearly all 16-bit opera
tions. Three exceptions to note are multiply, divide, and some string operations,
which use the AX register implicitly. The eight 8-bit registers of the HL group may
serve interchangeably in 8-bit operations. Multiply, divide, and some string opera
tions use AL implicitly.

Description: Register operands may be indicated by a distinguished field, in which
case REG will represent the selected register, or by an encoded field, in which case
EA will represent the register selected by the rim field. Instructions without a "w"
bit always refer to 16-bit registers (if they refer to any register at all); those with a
"w" bit refer to either 8- or 16-bit registers according to "w" .

5-5

Instruction Set 8086 Assembly Language

5-6

Encoding:

General Registers:

Distinguished Field:

1...-____ r_e_g,...,1 or reg

for mode = 11 EA = rIm (a register):

I 11 reg

REG is assigned according to the following table:

16-Bit [w = 1] a-Bit [w = 0]

000 AX 000 AL
001 CX 001 CL
010 OX 010 OL
011 BX 011 BL
100 8P 100 AH
101 BP 101 CH
110 81 110 OH
111 01 111 BH

Instructions which reference the flag register file as a 16-bit object use the symbol
FLAGS to represent the file:

FLAGS X:X:X:X:(OF):(DF):(lF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

where X is undefined.

Immediate Operands. All two-operand operations except multiply, divide, and the
string operations allow one source operand to appear within the instruction as im
mediate data. Sixteen-bit immediate operands having a high-order byte which is the
sign extension of the low-order byte may be abbreviated to eight bits.

Three points about immediate operands should be made:

• Immediate operands always follow addressing mode displacement constants
(when present) in the instruction.

• The low-order byte of 16-bit immediate operands always precedes the
high-order byte.

• The 8-bit immediate operands of instructions with s:w = 11 are sign-extended to
16-bit values.

Below each type of instruction, the following information is given:

1 . A descriptive English name or phrase

2. The instruction's binary encoding

3. The time it takes, expressed in clock cycles (using a 5-MHz clock, one cycle is
200 nanoseconds; using an 8-MHz clock, one cycle is 125 nanoseconds)

4. A step-by-step operational description

5. A list of flags set to 1 or reset to 0 during the operation of this instruction (see
also Appendix C).

6. A general description of when the instruction is used, how it works, defaults it
may use or invoke, and points to remember about its interaction with other in
structions or directives.

8086 Assembly Language Instruction Set

7. Examples

The times given for instructions depend on the nature of the operands. These times
are fixed for register-to-register operations and for immediate-data-to-register
operations, e.g.

MOV OX, AX takes 2 cycles
MOV OX, 444 takes 4 cycles, regardless of which register or what data.

Operands in memory take some extra time for calculating the Effective Address.
These added cycles are indicated in the listed times by the term "+ EA". The
amount of time needed varies depending on 3 factors:

a. Which addressing mode was used in the address expression for the memory
operand.

b. Whether a segment override prefix byte is needed.

c. For word operands, whether the first byte of the word resides at an even or odd
address.

The list below shows the added cycles needed for each addressing mode to access
either 8-bit memory operands or 16-bit memory operands (words) whose first byte is
at an even address. Add 4 cycles for words residing at odd memory addresses. Add 2
cycles if a segment override is used.

1.

2.

3.

4.

5.

Addressing Mode

direct 16-bit offset address
e.g., MOV SX, SIMPLE_NAME
takes 8 + 6 or 14 cycles

indirect through base or index register
e.g., MOV ex, [SX]

MOV ex, [SI]
each takes 8 + 5 or 13 cycles

indirect through base or index register with
displacement constant
e.g., MOV OX, SIMPLE_NAME [SX]

MOV SIMPLE_NAME [01] ex
each takes 8 + 9 or 17 cycles

indirect through sum of one base and one index register
e.g., MOV DX, [SX] [SI]

MOV [SX] [01] , ex
each takes 8 + 7 or 15 cycles

indirect through sum of base and index register plus
displacement constant
e.g., MOV DX, SIMPLE_NAME [SX] [SI]

MOV SIMPLE_NAME [SX] [01] ,ex
each takes 8 + 11 or 19 cycles

Add

6

5

9

7 or 8

11 or 12

If SIMPLE_NAME resides at an odd address, each of the above address expres
sions involving that variable would require 4 extra cycles. If a segment override were
necessary (see ASSUME in Chapter 4), then an additional 2 cycles must be added.
Thus the instruction MOV ES:SIMPLE_NAME, CX would require 16 instead of
14 cycles, and 20 cycles if the first byte of SIMPLE_NAME were at an odd address.

5-7

Instruction Set 8086 Assembly Language

5-8

Organization of the Instruction Set
Instructions are described in this section in six functional groups:

Data transfer
Arithmetic
Logic
String manipulation
Control transfer
Processor control

Each of the first three groups mentioned in the preceding list is further subdivided
into an array of codes that specify whether the instruction is to act upon immediate
data, register or memory locations, whether 16-bit words, or 8-bit bytes are to be
processed, and what addressing mode is to be employed. All of these codes are listed
and explained in detail, but you do not have to code each one individually. The con
text of your program automatically causes the assembler to generate the correct
code. There are three general categories of instructions within each of the three func
tional groups mentioned:

Register or memory space to or from register
Immediate data to register or memory
Accumulator to or from registers, memory, or ports

Data Transfer

Data transfer operations are divided into four classes:

• general purpose

• accumulator-specific

• address-object

• flag

None affect flag settings except SAHF and POPF.

General Purpose Transfers. Four general purpose data transfer operations are pro
vided. These may be applied to most operands, though there are specific exceptions.
The general purpose transfers (except XCHG) are the only operations which allow a
segment register as an operand.

- MOV performs a byte or word transfer from the source (rightmost) operand to
the destination (leftmost) operand.

- PUSH decrements the SP register by two and then transfers a word from the
source operand to the stack element currently addressed by SP.

- POP transfers a word operand from the stack element addressed by the SP
register to the destination operand and then increments SP by 2.

- XCHG exchanges the byte or word source operand with the destination operand.
The segment registers may not be operands of XCHG.

Accumulator-Specific Transfers. Three accumulator-specific transfer operations
are provided:

- IN transfers a byte (or word) from an input port to the AL register (or AX
register). The port is specified either with an inline data byte, allowing fixed ac
cess to ports 0 through 255, or with a port number in the DX register, allowing
variable access to 64K input ports.

- OUT is similar to IN except that the transfer is from the accumulator to the
output port.

8086 Assembly Language Instruction Set

- XLAT performs a table lookup byte translation. The AL register is used as an
index into a 256-byte table addressed by the BX register. The byte operand so
selected is transferred to AL.

Address-Object Transfers. Three address-object transfer operations are provided:

- LEA (load effective address) transfers the offset address of the source operand to
the destination operand. The source operand must be a memory operand and the
destination operand must be a 16-bit general, pointer, or index register.

- LDS (load pointer into DS) transfers a "pointer-object" (i.e., a 32-bit object
containing an offset address and a segment address) from the source operand
(which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the DS segment register. The offset address
is transferred to the 16-bit general,. pointer, or index register that you coded.

- LES (load pointer into ES) is similar to LDS except that the segment address is
transferred to the ES segment register.

Flag Register Transfers. Four flag register transfer operations are provided:

- LAHF (load AH with flags) transfers the flag registers SF, ZF, AF, PF, and CF
(the 8080 flags) into specific bits of the AH register.

- SAHF (store AH into flags) transfers specific bits of the AH register to the flag
registers, SF, ZF, AF, PF, and CF.

- PUSHF (push flags) decrements the SP register by two and transfers all of the
flag registers into specific bits of the stack element addressed by SP.

- POPF (pop flags) transfers specific bits of the stack element addressed by the SP
register to the flag registers and then increments SP by two.

Arithmetic

The 8086 provides the four basic mathematical operations in a number of different
varieties. Both 8- and 16-bit operations and both signed and unsigned arithmetic are
provided. Standard twos complement representation of signed values is used. The
addition and subtraction operations serve as both signed and unsigned operations.
In these cases the flag settings allow the distinction between signed and unsigned
operations to be made (see Conditional Transfer). Correction operations are pro
vided to allow arithmetic to be performed directly on unpacked decimal digits or on
packed decimal representations.

Flag Register Settings. Six flag registers are set or cleared by arithmetic operations
to reflect certain properties of the result of the operation. They generally follow
these rules (see also Appendix C):

- CF is set if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the high-order bit of the result; otherwise CF is cleared.

- AF is set if the operation results in a carry out of (from addition) or a borrow into
(from subtraction) the low-order four bits of the result; otherwise AF is cleared.

- ZF is set if the result of the operation is zero; otherwise ZF is cleared.

- SF is set if the high-order bit of the result of the operation is set; otherwise SF is
cleared.

- PF is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 (even parity); otherwise PF is cleared (odd parity).

- OF is set if the operation results in a carry into the high-order bit of the result but
not a carry out of the high-order bit, or vice versa; otherewise OF is cleared.

5-9

Instruction Set 8086 Assembly Language

5-10

Addition. Five addition operations are provided:

- ADD performs an addition of the source and destination operands and returns
the result to the destination operand.

- ADC (add with carry) performs an addition of the source and destination
operands, adds one if the CF flag is found previously set, and returns the result to
the destination operand.

- INC (increment) performs an addition of the source operand and one, and
returns the result to the operand.

- AAA (unpacked BCD (ASCII) adjust for addition) performs a correction of the
result in AL of adding two unpacked decimal operands, yielding an unpacked
decimal sum.

- DAA (decimal adjust for addition) performs a correction of the result in AL of
adding two packed decimal operands, yielding a packed decimal sum.

Subtraction. Seven subtraction operations are provided:

- SUB performs a subtraction of the source from the destination operand and
returns the result to the destination operand.

- SBB (subtract with borrow) performs a subtraction of the source from the
destination operand, subtracts one if the CF flag is found previously set, and
returns the result to the destination operand.

- DEC (decrement) performs a subtraction of one from the source operand and
returns the result to the operand.

- NEG (negate) performs a subtraction of the source operand from zero and
returns the result to the operand.

- CMJ;> (compare) performs a subtraction of the source destination operand,
causing the flags to be affected, but does not return the result.

- AAS (unpacked BCD (ASCII) adjust for subtraction) performs a correction of
the result in AL of subtracting two unpacked decimal operands, yielding an un
packed decimal difference.

- DAS (decimal adjust for subtraction) performs a correction of the result in AL of
subtracting two packed decimal operands, yielding a packed decimal difference.

Multiplication. Three multiplication operations are provided:

- MUL performs an unsigned multiplication of the accumulator (AL or AX) and
the source operand, returning a double length result to the accumulator and its
extension (AL and AH for 8-bit operation, AX and DX for 16-bit operation). CF
and OF are set if the top half of the result is non-zero.

- IMUL (integer multiply) is similar to MUL except that it performs a signed
multiplication. CF and OF are set if the top half of the result is not the sign- ex
tension of the low half of the result.

- AAM (unpacked BCD (ASCII) adjust for multiply) performs a correction of the
result in AX of multiplying two unpacked decimal operands, yielding an un
packed decimal product.

Division. Three division operations are provided and two sign-extension operations
to support signed division:

- DIV performs an unsigned division of the accumulator and its extension (AL and
AH for 8-bit operation, AX and DX for 16-bit operation) by the source operand
and returns the single length quotient to the accumulator (AL or AX), and
returns the single length remainder to the accumulator extension (AH or DX).
The flags are undefined. Division by zero generates an interrupt of type O.

8086 Assembly Language Instruction Set

- IDIV (integer division) is similar to DIV except that it performs a signed division.

- AAD (unpacked BCD (ASCII) adjust for division) performs a correction of the
dividend in AL before dividing two unpacked decimal operands, so that the result
will yield an unpacked decimal quotient.

- CBW (convert byte to word) performs a sign extension of AL into AH.

- CWD (convert word to double word) performs a sign extension of AX into DX.

Logic

The 8086 provides the basic logic operations for both 8- and 16-bit operands.

Single-Operand Operations. Three-single-operand logical operations are provided:

- NOT forms the one's complement of the source operand and returns the result to
the operand. Flags are not affected.

- Shift operations of four varieties are provided for memory and register operands,
SHL (shift logical left), SHR (shift logical right), SAL (shift arithmetic left), and
SAR (shift arithmetic right). Single bit shifts, and variable bit shifts with the shift
count taken from the CL register are available. The CF flag becomes the last bit
shifted out; OF is defined only for shifts with count of 1, and is set if the final
sign bit value differs from the previous value of the sign bit; and PF, SF, and ZF
are set to reflect the resulting value.

- Rotate operations of four varieties are provided for memory and register
operands, ROL (rotate left), ROR (rotate right), RCL (rotate through CF left),
and RCR (rotate through CF right). Single bit rotates, and variable bit rotates
with the rotate count taken from the CL register, are available. The CF flag
becomes the last bit rotated out; OF is defined only for shifts with count of 1, and
is set if the final sign bit value differs from the previous value of the sign bit.

Two-Operand Operations. Four two-operand logical operations are provided. The
CF and OF flags are cleared on all operations; SF, PF, and ZF reflect the result.

- AND performs the bitwise logical conjunction of the source and destination
operand and returns the result to the destination operand.

- TEST performs the same operations as AND causing the flags to be affected but
does not return the result.

- OR performs the bitwise logical inclusive disjunction of the source and
destination operand and returns the result to the destination operand.

- XOR performs the bitwise logical exclusive disjunction of the source and
destination operand and returns the result to the destination operand.

String Manipulation

One-byte instructions perform various primitive operations for the manipulation of
byte and word strings (sequences of bytes or words). Any primitive operation can be
performed repeatedly in hardware by preceding its instruction with a repeat prefix
(see REP). The single-operation forms may be combined to form complex string
operations with repetition provided by iteration operations.

Hardware Operation Control. All primitive string operations use the SI register to
address the source operands. The DI register is used to address the destination
operands, which reside in the current extra segment. If the DF flag is cleared, the

5-11

Instruction Set 8086 Assembly Language

5-12

operand pointers are incremented after each operation, once for byte operations and
twice for word operations. If the DF flag is set, the operand pointers are
decremented after each operation. See Processor Control for setting and clearing
DF.

Any of the primitive string operation instructions may be preceded with a one-byte
prefix indicating that the operation is to be repeated until the operation count in CX
is satisfied. The test for completion is made prior to each repetition of the operation.
Thus, an initial operation count of zero in CX will cause zero executions of the
primitive operation.

The repeat prefix byte also designates a value to compare with the ZF flag. If the
primitive operation is one which affects the ZF flag, and the ZF flag is unequal to
the designated value after any execution of the primitive operation, the repetition is
terminated. This permits the scan operation, for example, to serve as a scan-while or
a scan-un til.

During the execution of a repeated primitive operation, the operand index registers
(SI and DI) and the operation count register (CX) are updated after each repetition,
whereas the instruction pointer will retain the offset address of the repeat prefix byte
(assuming it immediately precedes the string operation instruction). Thus, an inter
rupted repeated operation will be correctly resumed when control returns from the
interrupting task.

You should try to avoid using the two other prefix bytes with a repeat-prefixed string
instruction, i.e., a segment prefix or the LOCK prefix. Execution of the repeated str
ing operation will not resume properly following an interrupt if more than one
prefix is present preceding the string primitive. Execution will resume one byte
before the primitive (presumably where the repeat resides), thus ignoring the addi
tional prefixes.

Primitive String Operations: Five primitive string operations are provided:

- MOVB (or MOVW) transfers ~ byte (or word) operand from the source
(rightmost) operand to the destination (leftmost) operand. As a repeated opera
tion, this provides for moving a string from one location in memory to another.

- CMPB (or CMPW) subtracts the rightmost byte (or word) operand from the
leftmost operand and affects the flags but does not return the result. As a
repeated operation this provides for comparing two strings. With the appropriate
repeat prefix it is possible to determine after which string element the two strings
become unequal, thereby establishing an ordering between the strings.

- SCAB (or SCAW) subtracts the destination byte (or word) operand from AL (or
AX) and affects the flags but does not return the result. As a repeated operation
this provides for scanning for the occurrence of, or departure from a given value
in the string.

- LODB (or LODW) transfers a byte (or word) operand from the source operand
to AL (or AX). This operation ordinarily would not be repeated.

- STOB (or STOW) transfers a byte (or word) operand from AL (or AX) to the
destination operand. As a repeated operation this provides for filling a string with
a given value.

The operand-less forms of the string instructions (MOVSB, MOVSW, etc.) are
described under MOVS, etc., and in Chapter 2.

In all cases above, the source operand is addressed by SI and the destination operand
is addressed by DI. Only in CMPB/CMPW does the DI-indexed operand appear as
the rightmost operand.

8086 Assembly Language Instruction Set

Software Operation Control. The repeat prefix provides for rapid iteration in a
hardware-repeated string operation. The iteration control operations (see LOOP)
provide this same control for implementing software loops to perform complex str
ing operations. These iteration operations provide the same operation count update,
operation completion test, and ZF flag tests that the repeat prefix provides.

By combining the primitive string operations and iteration control operations with
other operations, it is possible to build sophisticated yet efficient string manipula
tion routines. One instruction that is particularly useful in this context is XLAT; it
permits a byte fetched from one string to be translated before being stored in a sec
ond string, or before being operated upon in some other fashion. The translation is
performed by using the value in the AL register as a index into a table pointed at by
the BX register. The translated value obtained from the table then replaces the value
initially in the AL register (see XLAT).

Control Transfer

Four classes of control transfer operations may be distinguished: calls, jumps, and
returns; conditional transfers; iteration control; and interrupts.

All control transfer operations cause the program execution to continue at some new
location in memory, possibly in a new code segment. Conditional transfers are pro
vided for targets in the range -128 to + 127 bytes from the transfer.

Calls, Jumps, and Returns. Two basic varieties of calls, jumps, and returns are
provided-those which transfer control within the current code segment, and those
which transfer control to an arbitrary code segment, which then becomes the current
code segment. Both direct and indirect transfers are supported; indirect transfers
make use of the standard addressing modes as described above.

The three transfer operations are described below:

- CALL pushes the offset address of the next instruction onto the stack (in the case
of an inter-segment transfer the CS segment register is pushed first) and then
transfers control to the target operand.

- JMP transfers control to the target operand.

- RET transfers control to the return address saved by a previous CALL operation,
and optionally may adjust the SP register so as to discard stacked parameters.

Intra-segment direct calls and jumps specify a self-relative direct displacement, thus
allowing position independent code. A shortened jump instruction is available for
transfers in the range -128 to + 127 bytes from the instruction for code compaction.

Conditional Jumps. The conditional transfers of control perform a jump con
tingent upon various Boolean functions of the flag registers. The destination must
be within a -128 to + 127 byte range of the instruction. Table 5-2 shows the
available instructions, the conditions associated with them, and their interpretation.

5-13

Instruction Set 8086 Assembly Language

5-14

Table 5-2. 8086 Conditional Transfer Operations

Instruction Condition Interpretation

JE or JZ ZF = 1 "equal" or "zero"

JL orJNGE (SF xor OF) = 1 "less" or "not greater or equal"

JLE orJNG l(SP xor OF) or ZF) =
1 "less or equal" or "not greater"

JB or JNAE CF= 1 "below" or "not above or equal"
orJC or "carry"

JBE or JNA (CF or ZF) = 1 "below or equal" or "not above"

JP or JPE PF = 1 "parity" or "parity even"

JO OF =1 "overflow' ,

JS SF=1 "sign"

JNE or JNZ ZF = 0 "not equal" or "not zero"

JNL or JGE (SF xor OF) = 0 "not less" or "greater or equal"

JNLE or JG ((SF xor OF) or ZF) =
0 "not less or equal" or "greater"

JNB or JAE CF=O "not below" or "above or equal"
orJNC or "no carry"

JNBE or JA (CF or ZF) = 0 "not below or equal" or "above"

JNP orJPO PF=O "not parity" or "parity odd"

JNO OF=O "not overflow"

JNS SF =0 "not sign"

*" Above" and "below" refer to the relation between two unsigned values, while
"greater" and "less" refer to the relation between two signed values.

Iteration Control. The iteration control transfer operations perform leading- and
trailing-decision loop control. The destination of iteration control transfers must be
within a -128 to + 127 byte range of the instruction. These operations are par
ticularly useful in conjunction with the string manipulation operations.

There are four iteration control transfer operations provided:

- LOOP decrements the ex ("count") register by one and transfers if ex is not
zero.

- LOOPZ (also called LOOPE) decrements the ex register by one and transfers if
ex is not zero and the ZF flag is set (loop while zero or loop while equal).

- LOOPNZ (also called LOOPNE) decrements the ex register by one and
transfers if ex is not zero and the ZF flag is cleared (loop while not zero or loop
while not equal).

- JeXZ transfers if the ex register is zero.

Interrupts. Program execution control may be transferred by means of operations
similar in effect to that of external interrupts. All interrupts perform a transfer by
pushing the flag registers onto the stack (as in PUSHF), and then performing an in
direct inter segment call through an element of an interrupt transfer vector located at
absolute locations 0 through 3FFH. This vector contains a four-byte element for
each of up to 256 different interrupt types.

There are three interrupt transfer operations provided:

- INT pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through anyone of the 256 vector elements.
A one-byte form of this instruction is available for interrupt type 3.

- INTO pushes the flag registers (as in PUSHF), clears the TF and IF flags, and
transfers control with an indirect call through vector element 4 if the OF flag is set
(trap on overflow). If the OF flag is cleared, no operation takes place.

- IRET transfers control to the return address saved by a previous interrupt
operation and restores the saved flag registers (as in POPF).

8086 Assembly Language Instruction Set

- IRET transfers control to the return address saved by a previous interrupt
operation and restores the saved flag registers (as in POPF).

Processor Control

Various instructions and mechanisms are provided for control and operation of the
processor and its interaction with its environment.

Flag Operations. There are seven operations provided which operate directly on
individual flag registers:

- CLC clears the CF flag.

- CMC complements the CF flag.
- STC sets the CF flag.

- CLD clears the DF flag, causing the string operations to auto-increment the
operand pointers.

- STD sets the DF flag, causing the string operations to auto-decrement the
operand pointers.

- CLI clears the IF flag, disabling external interrupts (except for the non-maskable
external interrupt).

- STI sets the IF flag, enabling external interrupts after the execution of the next
instruction.

Processor Halt. The HL T instruction causes the 8086 processor to enter its halt
state. The halt state is cleared by an enabled external interrupt or RESET.

Processor Wait. The WAIT instruction causes the processor to enter a wait state if
the signal on its TEST pin is not asserted. The wait state may be interrupted by an
enabled external interrupt. When this occurs the saved code location is that of the
WAIT instruction, so that upon return from the interrupting task, the wait state is
reentered. The wait state is cleared and execution resumed when the TEST signal is
asserted. Execution resumes without allowing external interrupts until after the ex
ecution of the next instruction. This instruction allows the processor to synchronize
itself with external hardware.

Processor Escape. The ESC instruction provides a mechanism by which other pro
cessors may receive their instructions from the 8086 instruction stream and make use
of the 8086 addressing modes. The 8086 processor does no operation for the ESC in
struction other than to access a memory operand.

Bus Lock. A special one-byte prefix may precede any instruction causing the pro
cessor to assert its bus-lock signal for the duration of the operation caused by that
instruction. This has use in multiprocessing applications (see LOCK).

Single Step. When the TF flag register is set the processor generates a type 1 inter
rupt after the execution of each instruction. During interrupt transfer sequences
caused by any type of interrupt, the TF flag is cleared after the push-flags step of the
interrupt sequence. No instructions are provided for setting or clearing TF directly.
Rather, the flag register image saved on the stack by a previous interrupt operation
must be modified, so that the subsequent interrupt return operation (lRET) restores
TF set. This allows a diagnostic task to single-step through a task under test, while
still executing normally itself.

5-15

Instruction Set 8086 Assembly Language

5-16

If the single-stepped instruction itself clears the TF flag, the type 1 interrupt will still
occur upon completion of the single-stepped instruction. If the single-stepped in
struction generates an interrupt or if an enabled external interrupt occurs prior to
the completion of the single-stepped instruction, the type 1 interrupt sequence will
occur after the interrupt sequence of the generated or external interrupt, but before
the first instruction of the interrupt service routine is executed.

AAA (ASCII adjust for addition)

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary
carry flag has been set, then 6 is added to AL and 1 is added to AH. AF and CF are
set. The new value of AL has an upper nibble of all zeroes, and the lower nibble is
the number between 0 and 9 created by the above addition.

if ((AL) & OFH) > 9 or (AF) = 1 then
(AL) - (AL) + 6
(AH) - (AH) + 1
(AF) -1
(CF) - (AF)
(AL) - (AL) & OFH

Encoding:

1001101111

Timing: 4 clocks

Example: AAA ;after the addition

Flags Affected: AF, CF.
Undefined: OF, PF, SF, ZF

Description: AAA (Unpacked BCD (ASCII) adjust for addition) performs a cor
rection of the result in AL of adding two unpacked decimal operands, yielding an
unpacked decimal sum.

AAA

5-17

AAD

5-18

AAD (ASCII adjust for division)

Operation: The high byte (AH) of the accumulator is multiplied by 10 and added to
the low byte (AL). The result is stored into AL. AH is zeroed out.

(AL) - (AH)*OAH + (AL)
(AH) - 0

Encoding:

1110101011000010101

Timing: 60 clocks

Example: AAD ;prior to the division

Flags Affected: PF, SF, ZF.
Undefined: AF, CF, OF

Description: AAD (Unpacked BCD (ASCII) adjust for division) performs an ad
justment of the dividend in AL before a subsequent instruction divides two unpack
ed decimal operands, so that the result of the division will be an unpacked decimal
quotient.

AAM (Ascii adjust for multiply)

Operation: The contents of AH are replaced by the result of dividing AL by 10.
Then the contents of AL are replaced by the remainder of that division, i.e. by AL
modulo 10.

(AH) +- (AL) I OAH
(AL) +- (AL) % OAH

Encoding:

1110101001000010101

Timing: 83 clocks

Example: AAM ;after the multiply

Flags Affected: PF, SF, ZF.
Undefined: AF, CF, OF

Description: AAM (Unpacked BCD (ASCII) adjust for multiply) performs a cor
rection of the result in AX of multiplying two unpacked decimal operands, yielding
an unpacked decimal product.

AAM

5-19

AAS

5-20

AAS (ASCII adjust for subtraction)

Operation: If the lower half of AL is above 9, or if the auxiliary carry flag is set,
then 6 is subtracted from AL and 1 is subtracted from AH. The AF and CF flags are
set. The old value of AL is replaced by a byte whose upper nibble is all zeroes and
whose lower nibble is a number from 0 to 9 created by the above subtraction.

if «AL) & OFH) > 9 or (AF) = 1 then
(AL) - (AL)-6
(AH) - (AH)-1
(AF) -1
(CF) - (AF)
(AL) - (AL) & OFH

Encoding:

1001111111

Timing: 4 clocks

Example: AAS ;after the subtraction

Flags Affected: AF, CF.
Undefined: OF, PF, SF, ZF

Description: AAS (Unpacked BCD (ASCII) adjust for subtraction) performs a
correction of the result in the AL register of subtracting two unpacked decimal
operands, yielding an unpacked decimal difference.

ADC (Add with carry)

Operation: If the carry flag was set, ADC adds 1 to the sum of the two operands
before storing the result into the destination (leftmost) operand. If the carry flag was
not set, i.e. is zero, 1 is not added.

if (CF) = 1 then (OEST) - (LSRC) + (RSRC) + 1
else (OEST) - (LSRC) + (RSRC)

See note.

Encoding:

Memory or Register Operand with Register Operand:

10 0 0 1 0 0 d wi mod reg rIm I;

if d = 1 then LSRC = REG, RSRC = EA, OEST = REG
else LSRC = EA, RSRC = REG, OEST = EA

Timing (clocks): (a) register to register
(b) memory to register
(c) register to memory

Examples:

(a) AOC AX, SI
AOC ,51 ;same as above
AOC 01, BX
AOC CH, BL

(b) AOC OX, MEM_WORO
AOC AX, BETA [SI]

3
9+EA

16+EA

AOC ,BETA [SI] ;same as above
AOC CX, ALPHA [BX] [SI]

(c) AOC BETA [01], BX
AOC ALPHA [BX] [SI], 01
AOC MEM_WORO, AX

Immediate Operand to Accumulator:

10 0 0 1 0 1 0 w 1 data 1 data if w=1

if w = 0 then LSRC = AL, RSRC = data, OEST = AL
else LSRC = AX, RSRC = data, OEST = AX

Timing: 4 clocks

ADC

5-21

ADC

5-22

Examples:

ADC AL, 3
ADC AL, VALUE_13_IMM
ADC AX, 333
ADC AX,IMM_VAL_777
ADC ,IMM_VAL_777 ;same as above

Immediate Operand to Memory or Register Operand:

11 0 0 0 0 0 s wi mod 0 1 1 rIm I data

LSRC = EA, RSRC = data, DEST = EA

Timing (clocks): (a) immediate to memory
(b) immediate to register

Examples:

(a) ADC BETA [SI], 4
ADC ALPHA [BX] [DI], IMM4
ADC MEM_LOC, 7396

(b) ADC BX, IMM_ VAL_987
ADC DH, 65
ADC CX, 432

I data if s:w=01 I

17+EA
4

If an immediate-data-byte is being added from a register-or-memory word, then that
byte is sign-extended to 16 bits prior to the addition. For this situation the instruc
tion byte is 83H (i.e., the s:w bits are both set).

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: ADC (add with carry) performs an addition of the two operands, adds
one if the CF flag is set, and returns the result to the destination (leftmost) operands.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

AD D (Addition)

Operation: The sum of the two operands is stored into the destination (leftmost)
operand.

(DEST) +- (LSRC) + (RSRC)

See note.

Encoding:

Memory or Register Operand with Register Operand:

10 000 0 0 d wi mod reg rIm I
if d = 0 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Timing (clocks): (a) register to register
(b) memory to register
(c) register to memory

Examples:

(a) ADD AX, BX
ADD ,BX ;same as above
ADD CX, DX
ADD DI, SI
ADD BX, BP

(b) ADD CX, MEM_WORD
ADD AX, BETA [SI]
ADD ,BETA [SI] ;same as above
ADD DX, ALPHA [BX] [DI]

(c) ADD GAMMA [BP] [01], BX
ADD BETA [01], AX
ADD MEM_WORD, CX
ADD MEM_BYTE, BH

Immediate Operand to Accumulator:

3
9+EA

16+EA

10 0 0 0 0 1 0 w 1 data 1 data if w=1

if w = 0 then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

Timing: 4 clocks

ADD

5-23

ADD

5-24

Examples:

ADD AL, 3
ADD AX, 456
ADD AL, IMM_VAL_12
ADD AX, IMM_VAL_8529
ADD ,IMM_VAL_6AB9H ;destination AX

Immediate Operand to Memory or Register Operand:

11 0 0 0 0 0 s w 1 mod 0 0 0 rIm 1 data

LSRC = EA, RSRC = data, DEST = EA

Timing (clocks): (a) immediate to memory
(b) immediate to register

Examples:

(a) ADD MEM_WORD, 48
ADD GAMMA [01], IMM_84

1 data if s:w=01 1

17+EA
4

ADD DELTA [BX] [SI], IMM_SENSOR_5

(b) ADD BX, ORIG_ VAL
ADD CX, STANDARD_COUNT
ADD OX, 1776

If an immediate-data-byte is being added from a register-or-memory word, then that
byte is sign-extended to 16 bits prior to the additIOn. For this situation the instruc
tion byte is 83H (Le., the s:w bits are both set).

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: ADD performs an addition of the two source operands and returns
the result to the destination operands.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

AN D (And: logical conjunction)

Operation: The two operands are ANDed, the result having a 1 only in those bit
positions where both operands had aI, with zeroes in all other bit positions. The
result is stored into the destination (leftmost) operand. The carry and overflow flags
are reset to o.

(DEST) - (LSRC) & (RSRC)
(CF) - 0
(OF) - 0

See note.

Encoding:

Memory or Register Operand with Register Operand:

10 0 1 0 0 0 d w I mod reg rIm I
if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Timing (clocks): (a) register to register
(b) memory to register
(c) register to memory

Examples:

(a) AND AX, BX
AND ,BX ;same as above
AND CX, 01
AND BH, CL

(b) AND SI, MEM_NAME_WORD
AN 0 OX, BETA [BX]
AND BX, GAMMA [BX] [SI]
AND AX, ALPHA [01]

3
9+EA

16+EA

AND ,ALPHA [01] ;same as above
AND DH, MEM_BYTE

(c) AND MEM_NAME_WORO, BP
AND ALPHA [01], AX
AND GAMMA [BX] [01], SI
AND MEM_BYTE, AL

Immediate Operand to Accumulator:

10 0 1 0 0 1 0 w I data I data if w=1

if w = 0 then LSRC = AL, RSRC = data, OEST = AL
else LSRC = AX, RSRC = data, DEST = AX

Timing (clocks): immediate to register 4

AND

5-25

AND

5-26

Examples:

AND AL, 7AH
AND AH, OEH
AND AX, IMM_VAl_MASK3

Immediate Operand to Memory or Register Operand:

11 0 0 0 0 0 0 w 1 mod 1 0 0 rIm I data

LSRC = EA, RSRC = data, OEST = EA

Timing (clocks): (a) immediate to register
(b) immediate to memory

Examples:

(a) AND BL, 10011110B
AND CH, 3EH
AND DX, 7A46H
AND SI, 987

(b) AND MEM_WORD, 7A46H
AND MEM_BYTE, 46H

data if w=1

4
17+EA

AND GAMMA [01], IMM_MASK 14
AND CHI_BYTE [BX] [51], 11100111 B

Flags Affected: CF, OF, PF, SF, ZF.
Undefined: A F

Description: AND performs the bitwise logical conjunction of the two source
operands and returns the result to one of the operands.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

CALL
CALL (Call a procedure)

Operation: If this is an intersegment call, the stack pointer is decremented by 2 and
the contents of the CS register are pushed onto the stack. CS is then filled by the sec
ond word (segment) of the doubleword inter segment pointer.

Then the stack pointer is decremented by 2 and the contents of the Instruction
Pointer are pushed onto the stack. The last step is to replace the contents of the IP
by the offset of the target destination, i.e. the offset of the proc~dure's first instruc
tion. An intra-segment or intra-group call does only steps 2, 3, and 4.

1) if Inter-Segment then
(SP) +- (SP)-2
((SP) + 1 :(SP)) +- (CS)
(CS) +- SEG

2) (SP) +- (SP)-2
3) ((SP) + 1 :(SP)) +- (lP)
4) (lP) +- DEST

See note.

Encoding:

Direct Intra-segment or Intra-group:

11 1 1 0 1 0 0 0 I disp-Iow

DEST = (lP) + disp

Timing: 13 + EA clocks

Examples:

CALL NEAR_LABEL
CALL NEAR_PROC

Inter-Segment Direct:

11 0 0 1 1 0 1 0 1 offset-low

DEST = offset, SEG = seg

Timing: 20 clocks

Examples:

CALL FAR_LABEL
CALL FAR_PROC

disp-high

offset-high seg-Iow seg-high ~

5-27

CALL

5-28

Inter-Segment Indirect:

11 1 1 1 1 1 '1 1 1 mod 0 1 1 rIm 1

DEST = (EA), SEG = (EA + 2)

Timing: 29 + EA clocks

Examples:

CALL DWORD PTR [BX]
CALL DWORD PTR VARIABLE_NAME [SI]
CALL MEM_DOUBLE_WORD

Indirect Intra-Segment or Intra-Group

11 1 1 1 1 1 1 11m ad 0 1 0 rIm 1

DEST = (EA)

Timing: 11 clocks

Examples:

CALL WORD PTR [BX]
CALL WORD PTR VARIABLE_NAME
CALL WORD PTR [BXJ [SIJ
CALL WORD PTR [01]
CALL WORD PTR VARIABLE_NAME [BPJ [SIJ
CALL MEM_WORD
CALL BX
CALL CX

Flags Affected: None

Description: CALL pushes the offset address of the next instruction onto the stack
(in the case of an inter-segment call the CS segment register is pushed first) and then
transfers control to the target operand.

Direct calls and jumps can only be made to labels, relative to CS; not variables.
NEAR is assumed unless FAR is stated in the instruction or in the declaration of the
target label.

As shown in the indirect-call examples above, calls through variables may use the
PTR operator to indicate the intended use of one word for NEAR calls, or two
words for calls to FAR labels or procedures. Indirect calls using word registers
(within squarebrackets) are of necessity NEAR calls.

CALL
The implicit segment register used in a register-indirect call is DS, unless BP is used
or an override is specified. The implicit segment register is used to construct the ad
dress which contains the offset (and segment, if a "longn call) of the calFs target. If
BP is used, SS is the segment register used. However, if a segment prefix byte is ex
plicitly specified, e.g.,

CALL WORD PTR ES: [BP] [DI]

then the segment register so specified is used (here ES). An implicit segment register
for indirect calls through variables or address-expressions is determined by the
address-expression in the source line and the applicable ASSUME directive (see
Chapter 4).

When CALL is used to transfer control, a RETurn is implied. With indirect
CALLS, you must carefully ensure that the type of the CALL matches the type of
RETurn, or errors may result that are difficult to trace. The issue is whether CS is
saved and restored. See RET and Appendix D.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

5-29

CBW

5-30

C BW (Convert byte to word)

Operation: If the lower byte of the accumulator (AL) is less than SOH, then AH is
made zero. Otherwise, AH is set to FFH. This is equivalent to replicating bit 7 of AL
all through AH.

Encoding:

11001100YJ

Timing: 2 clocks

Example: CBW

Flags Affected: None

Description: CBW (convert byte to word) performs a sign extension of the AL
register into the AH register.

CLC (Clear carry flag)

Operation: The carry flag is reset to zero.

(CF) +- 0

Encoding:

1111110001

Timing: 2 clocks

Example: CLC

Flags Affected: CF

Description: CLC clears the CF flag.

CLC

5-31

CLD

5-32

CLD (Clear direction flag)

Operation: The direction flag is reset to zero.

(OF) -- 0

Encoding:

1111111001

Timing: 2 clocks

Example: CLO

Flags Affected: OF.

Description: CLD clears the DF flag, causing the string operations to auto- incre
ment the operand pointers.

Cli (Clear interrupt flag)

Operation: The interrupt flag is reset to zero.

(IF) +- 0

Encoding:

1111110101

Timing: 2 clocks

Example: eLi

Flags Affected: IF

Description: eLI clears the IF flag, disabling maskable external interrupts, which
appear on the INTR line of the 8086. (Nonmaskable interrupts, which appear on the
NMI line are not disabled.)

ell

5-33

CMC

5-34

CMC (Complement carry flag)

Operation: If the carry flag is zero, it is set to 1; if it is 1, it is reset to O.

if (CF) = 0 then (CF) - 1 else (CF) - 0

Encoding:

1111101011

Timing: 2 clocks

Example: CMC

Flags Affected: CF

Description: CMC complements the CF flag.

CMP(Compare two operands)

Operation: The source (rightmost) operand is subtracted from the destination (left
most) operand. The flags are altered but the operands remain unaffected.

(LSRC)-(RSRC)

See note.

Encoding:

Memory or Register Operand with Register Operand:

1001 1 1 0 d wi mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA
else LSRC = EA, RSRC = REG

Timing (clocks): (a) register with register
(b) memory with register
(c) register with memory

Examples:

(a) CMP AX, OX
CMP ,OX ;same as above
CMP 81, BP
CMP BH, CL

(b) CMP MEM_WORO, SI
CMP MEM_BYTE, CH
CMP ALPHA [01], OX
CMP BETA [BX] [SI], CX

(c) CMP 01, MEM_WORO
CMP CH, MEM_BYTE
CMP AX, GAMMA [BP] [SI]

Immediate Operand with Accumulator:

3
9+EA
9+EA

1001 1 1 1 0 w 1 data 1 data if w=1

if w = 0 then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

Timing (clocks): immediate with register 4

CMP

5-35

CMP

5-36

Examples:

CMP AL,
CMP AL,
CMP AX,
CMP ,999
CMP AX,

6
IMM_VALUE_DRIVE 11
IMM_VAL_909

999 ;same as above

Immediate Operand with Memory or Register Operand:

1100000 s wlmod 111 r/ml data Idataifs:w=011

LSRC = EA, RSRC = data

Timing (clock): (a) immediate with register
(b) immediate with memory

Examples:

(a) CMP BH, 7
CMP CL, 19_IMM_BYTE
CMP OX, IMM_DATA_WORO
CMP SI, 798

4
17+EA

(b) CMP MEM_WORO, IMM_DATA_BYTE
CMP GAMMA [BX], IMM_BYTE
CMP [BX] [DI], 6ACEH

If an immediate-data-byte is being compared from a register-or-memory word, then
that byte is sign-extended to 16 bits prior to the compare. For this situation the in
struction byte is 83H (Le., the s:w bits are both set).

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: CMP (compare) performs a subtraction of the two operands causing
the flags to be affected but does not return the result.

The source (rightmost) operand must usually be of the same type, i.e. byte or word,
as the destination operand. The only exception for CMP is comparing an
immediate-data byte with a memory word.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

CMPSB/CMPSW ICMPS
CMPS (Compare byte string, compare word string)

Chapter 2 describes CMPSB and CMPSW.

Operation: The rightmost operand, using DI as an index into the extra segment, is
subtracted from the leftmost operand, which uses SI as an index. (This is the only
string instruction in which the DI-indexed operand appears as the rightmost
operand.) Only the flags are affected, not the operands. SI and DI are then in
cremented, if the direction flag is reset (zero), or they are decremented, if DF=1.
They thus point to the next element of the strings being compared. The increment is
1 for byte strings, 2 for word strings.

(LSRC)-(RSRC)
if (OF) = 0 then

(SI) +- (SI) + OEL TA
(01) +- (01) + OEL TA

else
(SI) +- (SI)-DEL T A
(01) +- (Ol)-OEL T A

Encoding:

11010011wl

if w = 0 then LSRC = (SI), RSRG = (01), OEL T A = 1 (BYTE)
else LSRC = (SI) + 1 :(SI), RSRC = (01) + 1 :(01), OELTA = 2 (WORO)

Timing: 22 clocks

Example:

MOV SI, OFFSET STRING1
MOV 01, OFFSET STRING2
CMPS STRING 1, STRING2
;the operands named in the CMPS instruction are used only
;by the assembler to verify type and accessibility using current seg
;ment register contents. CMPS actually uses only SI and 01 to point to
;the locations whose contents are to be compared, without using the
;names given in the source CMPS line.

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: CMPS subtracts the byte (or word) operand addressed by DI from the
operand addressed by SI and affects the flags but does not return the result. As a
repeated operation this provides for comparing two strings. With the appropriate
repeat prefix it is possible to determine after which string element the two strings
become unequal, thereby establishing an ordering between the strings.

Note that the operand indexed by DI is the rightmost operand in this instruction,
and that this operand is addressed using the ES register only-this default CANNOT
be overridden.

5-37

cwo

5-38

cwo (Convert word to doubleword)

Operation: The high order bit of AX is replicated throughout DX.

if (AX) < 8000H then (DX) - 0
else (DX) - FFFFH

Encoding:

1100110011

Timing: 5 clocks

Example: CWD

Flags Affected: None

Description: CWD (convert word to double word) performs a sign extension of the
AX register into the DX register. See also DIV.

DAA (Decimal adjust for addition)

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary
carry flag has been set, then 6 is added to AL and AF is set. If AL is greater than
9FH or if the carry flag has been set, then 60H is added to AL and CF is set.

if (AL) & OFH) > 9 or (AF) = 1 then
(AL) - (AL) + 6
(AF) -1

if (AL) > 9FH or (CF) = 1 then
(AL) - (AL) + 60H
(CF) -1

Encoding:

1001001111

Timing: 4 clocks

Example: DAA

Flags Affected: AF, CF, PF, SF, ZF
Undefined: 0 F

Description: DAA (decimal adjust for addition) performs a correction of the result
in AL of adding two packed decimal operands, yielding a packed decimal sum.

DAA

5-39

DAS
DAS (Decimal adjust for subtraction)

Operation: If the lower nibble (4 bits) of AL is greater than 9 or if the auxiliary flag
has been set, then 6 is subtracted from AL and AF is set. If AL is greater than 9FH
or if the carry flag has been set, then 60H is subtracted from AL and CF is set.

if (AL) & OFH) > 9 or (AF) = 1 then
(AL) - (AL)-6
(AF) -1

if (AL) > 9FH or (CF) = 1 then
(AL) - (AL)-60H
(CF) -1

Encoding:

100 1 0 1 1 1}]

Timing: 4 clocks

Example: DAS

Flags Affected: AF, CF, PF, SF, ZF.
Undefined: OF

Description: DAS (decimal adjust for subtraction) performs a correction of the
result in the AL register of subtracting two packed decimal operands, yielding a
packed decimal difference.

DEC (Decrement destination by one)

Operation: The specified operand is reduced by 1.

(DEST) +- (DEST)-1

See note.

Encoding:

Register Operand: (Word)

1 0 1 0 0 1 reg 1

DEST= REG

Timing: 2 clocks

Examples:

DEC AX
DEC DI
DEC SI

Memory or Register Operand:

11 1 1 1 1 1 1 w 1 mod 0 0 1 rIm I
DEST= EA

Timing (clocks): register
memory

Examples:

DEC MEM_BYTE
DEC MEM_BYTE [DI]
DEC MEM_WORD
DEC ALPHA [BX] [SI]
DEC BL
DEC CH

2
15+EA

Flags Affected: AF, OF, PF, SF, ZF

Description: DEC (decrement) performs a subtraction of one from the operand
and returns the result to that operand.

DEC

5-41

DEC
NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

DIV (Division, unsigned)

Operation: If the division results in a value larger than can be held by the ap
propriate registers, an interrupt of type 0 is generated. The flags are pushed onto the
stack, IF and TF are reset to 0, and the CS register contents are pushed onto the
stack. CS is then filled by the word at location 2. The current IP is pushed onto the
stack and IP is then filled with the word at O. This sequence thus includes a long call
to the interrupt handling procedure whose segment and offset are stored respectively
at locations 2 and O.

If the division result can fit in the appropriate registers, then the quotient is stored in
AL or AX (for word operands) and the remainder in AH or DX, respectively.

(temp) - (NUMR)
if (temp) I (DIVR) > MAX then the following, in sequence

(QUO), (REM) undefined

else

See note.

Encoding:

(SP) - (SP)-2
«SP) + 1 :(SP» - FLAGS
(IF) - 0
(TF) - 0
(SP) - (SP)-2
«SP) + 1 :(SP» - (CS)
(CS) - (2) i.e., the contents of memory locations 2 and 3
(SP) - (SP)-2
«SP) + 1 :(SP» - (lP)
(lP) - (0) i.e., the contents of locations 0 and 1

(QUO) - (temp) I (DIVR), where I is unsigned division
(REM) - (temp) % (DIVA), where % is unsigned modulo

11 1 1 1 0 1 1 w 1 mod 1 1 0 rIm I
(a) if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM= AH,

MAX = FFH
(b) else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = OX,

MAX = FFFFH

Timing: (clocks): 8-bit
16-bit

90+EA
155+ EA

DIV

5-43

DIV

5-44

Examples:

(a1) to divide a word by a byte

MOV AX, NUMERATOR_WORD
DIV DIVISOR_BYTE
;quotient will be in AL, remainder in AH

(a2) to divide a byte by a byte

MOV AL, NUMERATOR_BYTE
CBW ;converts byte in AL to word in AX
DIV DIVISOR_BYTE
;quotient in AL, remainder in AH

(b1) to divide a double word by a word

MOV OX, NUMERATOR_HI_WORD
MOV AX, NUMERATOR_LO_WORD
DIV DIVISOR_WORD
;quotient in AX remainder in OX

(b2) to divide a word by a word

MOV AX, NUMERATOR_WORD
CWD ;converts word to doubleword
DIV DIVISOR_WORD
;quotient in AX, remainder in DX

NOTE: Each memory operand above could be any variable or valid address- ex
pression so long as its type were the same. For example, in (al) above,
NUMERATOR_ WORD could be replaced by the expression

ARRAY _NAME [BX] [SI] + 67

so long as ARRAY_NAME is of type WORD. Similarly DIVISOR_BYTE could
be

RATE_TABLE [BP] [01]

so long as RATE_ TABLE is of type BYTE.

Flags Affected: no valid flags result
Undefined: AF, CF, OF, PF, SF, ZF

Description: DIV (divide) performs an unsigned division of the double-length
NUMR operand, contained in the accumulator and its extension (AL and AH for 8-
bit operation, or AX and DX for 16-bit operation) by the DIVR operand, contained
in the specified source operand. It returns the single-length quotient (QUO operand)
to the accumulator (AL or AX), and returns the single-length remainder (the REM
operand) to the accumulator extension (AH for 8-bit operation or DX for 16-bit
operation). If the quotient is greater than MAX (as when division by zero is at
tempted) then QUO and REM are undefined, and a type 0 interrupt is generated.
Flags are undefined in any DIV operation. Nonintegral quotients are truncated to
integers.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-,bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

DIV

5-45

ESC

5-46

ESC (Escape)

Operation:

if mod #= 11 then data bus - (EA)
if mod = 11, no operation.

See note.

Encoding:

11011x mod x rIm

Timing: 7 + EA clocks

Example:

ESC EXTERNAL_OPCODE, ADDRESS
; this opcode is a 6-bit number, which is split into the two 3-bit fields
; shown as x above.

Flags Affected: None

Description: The ESC instruction provides a mechanism by which other processors
may receive their instructions from the 8086 instruction stream and make use of the
8086 addressing modes. The 8086 processor does no operation for the ESC instruc
tion other than to access a memory operand and place it on the bus.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

HLT (Halt)

Operation: None

Encoding:

1111101001

Timing: 2 clocks

Example: H L T

Flags Affected: None

Description: The HL T instruction causes the 8086 processor to enter its halt state.
The halt state is cleared by an enabled external interrupt or reset.

HLT

5-47

IDIV

5-48

IDIV (Integer division, signed)

Operation: If the division results in a value larger than can be held by the ap
propriate registers, an interrupt of type 0 is generated. The flags are pushed onto the
stack, IF and TF are reset to 0, and the CS register contents are pushed onto the
stack. CS is then filled by the word at location 2. The current IP is pushed onto the
stack and IP is then filled with the word at O. This sequence thus includes a long call
to the interrupt handling procedure whose segment and offset are stored respectively
at locations 2 and o.

If the division result can fit in the appropriate registers, then the quotient is stored in
AL or AX (for word operands) and the remainder in AH or DX, respectively.

(temp)'" (NUMR)
if (temp) I (DIVR) > 0 and (temp) I (DIVR) > MAX
or (temp) I (DIVR) < 0 and (temp) I (DIVR) < O-MAX-1

then

else

See note.

Encoding:

(QUO), (REM) undefined
(SP)- (SP)-2
((SP) + 1 :(SP» ... FLAGS
(IF) ... 0
(TF)'" 0
(SP) ... (SP)-2
((SP) + 1 :(SP» ... (CS)
(CS)- (2)
(SP) ... (SP)-2
((SP) + 1 :(SP» ... (lP)
(IP) ... (0)

(QUO) ... (temp) I (DIVR), where I is signed division
(REM) ... (temp) % (DIVR), where % is signed modulo

11 1 1 1 0 1 1 w Imod 1 1 1 r/ml

(a) if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = 7FH
(b) else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH

Timing (clocks): 8-bit
16-bit

Example:

112+ EA
177+ EA

(a) MOV AX, NUMERATOR_WORD [BX]
IDIV DIVISOR_BYTE [BX]

(b) MOV DX, NUM_HI_WORD
MOV AX, NUM_LO_WORD
IDIV DIVISOR_WORD [SI]
SEE ALSO DIV.

Flags Affected: AF, eF, OF, PF, SF, ZF
Undefined: All

Description: IDIV (integer divide) performs a signed division of the double-length
NUMR operand, contained in the accumulator and its extension (AL and AR for 8-
bit operation, or AX and DX for 16-bit operation) by the DIVR operand, contained
in the specified source operand. It returns the single-length quotient (QUO operand)
to the accumulator (AL or AX), and returns the single-length remainder (the REM
operand) to the accumulator extension (AR for 8-bit operation or DX for 16-bit
operation). If the quotient is positive and greater than MAX or if the quotient is
negative and less than (O-MAX -1), (as when division by zero is attempted) then
QUO and REM are undefined, and a type 0 interrupt is generated. Flags are
undefined in any divide operation. IDlV truncates nonintegral quotients and returns
a remainder with the same sign as the numerator.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

IDIV

5-49

IMUL

5-50

IMUL
(Integer multiply accumulator by register-or-memory; signed)

Operation: The accumulator (AL if byte, AX if word) is multiplied by the specified
operand. If the high-order half of the result is the sign-extension of the low-order
half, the carry and overflow flags are reset, otherwise they are set.

(DEST) +- (LSRC) * (RSRC) where * is signed multiply
if (EXT) = sign-extension of (LOW) then (CF) +- 0
else (CF) +- 1;
(OF) +- (CF)

See note.

Encoding:

11 1 1 1 0 1 1 w 1 mad 1 0 1 rIm 1

(a) if w = 0 then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH, LOW =AL
(b) else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

Timing (clocks): 8-bit
16-bit

Example:

90+EA
144+ EA

(a) MOV AL, LSRC_ BYTE
IMUL RSRC_BYTE ;result in AX

(b1) MOV AX, LSRC_ WORD
IMUL RSRC_WORD
;high-half result in DX, low-half in AX

(b2) to multiply a byte by a word
MOV AL, MUL_BYTE
CBW ;converts byte in AL to word in AX
IMUL RSRC_WORD
;high-half result in DX, low-half in AX

NOTE: Any memory operand above could be an indexed address-expression of the
correct TYPE, e.g., LSRC_BYTE could be ARRAY [SI] if ARRAY were of type
BYTE, and RSRC_ WORD could be TABLE [BX] [DI] if TABLE were of type
WORD.

Flags Affected: CF, OF.
Undefined: AF, PF, SF, ZF

IMUL
Description: IMUL (integer multiply) performs a signed multiplication of the ac
cumulator (AL or AX) and the source operand, returning a double-length result to
the accumulator and its extension (AL and AH for 8-bit operation, or AX and DX
for 16-bit operation). CF and OF are set if the top half of the result is not the sign
extension of the low half of the result.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

5-51

IN

5-52

IN (Input byte and input word)

Operation: The contents of the accumulator are replaced by the contents of the
designated port.

(DEST)-(SRC)

Encoding:

Fixed Port:

11 1 1 0 0 1 0 w 1 port

if w = 0 then SRC = port, DEST = AL
else SRC = port + 1 :port, DEST = AX

Timing: 10 clocks

Examples:

IN AX, WORD_PORT ;input word to AX
IN AL, BYTE_PORT ;input a byte to AL

;the destination for input must be AX or AL, and must be specified in
;order for the assembler to know the type of the input The port names
;must be immediate values between 0 and 255, as used above or literally
;the register name DX, which must be filled earlier with the requisite
;port location

Variable Port:

11 1 1 0 1 1 o-w]
if w = 0 then SRC = (DX), DEST = AL
else SRC = (DX) + 1 :(DX), DEST = AX

Timing: 8 clocks

Examples:

IN AX, DX ;input a word to AX
IN AL, DX ;input a byte to AL

Flags Affected: None

Description: IN transfers a byte (or word) from an input port to the AL register (or
AX register). The port is specified either with an inline data byte, allowing fixed ac
cess to ports 0 through 255, or with a port number in the DX register, allowing
variable access to 64K input ports.

INC (Increment destination by 1)

Operation: The specified operand is incremented by 1. There is no carry out of the
most-significant bit.

(DEST) - (DEST) + 1

See note.

Encoding:

Register Operand: (Word)

1 0 1 000 reg 1

OEST= REG

Timing: 2 clocks

Examples:

INC AX
INC DI

Memory or Register Operand:

11 1 1 1 1 1 1 w Imod 000 r/ml

DEST= EA

Timing (clocks): (a) register
(b) memory

Examples:

(a) INC CX
INC BL

(b) INC MEM_BYTE
INC MEM_WORD [BX]

2
15+EA

INC BYTE PTR [Bx] ;byte in DATA Segment at offset [BX]
INC ALPHA [01] [BX]

INC

INC BYTE PTR [SI] [BP] ;byte in Stack Segment at offset [SI + BP]
INC WORD PTR [BX] ;increments the word in Data Segment at
offset [BX], and thus can get carry into bit 8.

Flags Affected: AF, OF, PF, SF, ZF

Description: INC (increment) performs an addition of the source operand and one,
and returns the result to the operand.

5-53

INC

5-54

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

INT (Interrupt)

Operation: Stack Pointer is decremented by 2 and all flags are pushed into the
stack. The interrupt and trap flags are then reset. SP is then decremented by 2 and
the current contents of the CS register are pushed onto the stack. CS is then filled
with the high-order word of the doubleword interrupt vector, i.e., the segment base
address of the interrupt handling procedure for this interrupt type.

SP is then decremented by 2 and the current contents of the Instruction Pointer are
pushed onto the stack. IP is then filled with the low-order word of the interrupt vec
tor, located at absolute address TYPE*4. This completes an intersegment ("long")
call to the procedure which is to process this interrupt type.

See also PUSHF, INTO, IRET.

(SP) - (SP) - 2
«SP) + 1 :(SP)) - FLAGS
(IF) - 0
(TF) - 0
(SP) - (SP) - 2
«SP) + 1 :(SP)) - (CS)
(CS) - (TYPE 1t 4 + 2)
(SP) - (SP) - 2
«SP) + 1 :(SP)) - (lP)
(lP) - (TYPE 1t 4)

Encoding:

11 1 0 0 1 1 0 v 1 type if v=1

(a) if v = 0 then TYPE = 3
(b) else TYPE = type

Timing: 52 clocks

Examples:

(a) INT 3 ;one byte instruction, 11001100

(b) INT 2 ;two bytes: 11001101 00000010
INT 67 ;two bytes: 11001101 01000011
IMM_44 EQU 44
INT IMM_ 44 ;two bytes: 11001101 00101100

Note: The operand must be immediate data, not a register or a memory reference.

Flags Affected: IF, TF

Description: INT pushes the flag registers (as in PUSHF), clears the TF and IF
flags, and transfers control with an indirect call through anyone of the 256 vector
elements. The one-byte form of this instruction generates a type 3 interrupt.

INT

5-55

INTO

5-56

INTO (Interrupt if overflow)

Operation: If the overflow flag is zero, no operation occurs. If OF is 1, then Stack
Pointer is decremented by 2 and all flags are saved onto the stack. The trap and
interrupt flags are reset. SP is again decremented by 2 and the contents of CS are
pushed into the stack. CS is then filled with the second word (segment) of the
doubleword interrupt vector for a type 4 interrupt.

SP is again decremented by 2, and the current Instruction Pointer (pointing to the
next instruction after INTO) is pushed onto the stack. IP is then filled with the first
word of the type 4 doubleword interrupt vector, located at absolute location 16
(1 OH). This word is the offset of the procedure to handle type 4 interrupts. The seg
ment base address was already placed in CS. Thus this completes a "long" call to
the proper procedure.

See also INT, IRET, PUSHF.

if (OF) = 1 then
(SP) +- (SP) - 2
((SP) + 1 :(SP» +- FLAGS
(IF) +- 0
(TF) +- 0
(SP) +- (SP) - 2
((SP» + 1 :(SP» +- (CS)
(CS) +- (12H)
(SP) +- (SP) - 2
((SP) + 1 :(SP» +- (lP)
(lP) +- (10H)

Encoding:

1110011101

Timing: 52 clocks

Example: INTO

Flags Affected: None

Description: INTO pushes the flag registers (as in PUSHF), clears the TF and IF
flags, and transfers control with an indirect call through vector element 4 (location
10H) if the OF flag is set (trap on overflow). If the OF flag is clear, no operation
takes place.

IRET (Interrupt return)

Operation: The instruction Pointer is filled with the word at the top of the stack.
The Stack Pointer is then incremented by 2, and the CS register is filled with the
word now at the top of the stack. This returns control to the point where the inter
rupt was encountered.

SP is again incremented by 2, and the flags are restored from the appropriate bits of
the word now at the top of the stack. (See also POPF.) SP is again incremented by 2.

(IP) - ((SP) + 1 :(SP»
(SP) - (SP) + 2
(CS) - ((SP) + 1 :(SP»
(SP) - (SP) + 2
FLAGS - ((SP) + 1 :(SP»
(SP) - (SP) + 2

Encoding:

1110011111

Timing: 24 clocks

Example: IRET

Flags Affected: All

Description: IRET transfers control to the return address saved by a previous inter
rupt operation and restores the saved flag registers (as in POPF).

IRET

5-57

JA

5-58

IN BE and JA (Jump if not below nor equal, or jump if above)

Operation: If both the carry flag and the zero flag are zero, then the distance from
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting a transfer. If (CF) = 1 or (ZF) = 1, no jump results.

IF (CF)I(ZF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 1 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JA TARGET_LABEL
JNBE TARGET_LABEL

Flags Affected: None

Description: JNBE (or JA) transfers control to the target operand on not below or
equal (or above).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

IN Band JAE (Jump if not below, or jump if above or equal)

Operation: If the carry flag is zero, the distance from the end of this instruction to
the target label is added to the Instruction Pointer, effecting the transfer. It (CF) =
1, no jump results.

if (CF) = 0 then
(lP) - (IP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 0 1 1 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JNB TARGET_LABEL
JAE TARGET_LABEL

Flags Affected: None

Description: JNB (or JAE) transfers control to the target operand on not below (or
above or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JAE

5-59

JB/JC

5-60

JB and JNAE (Jump if below, or jump if not above nor equal)
JC (Jump if carry)

Operation: If the carry flag is 1, then the distance from the end of this instruction
to the target label is added to the Instruction Pointer, effecting the jump. If (CF) =
0, no jump occurs.

if (CF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 0 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JB TARGET_LABEL
JNAE TARGET_LABEL
JC TARGET_LABEL

Flags Affected: None

Description: JB (or JNAE) transfers control to the target operand on below (or not
above or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "Jess" refer to the relation between two signed values.

JBE and JNA (Jump if below or equal, or jump if not above)

Operation: If either the carry flag or the zero flag is set, then the distance from the
end of this instruction to the target label is added to the Instruction Pointer, effec
ting the jump. If both (CF) = 0 and (ZF) = 0, no jump occurs.

if (CF)I(ZF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 1 1 0 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JBE TARGET_LABEL
JNA TARGET_LABEL

Flags Affected: None

Description: JBE (or JNA) transfers control to the target operand on below or
equal (or not above).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JBE

5-61

JCXZ

5-62

JCXZ (Jump if CX is zero)

Operation: If the count register (CX) is zero, then the distance from the end of this
instruction to the target label is added to the Instruction Pointer, effecting a
transfer. If (CX) = 1, no jump occurs.

if (CX) = 0 then
(lP) - (lP) + disp (sign-extended to t6-bits)

Encoding:

11 1 1 0 0 0 1 1 I disp

Timing (clocks): Jump is taken 9
Jump is not taken 5

Example: JCXZ TARGET_LABEL

Flags Affected: None

Description: JCXZ (jump on CX zero) transfers control to the target operand if
the CX register is zero.

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JE and JZ (Jump if equal, jump if zero)

Operation: If the last operation to affect the zero flag gave a result of zero, then
(ZF) will be 1. If (ZF) = 1, then the distance from the end of this instruction to the
target label will be added to the Instruction Pointer, effecting a transfer of control to
that label. If (ZF) = 0, no operation occurs.

if (ZF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 1 0 0 I disp

Timing (clocks: Jump is taken 8
Jump is not taken 4

Examples:

1) CMP CX, OX
JE LAB2
INC CX

LAB2:
;the increment of CX will only occur if CX :f:. OX

2) SUB AX, BX
JZ EXACT
;jump occurs if result was zero, i.e., AX = BX

EXACT:

Flags Affected: None

Description: JE (or JZ) transfers control to the target operand on equal (or zero).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JE

5-63

JG

5-64

JNLE and JG (Jump if not less nor equal, or jump if greater)

Operation: If the zero flag is reset and the sign flag equals the overflow flag (Le.,
both zero or both 1), then the distance from the end of this instruction to the target
label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1 or (SF) ::f:.
(OF), then no jump occurs.

if ((SF)II(OF))I(ZF) = Othen
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 1 1 1 1 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JG TARGET_LABEL
JNLE TARGET_LABEL

Flags Affected: None

Description: JNLE (or JG) transfers control to the target operand on not less or
equal (or greater).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

IN Land JG E (Jump if not less, or jump if greater or equal)

Operation: If the sign flag equals the overflow flag, then the distance from the end
of this instruction to the target label is added to the Instruction Pointer, effecting the
jump. If (SF) :j:. (OF), no jump results.

if (SF)II(OF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 1 0 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JGE TARGET_LABEL
JNL TARGET_LABEL

Flags Affected: None

Description: JNL (or JGE) transfers control to the target operand on not less (or
greater or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JGE

5-65

JL

5-66

JL and JNGE (Jump on less, or jump on not greater nor equal)

Operation: This jump occurs only if the sign flag is not equal to the overflow flag,
i.e., (SF) :::f:. (OF). (SF) exclusive-or (OF) = 1 means the same. If (SF) :::f:. (OF), then the
distance from the end of this instruction to the target label is added to the Instruc
tion Pointer, effecting the jump. If (SF) = (OF), no jump occurs.

if (SF)II(OF) = 1 then
(lP) +- (IP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 1 1 0 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JL TARGET_LABEL
JNGE LABEL_TARGET

Flags Affected: None

Description: JL (or JNGE) transfers control to the target operand on less (or not
greater or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JLE and JNG (Jump if less or equal, or jump if not greater)

Operation: If the zero flag is set, or if the sign flag is unequal to the overflow flag,
then the distance from the end of this instruction to the target label is added to the
Instruction Pointer, effecting the jump. If (ZF) = 0, and (SF) = (OF), then no jump
occurs.

if ((SF)II(OF))I(ZF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 1 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JLE TARGET_LABEL
JNG TARGET_LABEL

Flags Affected: None

Description: JLE (or JNG) transfers control to the target operand on less or equal
(or not greater).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JLE

5-67

JMP

5-68

JMP (Jump)

Operation: The Instruction Pointer is replaced by the target's offset in all interseg
ment jumps, and in intra-segment (or intra-group) indirect jumps.

When the jump is a direct intra-segment or intra-group, the distance from the end of
this instruction to the target label is added to the IP.

Intersegment jumps first replace the contents of CS, using the second word follow
ing the instruction (direct) or using the second word following the indicated data ad
dress (indirect).

if Inter-Segment then (CS) - SEG
(lP) - DEST

See note.

Encoding:

Intra-Segment or Intra-Group Direct:

11 1 1 0 1 0 0 1 1 disp-Iow disp-high

DEST = (lP) + disp

Timing: 7 clocks

Example: JMP NEAR_LABEL

Intra-Segment Direct Short:

11 1 1 0 1 0 1 1 I d isp

DEST = (lP) + disp sign extended to 16 bits

Timing: 1 clock

Examples:

JMP TARGET_LABEL
JMP SHORT NEAR_LABEL

NOTE: The target label must be within -128 to +127 bytes of this instruction.

Inter-Segment Direct:

11 1 1 0 1 0 1 0 I offset-low offset-high seg-Iow seg-high

DEST = offset, SEG = seg

Timing: 7 clocks

Examples:

JMP LABEL_DECLARED_FAR
JMP FAR PTR LABEL_NAME
JMP FAR PTR NEAR_LABEL

Inter-Segment Indirect:

11 1 1 1 1 1 1 1 1 mod 1 0 1 rIm 1

DEST = (EA), SEG = (EA + 2)

Timing: 16+ EA clocks

Examples:

JMP VAR_DOUBLEWORD
JMP DWORD PTR [BXJ [SIJ
JMP ALPHA [BP] [DI]

Intra-Segment or Intra-Group Indirect:

11 1 1 1 1 1 1 11m od 1 0 0 rIm I
DEST = (EA)

Timing: 7 + EA clocks

Examples:
JMP TABLE [BXJ
JMP WORD PTR [BXJ [OIJ
JMP BETA_WORD
JMP AX
JMP SI
JMP BP
;these replace the Instruction Pointer by the contents of the named
;register. This causes a jump directly to the byte with that offset past
;CS. This is different from the direct intra-segment jumps, which are
;self-relative, causing an add to the IP.

Flags Affected: None

Description: JMP transfers control to the target operand.

The jump is always relative to the segment base address in the CS register. A direct
jump directly uses the offset (and segment, if "long") bytes that follow the instruc
tion byte. Indirect jumps use the contents of the location addressed by the bytes that
follow the instruction byte.

JMP

5-69

JMP

5-70

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and regjsters. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

JNA and JBE (Jump if below or equal, or jump if not above)

Operation: If either the carry flag or the zero flag is set, then the distance from the
end of this instruction to the target label is added to the Instruction Pointer, effec
ting the jump. If both (CF) = 0 and (ZF) = 0, no jump occurs.

if (CF)I(ZF) = 1 then
(lP) +- (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 1 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JBE TARGET_LABEL
JNA TARGET_LABEL

Flags Affected: None

Description: JBE (or JNA) transfers control to the target operand on below or
equal (or not above).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNA

5-71

JNAE

5-72

JNAE and JB (Jump if below, or jump if not above nor equal)

Operation: If the carry flag is 1, then the distance from the end of this instructon to
the target label is added to the Instruction Pointer, effecting the jump. If (CF) = 0,
no jump occurs.

if (CF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 0 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JB TARGET_LABEL
JNAE TARGET_LABEL

Flags Affected: None

Description: JB (or JNAE) transfers control to the target operand on below (or not
above or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNC/JNB
IN Band JAE (Jump if not below, or jump if above or equal)
J N C (J ump if no carry)

Operation: If the carry flag is zero, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting the jump. If
(CF) = 1, no jump occurs.

if (CF) = 0 then
(IP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 0 1 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JNB TARGET_LABEL
JAE TARGET_LABEL
JNC TARGET_LABEL

Flags Affected: None

Description: JNB (or JAE) transfers control to the target operand on not below (or
above or equal).

NOTE: The target label must be within -128 to + 127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

5-73

JNBE

5-74

JNBE (Jump if not below nor equal)

Operation: If neither the carry flag nor the zero flag is set, then the distance from
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting the jump. If (CF) = 1 or if (ZF) = 1, no jump occurs.

if (CF)I(ZF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 1 1 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JNBE TARGET_LABEL
JA TARGET_LABEL

Flags Affected: None

Description: JNBE (or JA) transfers control to the target operand on not below or
equal (or above).

NOTE: The target label must be within -128 to + 127 bytes of this instruction.

"Above" and Hbelow" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNE and JNZ (Jump if not equal, or jump if not zero)

Operation: If the zero flag is reset, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting the jump. If
(ZF) = 1, no jump occurs.

if (ZF) = 0 then
(lP) +- (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 1 0 1 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JNE TARGET_LABEL
JNZ TARGET_LABEL

Flags Affected: None

Description: JNE (or JNZ) transfers control to the target operand on not equal (or
not zero).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNE

5-75

JNG

5-76

JNG and JLE (Jump if not greater, or jump if less or equal)

Operation: If the zero flag is set, or if the sign flag is unequal to the overflow flag,
then the distance from the end of this instruction to the target label is added to the
Instruction Pointer, effecting the jump. If (ZF) = 0, and (SF) = (OF), then no jump
occurs.

if ((SF)II(OF»I(ZF) = 1 then
(lP) -- (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 1 1 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JLE TARGET_LABEL
JNG TARGET_LABEL

Flags Affected: None

Description: JLE (or JNG) transfers control to the target operand on less or equal
(or not greater).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the. relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNGE
JL and JNGE (Jump if less, or jump if not greater nor equal)

Operation: If the sign flag is unequal to the overflow flag, then the distance from
the end of this instruction to the target label is added to the Instruction Pointer, ef
fecting the jump. If (SF) = (OF), no jump occurs.

if (SF) II (OF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 1 1 0 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JL TARGET_LABEL
JNGE TARGET_LABEL

Flags Affected: None

Description: JL (or JNGE) transfers control to the target operand on less (or not
greater or equal).

The target label must be within -128 to + 127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

5-77

JNL

5-78

JNL and JGE (Jump if not less, or jump if greater or equal)

Operation: If the sign flag equals the overflow flag, then the distance from the end
of this instruction to the target label is added to the Instruction Pointer, effecting the
jump. If (SF) =1= (OF), no jump results.

if (SF)II(OF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 1 0 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JGE TARGET_LABEL
JNL TARGET_LABEL

Flags Affected: None

Description: JNL (or JGE) transfers control to the target operand on not less (or
greater or equal).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

JNLE
IN LE and JG (Jump if not less nor equal, or jump if greater)

Operation: If the zero flag is reset and the sign flag equals the overflow flag (Le.,
both zero or both 1), then the distance from the end of this instruction to the target
label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1 or (SF) "*
(OF), then no jump occurs.

if ((SF)II(OF»I(ZF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 1 1 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

JG TARGET_LABEL
JNLE TARGET_LABEL

Flags Affected: None

Description: JNLE (or JG) transfers control to the target operand on not less or
equal (or greater).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

"Above" and "below" refer to the relation between two unsigned values.
"Greater" and "less" refer to the relation between two signed values.

5-79

JNO

5-80

JNO (Jump on not overflow)

Operation: If overflow flag is 1, no jump occurs. If (OF) = 0, the distance from the
end of this instruction to the target label is added to the Instruction Pointer, effect
ing a jump to that location.

if (OF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 0 0 1 I d isp

Timing (clocks): Jump is taken
Jump is not taken

Example: JNO TARGET_LABEL

Flags Affected: None

8
4

Description: JNO transfers control to the target operand on no overflow.

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JNP and JPO (Jump on no parity or jump if parity odd)

Operation: If the parity flag is 1, meaning even parity resulted from the last opera
tion to affect PF, then no jump occurs. If (PF) = 0, then the distance from the end
of this instruction to the target label is added to the Instruction Pointer, effecting a
transfer to that location.

if (PF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding

10 1 1 0 1 0 1 1 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) JNP TARGET_LABEL
2) JPO TARGET_LABEL

Flags Affected: None

Description: JNP (or JPO) transfers control to the target operand on not parity (or
parity odd).

NOTE: The target label must be within -128 to +127 bytes off this instruction.

JNP

5-81

JNS

5-82

JNS (Jump on not sign, jump if positive)

Operation: If the sign flag is not set, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting a transfer. If
(SF) = 1, no jump occurs.

if (SF) = 0 then
(lP) -- (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 0 0 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Example: JNS TARGET_LABEL

Flags Affected: None

Description: JNS transfers controls to the target operand on not sign.

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JNE and JNZ

Operation: If the new flag is reset, then the distance from the end of instruction to
the target label is added to the Instruction Pointer, effecting the jump. If (ZF) = 1,
no jump occurs.

if (ZF) = 0 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 1 0 1 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) JNE TARGET_LABEL
2) JNZ TARGET_LABEL

Flags Affected: None

Description: JNE (or JNZ) transfers control to the target operand on not equal (or
not zero).

JNZ

5-83

JO

5-84

JO (Jump on overflow)

Operation: If the overflow flag is 1, then the distance from the end of this instruc
tion to the target label is added to the Instruction Pointer, effecting the jump. If
(OF) = 0 no jump occurs.

if (OF) = 1 then
(IP) - (IP) + disp (sign-extended to 16 bits)

Encoding:

10 1 1 1 0 0 0 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Example: JO TARGET_LABEL

Flags Affected: None

Description: JO transfers control to the target operand on overflow.

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JP and JPE (Jump on parity, or jump If parity even)

Operation: If the parity flag is 1, then the distance from the end of this instruction
to the target label is added to the Instruction Pointer, effecting the jump. If (PF) =
0, no jump occurs.

if (PF) = 1 then
(IP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 0 0 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) JP TARGET_LABEL
2) JPE TARGET_LABEL

Flags Affected: None

Description: JP (or JPE) transfers control to the target operand on parity (or pari
tyeven).

NOTE: The target label must be within -128 to + 127 bytes of this instruction.

JP

5-85

JPE

5-86

JP and JPE (Jump on parity, or jump if parity even)

Operation: If the parity flag is 1, then the distance from the end of this instruction
to the target label is added to the Instruction Pointer, effecting the jump. If (PF) =
0, no jump occurs.

if (PF) = 1 then
(lP) +- (lP) + disp (sign-extended to l6-bits)

Encoding:

10 1 1 1 1 0 1 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) JP TARGET_LABEL
2) JPE TARGET_LABEL

Flags Affected: None

Description: JP (or JPE) transfers control to the target operand on parity (or pari
tyeven).

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JNP and JPO

Operation: If the parity flag is 1, meaning even parity resulted from the last opera
tion to affect PF, then no jump occurs. If (PF) = 0, then the distance from the end
of this instruction to the target label is added to the Instruction Pointer, effecting a
transfer to that location.

if (PF) = 0 then
(lP) +- (lP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 1 0 1 1 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) JNP TARGET_LABEL
2) JPO TARGET_LABEL

Flags Affected: None

Description: JNP (or JPO) transfers control to the target operand on not parity (or
parity odd).

NOTE: The target label must be within -128 to + 127 bytes of this instruction.

JPO

5-87

JS

5-88

JS (Jump on sign)

Operation: If the sign flag is 1, then the distance from the end of this instruction to
the target label is added to the Instruction Pointer, effecting the jump. If (SF) = 0,
no jump occurs.

if (SF) = 1 then
(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

10 1 1 1 1 0 0 0 I disp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Example: JS TARGET_LABEL

Flags Affected: None

Description: JS transfers control to the target operand on sign.

NOTE: The target label must be within -128 to +127 bytes of this instruction.

JZ and JE (Jump if equal, jump if zero)

Operation: If the last operation to affect the zero flag gave a result of zero, then
(ZF) will be 1. If (ZF) = 1, then the distance from the end of this instruction to the
target label will be added to the Instruction Pointer, effecting a transfer of control to
that label. If (ZF) = 0, no operation occurs.

if (ZF) = 1 then
(lP) - (IP) + disp (sign-extended to 16-bits)

Encoding:

I 0 1 1 1 0 1 0 0 I d isp

Timing (clocks): Jump is taken 8
Jump is not taken 4

Examples:

1) CMP CX, DX
JE LAB2
INC CX
LAB2:
;the increment of CX will only occu if CX = DX

2) SUB AX, BX
JZ EXACT
;jump occurs if result was zero, i.e., AX = BX

EXACT:

Flags Affected: None

Description: JE (or JZ) transfers control to the target operand on equal (or zero).

NOTE: The target label must be within -128 to + 127 bytes on this instruction

JZ

5-89

LAHF

5-90

LAH F (Load AH from flags)

Operation: Specific bits of AH are filled from the following flags: The sign flag
fills bit 7. The zero flag fills bit 6. The auxiliary carry flag fills bit 4. The parity flag
fills bit 2. The carry flag fills bit o. Bits 1, 3, and 5 of AH are indeterminate, i.e.,
they may on some occasions be 1 and at other times be o.

(AH) +- (SF):(ZF):X:(AF):X:(PF):X:(CF)

Encoding:

1100111111

Timing: 4 clocks

Example: LAHF

Flags Affected: None

Description: LAHF (Load AH with Flags) transfers the flag registers SF, ZF, AF,
PF, and CF (which, when 8080 code is translated into 8086 code, are the 8080 flags)
into specific bits of the AH register. The bits indicated "X" are unspecified.

LOS (Load data segment register)

Operation:

1) The contents of the specified register are replaced by the lower addressed word of
the doubleword memory operand.

(REG) - (EA)

2) The contents of the DS register are replaced by the higher-addressed word of the
doubleword memory operand.

(OS) - (EA + 2)

See note.

Encoding:

11 1 0 0 0 1 0 1 1 mod reg rIm 1

for mod :F 11 (if mod = 11 then undefined operation)

Timing: 16+EA clocks

Examples:

LOS BX,
LOS SI,

AOOR_ TABLE [SI]
NEWSEG [BX]

Flags Affected: None

Description: LDS (Load Pointer into DS) transfers a "pointer-object" (Le., a 32-
bit object containing an offset address and a segment address) from the source
operand (which must be a doubleword memory operand) to a pair of destination
registers. The segment address is transferred to the DS segment register. The offset
address may be transferred to any 16-bit general, pointer, or index register you
specify (not a segment register).

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions refering directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 1/0 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

LOS

5-91

LEA

5-92

LEA (Load effective address)

Operation: The contents of the specified register are replaced by the offset of the
indicated variable or label or address-expression.

(REG) - EA

See note.

Encoding:

11 0 0 0 1 1 0 1 1 mod reg rIm 1
for mod =F 11 (if mod = 11 then undefined operation)

Timing: 2+EA clocks

Examples:

LEA BX, VARIABLE_7
LEA DX, BETA [BX] [SI]
LEA AX, [BP] [01]

Flags Affected: None

Description: LEA (Load Effective Address) transfers the offset address of the
source operand to the destination operand. The source operand must be a memory
operand and the destination operand can be any 16-bit general, pointer, or index
register. LEA allows the source to be subscripted. This is not allowed using the
MOV instruction with the OFFSET operator. Also, the latter operation invariably
uses the offset of the variable in the segment where it was defined. LEA, however,
will take into account a group offset if the group is the only possible access route via
the latest ASSUME directive.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

LES (Load extra-segment register)

Operation:

1) The contents of the specified register are replaced by the lower addressed word of
the doubleword memory operand.

(REG) - (EA)

2) The contents of the ES register are replaced by the higher-addressed word of the
doubleword memory operand.

(ES) - (EA + 2)

See note.

Encoding:

11 1 0 0 0 1 0 0 1 mod reg rIm 1

for mod -:F 11 (if mod = 11 then undefined operation)

Timing: 16+EA clocks

Examples:

LES BX, AOOR_ TABLE [511
LE5 01, NEW5EG [BX]

Flags Affected: None

Description: LES (Load Pointer into ES) transfers a "pointer object" (i.e., a 32-bit
object containing an offset address and a segment address) from the source operand
(which must be a doubleword memory operand) to a pair of destination registers.
The segment address is transferred to the ES segment register. The offset address
may be transferred to a 16-bit general, pointer, or index register (not a segment
register).

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the instruction bytes will be followed by 2 bytes
giving the computed displacement from the segment-base-address.

LES

5-93

LOCK

5-94

LOCK

Operation: None

Encoding:

1111100001

Timing: 2 clocks

Example: LOCK

Flags Affected: None

Description: A special one-byte lock prefix may precede any instruction. It causes
the processor to assert its bus-lock signal for the duration of the operation caused by
the instruction. In mUltiple processor systems with shared resources it is necessary to
provide mechanisms to enforce controlled access to those resources. Such
mechanisms, while generally provided through software operating systems, require
hardware assistance. A sufficient mechanism for accomplishing this is a locked ex
change (also known as test-and-set-Iock).

It is assumed that external hardware, upon receipt of that signal, will prohibit bus
access for other bus masters during the period of its assertion.

The instruction most useful in this context is an exchange register with memory. A
simple software lock may be implemented with the following code sequence:

Check:
LOCK

MOV AL,1
XCHG Sema,AL
TEST AL,AL
JNZ Check

MOV Sema,O

;set AL to 1 (implies locked)
;test and set lock
;set flags based on AL
;retry if lock already set

;clear the lock when done

The LOCK prefix may be combined with the segment override and/or REP prefixes,
although the latter has certain problems. (See REP.)

LODSBflODSW flODS
LO OS (Load byte or word string)

Chapter 2 describes LODSB and LODSW.

Operation: The source byte (or word) is loaded into AL (or AX). The Source Index
is incremented by 1 (or 2, for word strings) if the Direction Flag is reset; otherwise SI
is decremented by 1 (or 2).

(DEST) - (SRC)
if (OF) = 0 then (SI) - (SI) + DELTA
else (SI) - (SI)-DEL TA

Encoding:

1101011owl

1) if w = 0 then SRC = (SI), DEST = AL, DELTA = 1
2) else SRC = (SI) + 1 :(SI), DEST = AX, DELTA = 2

Timing: 12 clocks

Examples:

1) CLD ;clears direction flags so SI will be incremented
MOV SI, OFFSET BYTE_STRING
LODS BYTE_STRING ;SI - SI + 1

2) STD ;sets DF so SI will be decremented
MOV SI, OFFSET WORD_STRING
LODS WORD_STHING ;SI - SI-2
;DF = 1 implies that the variable
;WORD_STRING names the last or
;highest-addressed word in the string. The operand named in the
;LODS instruction is used only by the assembler to verify type and
;accessibility using correct segment register contents. LODS
;actually uses only SI to point to the location whose contents are to
;be loaded into the accumulator, without using the name given in the
;source instruction

Flags Affected: None

Description: LODS transfers a byte (or word) operand from the source operand
addressed by SI to accumulator AL (or AX) and adjusts the SI register by DELTA.
This operation ordinarily would not be repeated. .

5-95

LOOP

5-96

LOOP
(Loop, or iterate instruction sequence until count complete)

Operation: The Count register (CX) is decremented by 1. If the new CX is not zero,
then the distance from the end of this instruction to the target label is added to the
Instruction Pointer, effecting the ,jump. If CX = 0, no jump occurs.

(CX) - (CX)-1
if (CX) *" 0 then

(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

1111000101

Timing (clocks): Jump is taken 9
Jump is not taken 5

Example: The following sequence will compute the 16-bit checksum of a non-null
array:

(1) MOV CX, LENGTH ARRAY
MOV AX, 0
MOV 51, AX

N EXT: ADD AX, ARRAY [81]
ADD SI, TYPE ARRAY
LOOP NEXT
MOV CK5, AX

(2) MOV AX, 0
MOV BX, 1
MOV CX, N ;number of terms
MOV 01, AX

FIB: MOV 51, AX
ADD AX, BX
MOV BX, 51
MOV FIBONACCI [01], AX
ADD 01, TYPE FIBONACCI

LL: LOOP FIB

;the instructions from FIB to LL will be executed N times
;and will store into the FIBONACCI array the first N terms of that sequence
;i.e., 1, 1, 2, 3, 5, 8, 13, 21,

Flags Affected: None

Description: LOOP decrements the CX (count) register by 1 and transfers control
to the target operand (label) if CX is not zero.

The target label must be within -128 to + 127bytes of this instruction.

LOOPE
LOOPZ and LOOPE (Loop on equal, or loop on zero)

Operation: The Count register (CX) is decremented by 1. If the zero flag is set and
(CX) is not yet zero, then the distance from the end of this instruction to the target
label is added to the Instruction Pointer, effecting the jump. No jump occurs if (ZF)
= 0 or if (CX) = O.

(CX) - (CX)-1
if (ZF) = 1 and (CX) =F 0 then

(IP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

11 1 1 0 0 0 0 1 1 disp

Timing (clocks): Jump is taken 11
Jump is not taken 5

Example: The following sequence finds the first non-zero entry in a byte array:

NEXT:

OKENTRY:

MOV CX, LENGTH ARRAY
MOV 51, -1

INC SI
CMP ARRAY [SIJ, 0
LOOPE NEXT
JNE OKENTRY

;arrive here if whole array is zero

;SI tells which entry is non-zero

Flags Affected: None

Description: LOOPE, also called LOOPZ (loop while zero or loop while equal)
decrements the CX register by one and transfers if CX is not zero and if the ZF flag
is set.

The target label must be within -128 to + 127 bytes of this instruction.

5-97

LOOPNE

5-98

LOOPNZ and LOOPNE (Loop on not zero, or loop on not equal)

Operation: The Count register (CX) is decremented by 1. If the new (CX) is not
zero and the zero flag is reset, then the distance from the end of this instruction to
the target label is added to the Instruction Pointer, effecting the jump. If (CX) = 0
or if (ZF) = 1, then no jump occurs.

(CX) - (CX)-1
if (ZF) = 0 and (CX) 1= 0 then

(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

11 1 1 0 0 0 0 0 I disp

Timing (clocks): Jump is taken 11
Jump is not taken 5

Examples: The following sequence will compute the sum of 2 byte arrays, each
of length N, only up to the point of encountering zero entries in both arrays at the
same time. At that point the expression SI -1 will give the length of the non-zero sum
arrays.

MOV AX, 0
MOV SI-1
MOV CX, N

NONZER: INC SI
MOV AL, ARRAY1 [SIJ
ADD ,ARRAY2 [SIJ
MOV SUM [SIJ, AX
LOOPNZ NONZER

The following sequence will search down a linked list for the last element. This will
be the element with a zero in the word that normally contains the address of the next
element. This word is always located the same number of bytes past each list ele
ment's beginning. LINK is the name for that absolute number of bytes, e.g.,

LINK EQU 7
MOV AX, OFFSET HEAD_OF_L1ST
MOV CX, 1000 ;search at most 1000 entries

NEXT: MOV BX, AX
MOV AX, [BX] + LINK
CMP AX, 0
LOOPNE NEXT

Flags Affected: None

Description: LOOPNZ, also called LOOPNE, (loop while not zero or loop while
not equal) decrements the CX register by one and transfers if CX is not zero and the
ZF flag is cleared.

The target label must be within -128 to + 127 bytes of this instruction.

LOOPNZ
LOOPNZ and LOOPNE (Loop on not zero, or loop on not equal)

Operation: The Count register (CX) is decremented by 1. If the new (CX) is not
zero and the zero flag is reset, then the distance from the end of this instruction to
the target label is added to the Instruction Pointer, effecting the jump. If (CX) = 0
or if (ZF) = 1, then no jump occurs.

(CX) +- (CX)-1
if (ZF) = 0 and (CX) =F 0 then

(IP) +- (lP) + disp (sign-extended to 16-bits)

Encoding:

11 1 1 0 0 0 0 0 1 disp

Timing (clocks): Jump is taken 11
Jump is not taken 5

Examples: The following sequence will compute the sum of 2 byte arrays, each
of length N, only up to the point of encountering zero entries in both arrays at the
same time. At that point the expression SI-1 will give the length of the non-zero sum
arrays.

MOV AX, 0
MOV SI-1
MOV CX, N

NONZER: INC SI
MOV AL, ARRAY1 [SI]
ADD ,ARRAY2 [SI]
MOV SUM [SI], AX
LOOPNZ NONZER

The following sequence will search down a linked list for the last element. This will
be the element with a zero in the word that normally contains the address of the next
element. This word is always located the same number of bytes past each list ele
ment's beginning. LINK is the name for that absolute number of bytes, e.g.,

LINK EQU 7
MOV AX, OFFSET HEAD_OF_LlST
MOV CX, 1000 ;search at most 1000 entries

NEXT: MOV ax, AX
MOV AX, [ax] + LIN K
CMP AX, 0
LOOPNE NEXT

Flags Affected: None

Description: LOOPNZ, also called LOOPNE, (loop while not zero or loop while
not equal) decrements the CX register by one and transfers if CX is not zero and the
ZF flag is cleared.

The target label must be within -128 to + 127 bytes of this instruction.

5-99

LOOPZ

5-100

LOOPZ and LOOPE (Loop on equal, or loop on zero)

Operation: The Count register (CX) is decremented by 1. If the zero flag is set and
(CX) is not yet zero, then the distance from the end of this instruction to the target
label is added to the Instruction Pointer, effecting the jump. No jump occurs if (ZF)
= 0 or if (CX) = o.

(CX) - (CX)-1
if (ZF) = 1 and (CX) =1= 0 then

(lP) - (lP) + disp (sign-extended to 16-bits)

Encoding:

11 1 1 0 0 0 0 1 I disp

Timing (clocks): Jump is taken 11
Jump is not taken 5

Example:The following sequence finds the first non-zero entry in a byte array:

NEXT:

OKENTRY:

MOV CX, LENGTH ARRAY
MOV SI, -1

INC SI
CMP ARRAY[SI], 0
LOOPZ NEXT
JNE OKENTRY

;arrive here if whole array is zero.

;SI tells which entry is non-zero

Flags Affected: None

Description: LOOPZ, also called LOOPE (loop while zero or loop while equal)
decrements the CX register by one and transfers if CX is not zero and if the ZF flag
is set.

The target label must be within -128 to + 127 bytes of this instruction.

MOV (Move)

There are 7 separate types of move instructions, as shown below.

Each type has multiple uses and encodings depending on the type of data being
moved and the location of that data. The assembler generates the correct encoding
based on these 2 factors.

If the destination is a register, the bit shown as "d" will be 1, otherwise O. If the type
is a word, the bit shown as "w" will be 1, otherwise O.

See note.

Type 1: TO Memory FROM Accumulator

11 0 1 0 0 0 1 w 1 addr-Iow 1 addr-high

If w=O then SRC=AL, DEST=addr else SRC=AX, DEST=addr + 1: addr

Timing (clocks): 10 + EA

Examples:

MOV ALPHA_MEM, AX
MOV GAMMA_BYTE, AL

MOV CS:DATUM_BYTE, AL
MOV ES:ARRAY [BX] [SI], AX

(prefix byte, e.g., ES:, will precede instruction byte; see
beginning of this Chapter)

Type 2: TO Accumulator FROM Memory

11 0 1 0 0 0 0 wi addr-Iow 1 addr-high

If w=O then SRC=addr, DEST=AL else SRC=addr + 1: addr, DEST=AX

Timing (clocks): 8 + EA

Examples:

MOV AX, BETA_MEM
MOV AL, GAMMA_BYTE

MOV AX, ES:ARRA Y [BX] [SI]
MOV AL, SS:OTHER_BYTE

(prefix byte, e.g., ES:, will precede instruction byte; see
beginning of this Chapter).

Type 3: TO Segment Register FROM Memory-or-Register Operand

110001110 Imod Oreg r/ml

if reg =f:. 01 then SRC=EA, DEST=REG else undefined operation

MOV

5-101

MOV

5-102

Timing: register to register 2
memory to register 8 + EA

Examples:

MOV ES, OX
MOV OS, AX
MOV SS, BX
MOV ES, SS:NEW_WORO [01]
Note: es is illegal as a destination here.

Type 4: TO Memory-or-Register FROM Segment Register

11 0 0 0 1 1 0 0 1 mod Oreg rIm 1

SRC=REG, DEST=EA,(DEST) - (SRC)

Timing (clocks): memory to register
register to register

Examples:

MOV OX, OS
MOV BX, ES
MOV ARRAY [BX] [SI], SS
MOV BETA_MEM_WORO, OS

9 + EA
2

MOV GAM MA, es; Note: es is legal as a source here.

Type 5: (a) TO Register FROM Register
(b) TO Register FROM Memory-or-Register Operand
(c) TO Memory-or-Register Operand FROM Register

11 000 1 0 d wi mod reg rIm 1 addr-Iow* 1 addr-high*

if d=l then SRC=EA, DEST=REG else SRC=REG, DEST=EA

*these bytes omitted in register to register moves, i.e., when mod=l1,
MOV ex, OX

and also when the address-expression to memory is register-indirect with no
variable-name-displacement, i.e.,

MOV [BX] [SI], OX
MOV AX, [BP] [01]

Timing (clocks): (a) 2
(b) 8 + EA
(c) 9 + EA

Examples:

(a) MOV AX, BX
MOV Cl, OH
MOV CX, 01

(b) MOV AX, MEM_VAlUE
MOV OX, ARRAY [SI]
MOV 01, MEM [BX] [01]

(c) MOV ARRAY [01], OX
MOV MEM_VAlUE, AX
MOV [BX] [SI], 01

Type 6: TO Register FROM Immediate-data

11 0 1 1 w reg 1 data data-high*

SRC=data, DEST= REG

*present only if w = 1

Timing (clocks): 4

Examples:

MOV AX, 77
MOV BX, VAlUE_14_IMM
MOV SI, EQU_VAl_9
MOV 01, 618

Type 7: TO Memory-or-Register Operand FROM Immediate-data

11 1 0 0 0 1 1 w I mod 000 rIm 1 data

SRC=data, DEST=EA

*present only if w= 1

Timing (clocks): 10 + EA

Examples:

MOV ARRAY [BX] [SI], OATA_4
MOV MEM_BYTE, IMM_BYTE_3
MOV BYTE PTR [01], 66
MOV MEM_WORO, 1999
MOV BX, 84
MOV OS:MEM_WORO [BP], 3989

data-high*

(prefix byte, e.g., DS:, of 00111110 will precede 1100011 w above)

Flags Affected: Non e

MOV

5-103

MOV

5-104

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, Le. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

MOVSB/MOVSW/MOVS
MOVS (Move byte string or move word string)

Chapter 2 describes MOVSB and MOVSW.

Operation: The source string whose offset is in the Source Index is moved into the
location in the extra segment whose offset is in the Destination Index. SI and DI are
then both incremented, if the direction flag is zero, or both decremented, if (DF) =
1. The increment or decrement is 1 for byte strings, 2 for word strings.

(OEST) +- (SRC)
if (OF) = 0 then

(SI) +- (SI) + OEL TA
(01) +- (01) + OEL T A

else
(SI) +- (SI)-OEL TA
(01) +- (Ol)-OEL T A

Encoding:

11010010wl

if w = 0 then SRC = (SI), OEST = (01), OEL TA = 1
else SRC = (SI) + 1 :(SI), OEST = (01) + 1 :(01), DELTA = 2

Timing: 17 clocks

Example:

MOV SI, OFFSET SOURCE
MOV 01, OFFSET OEST
MOV CX, LENGTH SOURCE

REP MOVS OEST, SOU RCE
;the above sequence moves the entire source string (in any
;segment reachable by current segment registers) into the
;destination locations in the Extra Segment (the ES register is
;always used for 01 operands in string operations). See also
;REP. The operands named in the string operation are used
;only by the assembler to verify type and accessibility using
;current segment registers contents. MOVS actually moves the
;byte pOinted at by SI to the byte pOinted at by 01 in ES, without
;using the names given in the source MOVS instruction.

Flags Affected: None

Description: MOVS transfers a byte (or word) operand from the source operand
addressed by SI to the destination operand addressed by DI, and adjusts the SI and
DI registers by DELTA. As a repeated operation this provides for moving a string
from one location in memory to another.

5-105

MUL

5-106

MUL (Multiply accumulator by register-or-memory; unsigned)

Operation: The accumulator (AL if byte, AX if word) is multiplied by the specified
operand. If the high order half of the result is zero, then the carry and overflow flags
are reset, otherwise they are set.

(OEST) - (LSRC) * (RSRC), where * is unsigned
multiply

if (EXT) = 0 then (CF) - 0
else (CF) - 1;
(OF) - (CF)

See note.

Encoding:

11 1 1 1 011 w Imod 1 00 rlml

(a) if w = 0 then LSRC = AL, RSRC = EA, OEST = AX, EXT = AH
(b) else LSRC = AX, RSRC = EA, OEST = OX:AX, EXT = OX

Timing (clocks): 8-bit
16-bit

Example:

71 +EA
124+ EA

a) MOV AL, LSRC_ BYTE
MUL RSRC_BYTE ;result in AX

b1) MOV AX, LSRC_WORD
MUL RSRC_WORO
;high-half result in OX, low-half in AX

b2) to multiply a byte by a word
MOV AL, MUL_BYTE
CBW ;converts byte in AL to word in AX
MUL RSRC_WORO

NOTE: Any memory operand above could be an indexed addressed-expression of
the correct TYPE, e.g., LSRC_BYTE could be ARRAY [SI] if ARRAY were of
type BYTE, and RSRC_ WORD could be TABLE [BX] [DI] if TABLE were of
type WORD.

Flags Affected: CF, OF.
Undefined: AF, PF, SF, ZF

Description: MUL (multiply) performs an unsigned multiplication of the ac
cumulator (AL or AX) and the source operand, returning a double-length result to
the accumulator and its extension (AL and AH for 8-bit operation, or AX and DX
for 16-bit operation). CF and OF are set if the top half of the result is nonzero.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

MUL

5-107

NEG

5-108

NEG (Negate, or form 2's complement)

Operation: The specified operand is subtracted from all ones (OFFH for bytes,
OFFFFH for words), 1 is added, and the result stored back into the given operand.

(EA) - SRC-(EA)
(EA) - (EA) + 1 (affecting flags)

See note.

Encoding:

11 1 1 1 011 w Imod 011 rlml

if w = 0 then SRC = OFFH
else SRC = OFFFFH

Timing (clocks): register
memory

Examples:

3
16+EA

1) If AL contains 13H (00010011), then NEG AL causes AL to contain
-13H orOEDH (11101101).

2) If MEM_BYTE contains OAFH (10101111), then NEG MEM_BYTE
causes MEM_BYTE to contain -OAFH or 51 H (01010001).

3) If SI contains 2FC3H, then NEG SI causes SI to contain OD03DH.

(See also NOT.)

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: NEG (negate) performs a subtraction of the operand from zero, adds
1, and returns the result to the operand. This forms the 2's complement of the
specified operand.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers usea 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

NOP (No operation)

Operation: None

Encoding:

1100100001

Timing: 3 clocks

Example: NOP

Flags Affected: None

Description: NOP causes no operation and takes 3 clocks. The next sequential in
struction is then executed.

NOP

5-109

NOT

5-110

NOT (Not, or form 1 '5 complement)

Operation: The specified operand is subtracted from OFFH (or OFFFFH, if a word)
and the result is stored back into the given operand.

(EA) - SRC-(EA)

See note.

Encoding:

11 1 1 1 0 1 1 w 1 mod 0 1 0 rIm 1
if w = 0 then SRC = OFFH
else SRC = OFFFFH

Timing (clocks): register
memory

Examples:

3
16+EA

1) If AH contains 13H (00010011), then NOT AH causes AH to contain
OECH (11101100).

2) If MEM_BYTE contains OAFH (10101111), then NOT MEM_BYTE
causes MEM_BYTE to contain 50H (01010000).

3) If OX contains 2FC3H, then NOT OX causes DX to contain OD03CH.

See also NEG.

Flags Affected: None

Description: NOT forms the ones complement of (inverts) the operand and returns
the result to the operand. Flags are not affected.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

OR (Or, inclusive)

Operation: Each bit position in the destination (leftmost) operand becomes 1,
unless it and the corresponding bit position of the source (rightmost) operand were
both o. Alternative phrasing: each bit position of the result has a 1 if either operand
had a 1 in that position; if both had a 0, that position of the result has a zero. The
carry and overflow flags are both reset.

(OEST) +- (LSRC)I(RSRC)
(CF) +- 0
(OF) +- 0

See note.

Encoding:

Memory or Register Operand with Register Operand:

10 a a a 1 a d wi mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA, OEST = REG
else LSRC = EA, RSRC = REG, OEST = EA

Timing (clocks): (a) register to register
(b) memory to register
(c) register to memory

Examples:

3
9+EA

16+EA

(a) OR AM, BL
OR SI, OX
OR CX, 01

;result in AH, BL unchanged
;result in SI, OX unchanged
;result in CX, 01 unchanged

(b) OR AX, MEM_WORD
OR CL, MEM_BYTE [81]
OR SI, ALPHA [BX] [81]

(c) OR BETA [BX] [01], AX
OR MEM_BYTE, OH
OR GAMMA [01], BX

Immediate Operand to Accumulator:

10000110wl data 1 data if w=1

(a) if w = a then LSRC = AL, RSRC = data, OEST = AL
(b) else LSRC = AX, RSRC = data, OEST = AX

Timing (clocks): immediate to register 4

OR

5-111

OR

5-112

Examples:

a) OR Al, 11110110B
OR Al, OF6H

b) OR AX, 23F6H
OR AX, 750
OR ,23F6H

Immediate Operand to Memory or Register Operand:

11000000 wlmod 001 rlml data dataifw=1

lSRC = EA, RSRC = data, OEST = EA

Timing (clocks): (a) immediate to register
(b) immediate to memory

Examples:

a) OR AH, OF6H
OR Cl, 37
OR 01, 23F5H

b) OR MEM_BYTE, 30H
OR GAMMA [BX] [01], OFACEH
OR ALPHA [01], VAl_EOUO_33H

Flags Affected: CF, OF, PF, SF, ZF.
Undefined: AF

4
17+EA

Description: OR performs the bitwise logical inclusive disjunction of the two
operands and returns the result to one of the operands.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing th~ computed displacement from the segment-base-address.

OUT (Output byte and output word)

Operation: The contents of the designated port are replaced by the contents of the
accumulator.

(DEST) +- (SRC)

Encoding:

Fixed Port:

11 1 1 0 0 1 1 w 1 port

if w = 0 then SRC = AL, DEST = port
else SRC = AX, DEST = port + 1 :port
(0 < port < 255)

Timing: 10 clocks

Examples:

OUT BYTE_PORT _ VAL,AL ;outputs a byte from AL
OUT WORD_PORT _ VAL,AX ;outputs a word from AX
OUT 44,AX ;outputs a word from AX through port 44

Variable Port:

11110111wl

if w = 0 then SRC = AL, DEST = (DX)
else SRC = AX, DEST = (DX) + 1 :(DX)

Timing: 8 clocks

Examples:

OUT DX,AL
OUT DX,AX

Flags Affected: None

;outputs a byte from AL through variable port in DX
;outputs a word from AX through variable port in AX

Description: OUT transfers a byte (or word) from the AL register (or AX register)
to an output port. The port is specified either with an inline data byte, allowing fixed
access to ports 0 through 255, or with a port number in the DX register, allowing
variable access to 64K output ports.

OUT

5-113

POP

5-114

PO P (POp word off stack into destination)

There are 3 separate types of POP instructions, for different destinations.

See note.

Operation:

1) The contents of the destination are replaced by the word at the top of the stack

(DEST) +- ((SP) + 1 :(SP))

2) The stack pointer is incremented by 2.

(SP) - (SP) + 2

Flags Affected: Non e

Type 1:

Register Operand:

1 0 1 0 1 1 reg 1

DEST= REG

Timing: 8 clocks

Examples:

POP ex
The assembler generates
POP OX
The assembler generates

Type 2:

Segment Register:

10 0 0 reg 1 1 11

if reg f. 01 then OEST = REG
else undefined operation

Note: POP CS is not legal

Timing: 8 clocks

Examples:

POP SS
The assembler generates
POP OS
The assembler generates

01011001

o 1 0 1 101 0

000 1 0 1 1 1

000 1 1 1 1 1

Type 3:

Memory or Register Operand:

11 0 0 0 1 1 1 1 I mod 0 0 rIm

DEST= EA

Timing (clocks): memory
register

Examples:

17+EA
8

POP ALPHA
The assembler generates 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 ALPHA addr-Io ALPHA addr-hi

POP ALPHA [SX]
1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 ALPHA addr-Io ALPHA addr-hi

Description: POP transfers a word operand from the stack element addressed by
the SP register to the destination operand and then increments SP by 2.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, Le. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes
given the computed displacement from the segment-base-address.

POP

5-115

POPF

5-116

POPF (Pop flags off stack)

Operation:

Flags - ((SP) + 1 :(SP»
(SP) - (SP) + 2

The flag registers are filled from the appropriate bit positions of the word at the top
of the stack, i.e.,

overflow flag - bit 11
direction flag - bit 10
interrupt flag - bit 9
trap flag - bit 8
sign flag - bit 7
zero flag - bit 6
auxiliary carry flag - bit 4
parity flag - bit 2
carry flag - bit 0

Then the Stack Pointer is incremented by 2.

Encoding:

1100111011

Timing: 8 clocks

Example: POPF

Flags Affected: All

Description: POPF (pop flags) transfers specific bits of the stack element ad
dressed by the SP register to the flag registers and then increments SP by two. See
also PUSHF.

PUSH
PUSH (Push word onto stack)

There are 3 separate types of PUSH instructions depending on the kind of operand
supplied.

See note.

Operation:

1) The stack pointer (SP) is decremented by 2.

(SP) - (SP)-2

2) The contents of the specified operand are placed on the top of stack at
the location pointed to by SP. The contents of SP are used as an offset to
the stack's base address in register SS.

«SP + 1):(SP)) - (SRC)

Flags Affected: None

Type 1:

Register Operand (word)

I 0 1 0 1 0 reg I
Timing (clocks): 10

Examples:

PUSH AX (generates: 0 1 0 1 0 0 0 0)
PUSH SI (generates: 0 1 0 1 0 1 1 0)

Type 2:

Segment Register

10 0 0 reg 1 1 0 I
Timing (clocks): 10

Examples:

PUSH SS (generates: 0 0 0 1 0 1 1 0)
PUSH ES (generates: 0 0 0 0 0 1 1 0)
PUSH ES
Note: PUSH CS is legal.

Type 3:

Memory-or-Register Operand

11 1 1 1 1 1 1 1 1m od 1 1 0 rIm I

5-117

PUSH

5-118

Timing (clocks): memory
register

Examples:

11111111

111 1 111 1

1 1 1 1 1 111

16+EA
10

PUSH
00 110 110

BETA
Beta add r-Io

BETA [BX]

Beta addr-Io

PUSH

10 110 111

PUSH BETA [BX] [DI]

10 110 001 Beta add r-Io

Beta addr-hi

Beta addr-hi

Beta addr-hi

Description: PUSH decrements the stack pointer SP by 2 and then transfers a word
from the service operand to the stack element currently addressed by SP.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

PUSHF
PUSHF (Push flags onto stack)

Operation: The Stack Pointer is decremented by 2, then the flags replace the ap
propriate bits of the word at the top of the stack (see POPF).

(SP) -- (SP)-2
((SP) + 1 :(SP)) -- Flags

Encoding:

1100111001

Timing: 10 clocks

Example: PUSHF

Flags Affected: None

Description: PUSHF decrements the SP register by 2 and transfers all of the flag
registers into specific bits of the word operand (stack element) addressed by SP .

5-119

RCL

5-120

RCL (Rotate left through carry)

Operation: The specified destination (leftmost) operand is rotated left through the
carry flag a number of times (COUNT). That number is either exactly once,
specified by an absolute number of value 1, or it is the number held in the CL
register, specified by a right operand of CL.

The rotation continues until the COUNT is exhausted. CF is preserved and is rotated
into bit 0 of the destination. The highest order bit of the destination is rotated into
CF. If the COUNT was 1 and the 2 highest-order bits of the original destination
value were unequal (one 0 and one 1), then the overflow flag is set. If they were
equal, OF is reset. If the COUNT was not 1, OF is undefined and has no reliable
value.

(temp) - COUNT
do while (temp) =1= 0

(tmpcf) - (CF)
(CF) - high-order bit of (EA)
(EA) - (EA) * 2 + (tmpcf)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= (CF) then (OF) - 1
else (OF) - 0

else (OF) undefined

See note.

Encoding:

11101 00vwlmod01 Or/ml

if v = 0 then COUNT = 1
else COU NT = (CL)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) RCL AH, 1
RCL BL, 1
RCL CX, 1
VAL_ON E EQU 1
RCL DX, VAL_ONE
RCL 81, VAL_ONE

(b) RCL MEM_BYTE, 1
RCL ALPHA [DI], VAL_ONE

(c) MOV CL, 3
RCL DH, CL ; rotates 3 bits left
RCL AX, CL

2
15+EA

8 + 4/bit
20 + EA + 4/bit

(d) MOV Cl, 6
RCl MEM_WORD, Cl ; rotates 6 times
RCl GANDAlF_BYTE, Cl
RCl BETA [BX] [01], Cl

Flags Affected: CF, OF

Description: RCL (rotate through carry flag left) rotates the operand left through
the CF flag register by COUNT bits. See also ROL.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

RCL

5-121

RCR

5-122

RCR (Rotate right through carry)

Operation: The specified destination (leftmost) operand is rotated right through
the carry flag a number of times (COUNT). That number is either exactly once,
specified by an absolute number of value 1, or it is the number held in the CL
register, specified by a right operand of CL.

The rotation continues until the COUNT is exhausted. CF is preserved and is rotated
into the high order bit of the destination. The lowest order order bit of the destina
tion is rotated into CF. If the COUNT was 1 and the 2 highest-order bits of the
destination value are now unequal (one 0 and one 1), then the overflow flag is set. If
they were equal, OF is reset. If the COUNT was not 1, OF is undefined and has no
reliable value.

(temp) - COUNT
do while (temp) ::/= 0

(tmpef) - (CF)
(CF) - low-order bit of (EA)
(EA) - (EA) / 2
high-order bit of (EA) - (tmpef)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= next-to-high-order bit of (EA)

then (OF)-1
else (OF) - 0

else (OF) undefined

See note.

Encoding:

11 1 0 1 0 0 v w 1 mod 0 1 1 r / m 1

if v = 0 then COUNT = 1
else COU NT = (Cl)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) RCR AH, 1
RCR Bl, 1
RCR CX, 1
VAL_ONE EQU 1
RCR DX, VAL_ONE
RCR SI, VAL_ONE

(b) RCR MEM_BYTE, 1
RCR ALPHA [DI], VAL_ONE

(e) MOV Cl, 3
RCR DH, Cl ; rotates 3 bits right
RCR AX, Cl

2
15+EA

8+4/bit
20 + EA + 4/bit

(d) MOV Cl, 6
RCR MEM_WORD, Cl ; rotates 6 times
RCR GANDAlF_BYTE, Cl
RCR BETA [aX] [DI], Cl

Flags Affected: CF, OF

Description: RCR (rotate through carry flag right) rotates in EA operand right
through the CF flag register by COUNT bits. See also ROR.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

RCR

5-123

REP

5-124

REP/REPZ/REPE/REPNE/REPNZ (Repeat string operation)

Operation: The specified string operation is performed a number of times, i.e., un
til (CX) becomes O. CX is decremented by 1 after each iteration.

The compare and scan string operations exit the loop when the zero flag is unequal
to the value of bit 0 of this instruction byte.

do while (CX) ¢ 0
service pending interrupt (if any)
execute primitive string operation in succeeding byte
(CX) - (CX) -1
if primitive operation is CMPS,
. or SCAS and (ZF) ¢ z then exit from while loop

Encoding:

11111001z1

Timing: 6 clocks/loop

Examples:

1) REP MOVS DEST, SOURCE ;see also MOVS

2) REPE CMPS DEST, SOURCE
;Ioop will be exited prior to (CX)=O only if
;(ZF)=1, i.e., only if the byte at (DI) is equal
;to the byte at (SI). See also CMPS.

3) REPNZ SCAS DEST ;see also SCAS
;only if (ZF)=1, i.e., (AL) = DEST, will
;this loop be exited prior to (CX) = 0

4) REPNZ (nonzero) == REPNE (not equal)
REPNZ (zero) = REPE (equal)

Flags Affected: See individual string operations.

Description: REP (repeat) causes the succeeding primitive string operation to be
performed repeatedly while (CX) is not zero. In the case of CMPS and SCAS, if
after any repetition of the primitive operation the ZF flag differs from the "z" bit of
the repeat prefix, the repetition is terminated. This prefix may be combined with the
segment override and/ or LOCK prefixes, although with multiple prefixes, interrupts
must be disabled, because the return from an interrupt returns control to the inter
rupted instruction or to at most one prefix byte before that instruction.

RET (Return from procedure)

Operation: The Instruction Pointer is replaced by the word at the top of the stack
(offset of top is in Stack Pointer). SP is incremented by 2. For inter segment returns,
the Code Segment register is replaced by the word now at the top of the stack, and
SP is again incremented by 2. If an immediate value was specified on the RET state
ment, that value is now added to SP.

(IP) - ((SP) + 1 :(SP))
(SP) - (SP) + 2
if Inter-Segment then

(CS) - ((SP) + 1 :(SP))
(SP) - (SP) + 2

if Add Immediate to Stack Pointer then (SP) + data

Encoding:

Intra-Segment

1110000111

Timing: 8 clocks

Example: RET

Intra-Segment and Add Immediate to Stack Pointer:

11 1 0 0 0 0 1 0 1 data-low

Timing: 12 clocks

Examples:

RET 4
RET 12

data-high

;these values cause 2 and 6 parameter
;words earlier stored on the stack to be
;discarded. Since most stack operations
;are on words, these values are usually
;even numbers (2 bytes per word).

Inter-Segment:

1110010111

Timing: 18 clocks

RET

5-125

RET

5-126

Example: RET

Inter-Segment and Add Immediate to Stack Pointer:

11 1 0 0 1 0 1 0 1 data low data high

Timing: 17 clocks

Examples:

RET 2 ;intersegment returns restore IP first, then CS
RET 8

Flags Affected: None

Description: RET transfers control to the return address pushed by a previous
CALL operation and optionally adds an immediate constant to the SP register so as
to discard stack parameters. If this is an inter segment RET, i.e., it was assembled
under a procedure labeled FAR, it will replace the IP AND the CS using the two
words at the top of the stack. Otherwise, only the IP is replaced, using only one
word from the top of the stack.

When using indirect CALLs, the programmer must carefully ensure that the type of
CALL matches the type of RETurn in the procedure, e.g.

CALL WORD PTR [SX]

must not invoke a FAR procedure and

CALL DWORD PTR [SX]

must not invoke a NEAR procedure.

See also Appendix D.

ROL (Rotate left)

Operation: The specified destination (leftmost) operand is rotated left COUNT
times. Its high order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move up" one position, e.g., the value of the third bit is
replaced by the value of the second bit. The vacated bit-position-O is filled by the
new CF, i.e., the old high-order bit.

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new
value of CF is not equal to the new high order bit, then the overflow flag is set; if
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1,
OF is not defined and has no reliable value.

(temp) +- COUNT
do while (temp) "* 0

(CF) +- high-order bit of (EA)
(EA) +- (EA) * 2 + (CF)
(temp) +- (temp)-1

if COU NT = 1 then
if high-order bit of (EA) "* (CF) then (OF) +- 1
else (OF) +- 0

else (OF) undefined

See note.

Encoding:

11101 00 v w Imod 000 rlml

if v = 0 then COUNT = 1
else COU NT = (CL)

Timing (clocks): (a) single bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) ROL AH, 1
ROL BL, 1
ROL CX, 1
VAL_ONE EQU 1
ROL OX, VAL_ONE
ROL 51, VAL_ONE

(b) ROL MEM_BYTE, 1
ROL ALPHA [01], VAL_ONE

(c) MOV CL, 3
ROL OH, CL ; rotates 3 bits left
ROL AX, CL

(d) MOV CL, 6

2
15+EA

8+4/bit
20+ EA+41 bit

ROL MEM_WORO, CL ; rotates 6 times
ROL GANOALF_BYTE, CL
ROL BETA [BX] [01], CL

ROL

5-127

ROL

5-128

Flags Affected: eF, OF

Description: ROL (rotate left) rotates the operand left by COUNT bits. See also
RCL.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

ROR (Rotate right)

Operation: The specified destination (leftmost) operand is rotated right COUNT
times. Its low order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move down" one position, e.g., the value of the second bit is
replaced py the value of the third bit. The vacated high order position is filled by the
new CF, i.e., the old value of position O.

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new
high order value is not equal to the old high order value, then the overflow flag is
set; if they are equal, (OF) = O. However, if COUNT was not 1 then OF is undefined
and has no reliable value.

(temp) - COUNT
DO WHILE (temp) =1= 0

(CF) - low-order bit of (EA)
(EA) - (EA) / 2
high-order bit of (EA) - (CF)
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= next-to-high-order bit of (EA)

then (OF)-1
else (OF) - 0

else (OF) undefined

See note.

Encoding:

11 1 0 1 0 0 v w I mod 0 0 1 rIm 'I

if v = 0 then COU NT = 1
else COUNT = (CL)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) ROR AH, 1
ROR BL, 1
ROR CX, 1
VAL_ONE EQU 1
ROR OX, VAL_ONE
ROR 81, VAL_ONE

(b) ROR MEM_BYTE, 1
ROR ALPHA [DI], VAL_ONE

(c) MOV CL, 3
ROR OH, CL ; rotates 3 bits right
ROR AX, CL

2
15+EA

8+4/bit
20 + EA + 4/bit

ROR

5-129

ROR

5-130

(d) MOV Cl, 6
ROR MEM_WORD, Cl ; rotates 6 times
ROR GANDAlF_BYTE, Cl
ROR BETA [BX] [01], Cl

Flags Affected: CF, OF

Description: ROR (rotate right) rotates the source operand right by COUNT bits.
See also RCR.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

SAHF
SAHF

Operation: The five flags shown are replaced by specified bits from AH, high
order byte of the accumulator:

(SF) - bit 7
(ZF) - bit 6
(AF) - bit 4
(PF) - bit 2
(CF) - bit 0

of AH

(SF):(ZF):X:(AF):X:(PF):X:(CF) - (AH)

Encoding:

1100111101

Timing: 4 clocks

Example: SAH F

Flags Affected: AF, CF, PF, SF, ZF

Description: SAHF transfers specific bits of the AH register to the flag registers
SF, ZF, AF, PF, and CF. The bits of AH indicated by "X" in the operation are
ignored.

5-131

SAL

5-132

SH L and SAL (Shift logical left and shift arithmetic left)

Operation: The specified destination (leftmost) operand is shifted left COUNT
times. Its high order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move up" one position, e.g., the value of the third bit is
replaced by the value of the second bit. The vacated low order bit-position is filled
byO.

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new
value of CF is not equal to the new high order bit, then the overflow flag is set; if
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1,
OF is not defined and has no reliable value.

(temp) +- COUNT
do while (temp) =1= 0

(CF) +- high-order bit of (EA)
(EA) +- (EA) * 2
(temp) +- (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= (CF) then (OF) +- 1
else (OF) +- 0

else (OF) undefined

See note.

Encoding:

11 1 0 1 0 0 V wlmod 1 0 O=rTffi]
if v = 0 then COUNT = 1
else COUNT = (CL)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) SHL AH, 1
SHL BL, 1
SHL CX, 1
VAL_ONE EQU 1
SHL OX, VAL_ONE
SHL SI, VAL_ONE

(b) SHL MEM_BYTE, 1
SHL ALPHA [01], VAL_ONE

(c) MOV CL, 3
SHL OH, CL ; rotates 3 bits left
SHL AX, CL

(d) MOV CL, 6

2
15+EA

8 + 4/bit
20 + EA + 4/bit

SHL MEM_WORO, CL ; rotates 6 times
SHL GANOALF_BYTE, CL
SHL BETA [BX] [01], CL

Flags Affected: CF, OF, PF, SF, ZF
Undefined: AF

Description: SHL (shift logical left) and SAL (shift arithmetic left) shift the source
operand left by COUNT bits, shifting in low-order zero bits.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-~bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

SAL

5-133

SAR

5-134

SAR (Shift arithmetic right)

Operation: The specified destination (leftmost) operand is shifted right COUNT
times. Its low-order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move down" one position, e.g., the value of the second bit is
replaced by the value of the third bit. The vacated high order position retains its old
value i.e., if the original high order bit value was 0, zeroes are shifted in. If that
value was 1, ones are shifted in.

The shift continues until the COUNT is exhausted. If COUNT was 1 and the high
order value is not equal to the next-to-high order value, then the overflow flag is set;
if they are equal, (OF) = 0. However, if COUNT was not 1 then OF is reset.

(temp) - COUNT
do while (temp) =1= 0

(CF) - low-order bit of (EA)
(EA) - (EA) I 2, where I is equivalent to signed

division, rounding down
(temp) - (temp)-1
if COUNT = 1 then

if high-order bit of (EA) =1= next-to-high-order bit of (EA)
then (OF)-1
else (OF) - 0

else (OF) - 0

See note.

Encoding:

11 1 0 1 0 0 v w 1 mod 1 1 1 r I iii]
if v = 0 then COUNT = 1
else COUNT = (Cl)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) SAR AH, 1
SAR Bl, 1
SAR CX, 1
VAL_ON E EQU 1
SAR OX, VAL_ONE
SAR SI, VAL_ONE

(b) SAR MEM_BYTE, 1
SAR ALPHA [01], VAL_ONE

(c) MOV Cl, 3
SAR OH, Cl ; rotates 3 bits right
SAR AX, Cl

2
15+EA

8 + 4/bit
20 + EA + 4/bit

(d) MOV Cl, 6
SAR MEM_WORD, Cl ;rotates 6 times
SAR GANDAlF_BYTE, Cl
SAR BETA [BX] [01], Cl

Flags Affected: CF, OF, PF, SF, ZF.
Undefined: A F

Description: SAR (shift arithmetic right) shifts the destination operand right by
COUNT bits, shifting in high-order bits equal to the original high-order bit of the
operand (sign extension).

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

SAR

5-135

SBB

5-136

SBB (Subtract with borrow)

Operation: The source (rightmost) operand is subtracted from the destination (left
most). If the carry flag was set, 1 is subtracted from the above result. The result
replaces the original destination operand.

if (CF) = 1 then (DEST) +- (LSRC)-(RSRC)-1
else (DEST) +- (LSRC)-(RSRC)

See note.

Encoding:

Memory or Register Operand and Register Operand:

10 001 1 0 d w I mod reg rIm I
if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Timing (clocks): (a) register from register
(b) memory from register
(c) register from memory

Examples:

(a) SBB AX, BX
SBB CH, DL

(b) SSB DX, MEM_WORO
SSB 01, ALPHA [SI]
SBB BL, MEM_BYTE [01]

(c) SBB MEM_WORD, AX
SSB MEM_BYTE [01], BX
SBB GAMMA [BX] [01], SI

Immediate Operand from Accumulator:

3
9+EA

16+EA

[001 1 1 0 w I data I data if w=1

(a) if w = 0 then LSRC = AL, RSRC = data, OEST = AL
(b) else LSRC = AX, RSRC = data, DEST = AX

Timing (clocks): immediate from register 4

Examples:

(a) SBS AL, 4
VAL_SIXTY EQU 60
SSB AL, VAL_SIXTY

(b) SBB AX, 660
SBB AX, VAL_SIXTY * 6
SSB ,6606

Immediate Operand from Memory or Register Operand:

11 0 0 0 0 0 s w 1 m od 0 1 1 r I ml data

LSRC = EA, RSRC = data, DEST = EA

Timing (clocks): (a) immediate from register
(b) immediate from memory

Examples:

(a) SBB BX, 2001
SBB Cl, VAL_SIXTY
SBB SI, VAL_SIXTY 1< 9

(b) SBB MEM_BYTE, 12
SBB MEM_BYTE [DI], VAL_SIXTY
SBB MEM_WORD [BX], 79
SBB GAMMA [DI] [BXJ, 1984

I data if s:w=01 I

4
17+EA

If an immediate-data-byte is being subtracted from a register-or-memory word, then
that byte is sign-extended to 16 bits prior to the subtraction. For this situation the in
struction byte is 83H (i.e., the s:w bits are both set).

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: SBB (subtract with borrow) performs a subtraction of the two source
operands, subtracts one if the CF flag is set, and returns the result to one of the
operands.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an a<idress
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

SBB

5-137

SCAS/SCASB/SCASW

5-138

seAS (Scan byte string or scan word string)

Chapter 2 describes SCASB and SCASW.

Operation~ The string element specified by DI in the Extra Segment is subtracted
from the value in the accumulator but the operation affects flags only. The Destina
tion Index is then incremented (if the direction flag is zero) or decremented (if
(DF) = 1) by 1 for byte strings or 2 for words.

(LSRC)-(RSRC)
if (OF) = 0 then (01) -(01) + OEL TA
else (01) - (DI)-DEL T A

Encoding:

J1010111wl

if w = 0 then LSRC = AL, RSRe = (01), DELTA = 1
else LSRC = AX, RSRC = (01) + 1 :(01), DELTA = 2

Timing: 15 clocks

Examples:

1) CLD ;clears OF, causes 01 incrementing
MOV 01, OFFSET DEST -BYTE_STRING
MOV AL, 'M'
SCAS OEST -BYTE_STRING

2) STD ;sets OF, causes 01 decrementing
MOV 01, OFFSET WORD_STRING
MOV AX, 'MO'
SCAS WORD_STRING
;the operand named in the SCAS instruction is used only by the
;assembler to verify type and accessibility using current segment
;register contents. The actual operation of this instruction uses 01 to
;point to the location to be scanned, without using the operand
;named in the source line.

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: seAS subtracts the destination byte (or word) operand addressed by
DI from AL (or AX) and affects the flags but does not return the result. As a
repeated operation this provides for scanning for the occurrence of, or departure
from, a given value in a string. See also REP.

SHL and SAL (Shift logical left and shift arithmetic left)

Operation: The specified destination (leftmost) operand is shifted left COUNT
times. Its high order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move up" one position, e.g., the value of the third bit is
replaced by the value of the second bit. The vacated low order bit-position is filled
byO.

The rotation continues until the COUNT is exhausted. If COUNT was 1 and the new
value of CF is not equal to the new high order bit, then the overflow flag is set; if
(CF) does equal that high order bit, OF becomes O. However, if COUNT was not 1,
OF is not defined and has no reliable value.

(temp) - COUNT
do while (temp) =1= 0

(CF) - high-order bit of (EA)
(EA) - (EA) * 2
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =1= (CF) then (OF) -1
else (OF) - 0

else (OF) undefined

See note.

Encoding:

11 1 0 1 0 0 v w 1 mod 1 0 0 r / m I
if v = 0 then COUNT = 1
else COUNT = (Cl)

Timing (clocks): (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) SHl AH, 1
SHl Bl, 1
SHl CX, 1
VAL_ONE EQU 1
SHl DX, VAL_ONE
SHl SI, VAL_ONE

(b) SHl MEM_BYTE, 1
SHl ALPHA [DI], VAL_ONE

(c) MOV Cl, 3
SHl DH, Cl ; rotates 3 bits left
SHl AX, Cl

(d) MOV Cl, 6

2
15+EA

8+4/bit
20 + EA + 4fbit

SHl MEM_WORD, Cl ; rotates 6 times
SHl GANDAlF_BYTE, Cl
SHl BETA [BX] [OIJ, Cl

SHL

5-139

SHL

5-140

Flags Affected: CF, OF, PF, SF, ZF
Undefined: AF

Description: SHL (shift logical left) and SAL (shift arithmetic left) shift the source
operand left by COUNT bits, shifting in low-order zero bits.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

SHR (Shift logical right)

Operation: The specified destination (leftmost) operand is shifted right COUNT
times. Its low order bit replaces the carry flag, whose original value is lost. All other
bits in the destination "move down" one position, e.g., the value of the second bit is
replaced by the value of the third bit. The vacated high order position is filled by O.

The shift continues until the COUNT is exhausted. If COUNT was 1 and the new
high order value is not equal to the next-to-high-order value, then the overflow flag
is set; if they are equal, (OF) = O. However, if COUNT was not 1 then OF is unde
fined and has no reliable value.

(temp) - COUNT
do while (temp) =f:. 0

(CF) - low-order bit of (EA)
(EA) - (EA) I 2, where I is equivalent to unsigned division
(temp) - (temp)-1

if COUNT = 1 then
if high-order bit of (EA) =f:. next-to-high-order bit of (EA)

then (OF)-1
else (OF) - 0

else (OF) undefined

See note.

Encoding:

11 1 0 1 0 0 v w 1 mod 1 0 1 rIm 1

if v = 0 then COUNT = 1
else COUNT = (Cl)

Timing (clocks) (a) single-bit register

Examples:

(b) single-bit memory
(c) variable-bit register
(d) variable-bit memory

(a) SHR AH, 1
SHR Bl, 1
SHR CX, 1
VAL_ONE EQU 1
SHR OX, VAL_ONE
SHR SI, VAL_ONE

(b) SHR MEM_BYTE, 1
SHR ALPHA [01], VAL_ONE

(c) MOV Cl, 3
SHR OH, Cl ; rotates 3 bits right
SHR AX, Cl

(d) MOV Cl, 6

2
15+EA

8 + 4/bit
20 + EA + 4/bit

SHR MEM_WORO, Cl ; rotates 6 times
SHR GANOAlF_BYTE, Cl
SHR BETA [BX] [DI], Cl

SHR

5-141

SHR

5-142

Flags Affected: CF, OF, PF, SF, ZF
Undefined: AF

Description: SHR (shift logical right) shifts the source operand right by COUNT
bits, shifting in high-order zero bits.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address.

STC (Set carry flag)

Operation: The carry flag is set to 1.

(CF) -1

Encoding:

1111110011

Timing: 2 clocks

Example: STC

Flags Affected: CF

Description: STC sets the CF flag.

STC

5-143

STO

5-144

STO (Set direction flag)

Operation: The direction flag is set to 1.

(OF) -1

Encoding:

1111111011

Timing: 2 clocks

Example: 5TO ;causes decrementing of 01 (and 51) in string operations.

Flags Affected: DF.

Description: STD sets the DF flag, causing the string operations to auto-decrement
the operand index(es).

STI (Set interrupt flag)

Operation: The interrupt flag is set to 1.

(IF) -1

Encoding:

1111110111

Timing: 2 clocks

Example: STI ;enables interrupts

Flags Affected: IF

Description: STI sets the IF flag, enabling maskable external interrupts after the
execution of the next instruction.

STI

5-145

STOS/STOSB/STOSW

5-146

STOS (Store byte string or store word string)

Chapter 2 describes STOSB and STOSW.

Operation: The byte (or word) in AL (or AX) replaces the contents of the byte (or
word) pointed to by DI in the Extra Segment. DI is then incremented if the direction
flag is zero or decremented if DF= 1. The change is 1 for bytes, 2 for words.

(OEST) - (SRC)
if (OF) = 0 then (01) - (01) + OEL T A
else (01) - (Ol)-OEL T A

Encoding:

11010101Wl

if w = 0 then SRC = AL, OEST = (01), OEL TA = 1
else SRC = AX, OEST = (01) + 1 :(01), OEL TA = 2

Timing: 10 clocks

Examples:

1) MOV 01, OFFSET BYTE_OEST _STRING
STOS BYTE_OEST -STRING

2) MOV
STOS

01 ,OFFSET WORO_OEST
WORO_OEST

Flags Affected: None

Description: STOS transfers a byte (or word) operand from AL (or AX) to the
destination operand addressed by DI and adjusts the DI register by DELTA. As a
repeated operation (see REP) this provides for filling a string with a given value. The
operand named in the STOS instruction is used only by the assembler to verify type
and accessibility using current segment register contents. The actual operation of the
instruction uses only DI to point to the location being stored into.

SU B (Subtract)

Operation: The source (rightmost) operand is subtracted from the destination (left
most) operand and the result is stored in the destination.

(OEST) - (LSRC)-(RSRC)

See note.

Encoding:

Memory or Register Operand and Register Operand:

@Oil 0 1 0 d wi mod reg rIm 1

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Timing (clocks): (a) register from register
(b) memory from register
(c) register from memory

Examples:

(a) SUB AX, BX
SUB CH, DL

(b) SUB DX, MEM_WORO
SUB 01, ALPHA [SI]
SUB BL, MEM_BYTE [01]

(c) SUB MEM_WORD, AX
SUB MEM_BYTE [01], BL
SUB GAMMA [BX] [01], SI

Immediate Operand from Accumulator:

1001 0 1 1 0 w 1 data 1 data if w=1

3
9+EA

16+EA

(a) if w = 0 then LSRC = AL, RSRC = data, DEST = AL
(b) else LSRC = AX, RSRC = data, DEST = AX

Timing (clocks): immediate from register 4

Examples:

(a) SUB AL, 4
VAL_SIXTY EQU 60
SUB AL, VAL_SIXTY

(b) SUB AX, 660
SU B AX, VAL_SIXTY * 6
SUB ,6606

SUB

5-147

SUB

5-148

Immediate Operand from Memory or Register Operand:

11 0 0 0 0 0 s w I mod 1 0 1 rIm I data

LSRC = EA, RSRC = data, DEST = EA

Timing (clocks): (a) immediate from register
(b) immediate from memory

Examples:

(a) SU B BX, 2001
SUB CL,VAL_SIXTY
SUB SI, VAL_SIXTY * 9

(b) SUB MEM_BYTE, 12
SUB MEM_BYTE [DI], VAL_SIXTY
SUB MEM_WORD [BX], 79
SUB GAMMA [DI] [BX], 1984

I data if s:w=01 I

4
17+EA

If an immediate-data-byte is being subtracted from a register-or-memory word, then
that byte is sign-extended to 16 bits prior to the subtraction. For this situation the in
struction byte is 83H (i.e., the s:w bits are both set).

Flags Affected: AF, CF, OF, PF, SF, ZF

Description: SUB performs a subtraction of the source (rightmost) operand from
the destination, and returns the result to the ddestination operand.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

TEST (Test, or logical compare)

Operation: The 2 operands are ANDed to affect the flags but neither operand is
changed. The carry and overflow flags are reset.

(LSRC) & (RSRC)
(CF) - 0
(OF) - 0

See note.

Encoding:

Memory or Register Operand with Register Operand:

11 0 0 0 0 1 0 w 1 mod reg rIm 1

LSRC = REG, RSRC = EA

Timing (clocks): (a) register with register
(b) register with memory

Examples:

(a) TEST AX, OX
TEST ,OX ;same as above
TEST SI, BP
TEST BH, CL

(b) TEST MEM_WORO, SI
TEST MEM_BYTE, CH
TEST ALPHA [01], OX
TEST BETA [BX] [SI], CX
TEST 01, MEM_WORO
TEST CH, MEM_BYTE
TEST AX, GAMMA [BP] [SI]

Immediate Operand with Accumulator:

11010100wl data I data if.w=1

(a) if w = 0 then LSRC = AL, RSRC = data
(b) else LSRC = AX, RSRC = data

Timing (clocks): immediate with register 4

Examples:

TEST AL, 6
TEST AL, IMM_VALUE_ORIVE11
TEST AX, IMM_VAL_909
TEST ,999
TEST AX, 999 ;same as above

3
9+EA

TEST

5-149

TEST

5-150

Immediate Operand with Memory or Register Operand:

11 1 1 1 0 1 1 w 1 mod 0 0 0 rIm 1 data

LSRC = EA, RSRC = data

Timing (clocks): (a) immediate with register
(b) immediate with memory

Examples:

(a) TEST BH, 7
TEST CL, 19_IMM_BYTE
TEST OX, IMM_DATA_WORO
TEST SI, 798

data if w=1

4
10+EA

(b) TEST MEM_WORO, IMM_OATA_BYTE
TEST GAMMA [BX], IMM_BYTE
TEST [BP] [01], 6ACEH

Flags Affected: CF, OF, PF, SF, ZF.
Undefined: AF

Description: TEST performs the bitwise logical conjuntion of the two source
operands, causing the flags to be affected, but does not return the result.

The source (rightmost) operand must usually be of the same type, i.e., byte or word,
as the destination operand. The only exception for TEST is testing an immediate
data byte with a memory word.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

WAIT
WAIT (Wait)

Operation: None

Encoding:

1100110111

Timing: 3 clocks

Example: WAIT

Flags Affected: None

Description: The W AJT instruction causes the processor to enter a wait state if the
signal on a TEST pin is not asserted. The wait state may be interrupted by an en
abled external interrupt. When this occurs the saved code location is that of the
W AJT instruction, so that upon return from the interrupting task the wait state is
reentered. The wait state is cleared and execution resumed when the TEST signal is
asserted. Execution resumes without allowing external interrupts until after the exe
cution of the next instruction. The instruction allows the processor to synchronize
itself with external hardware.

5-151

XCHG

5-152

XCHG (Exchange)

There are 2 forms of the XCHG instruction, one for switching the contents of the
accumulator with those of some other general word register, and one for switching a
register and a memory-or-register operand.

See note.

Operation:

1) The contents of the destination (leftmost operand) are temporarily stored in an
internal work register

(Temp) +- (DEST)

2) The contents of the destination are replaced by the contents of the source
(leftmost) operand

(DEST) +- (SRC)

3) The former contents of the destination are moved from the work register into the
source operand

(SRC) +- (Temp)

Flags Affected: None

Type 1:

Register Operand with Accumulator:

1 1 0 0 1 0 r-eQ]
SRC = REG, DEST = AX

Timing: 3 clocks

Examples:

XCHG AX, BX
XCHG SI, AX
XCHG CX, AX

Type 2:

Memory or Register Operand with Register Operand:

11 0 0 0 0 1 1 w 1 mod reg r / m I
SRC = EA, DEST = REG

Timing (clocks): memory with register
register with memory

17+EA
4

XCHG
Examples:

XCHG
XCHG
XCHG
XCHG

BETA_WORD, CX
BX, DELTA_WORD
DH, ALPHA_BYTE
Bl, Al

Description: XCHG exchanges the byte or word source operand with the destina
tion operand. The segment registers may not be operands of XCHG.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for I/O and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

5-153

XLAT/XLATB

5-154

XLAT (Translate)

Operation: The contents of the accumulator are replaced by a byte from a table.
The table's starting address has been moved into register BX. The original contents
of AL is the number of bytes past that starting address, where the desired translation
byte is to be found. It replaces the contents of AL.

(AL) -- «BX) + (AL))

Encoding:

1110101111

Timing: 11 clocks

Example: MOV BX, OFFSET TABLE_NAME
XLAT TABLE_ENTRY
;(see also example at LaDS)

Flags Affected: None

Description: XLA T performs a table lookup byte translation. The AL register is
used as an index into a table (256-bytes at most) addressed by the BX register. The
byte operand so addressed is transferred to AL.

XOR (Exclusive or)

Operation: Each bit position in the destination (leftmost) operand is set to zero if
the corresponding bit positions in both operands were equal. If they were unequal
then that bit position is set to 1.

(OE8T) - (L8RC)II(R8RC)
(CF) - 0
(OF) - 0

See note.

Encoding:

1001 1 0 0 d wi mod reg rim 1

if d = 1 then L8RC = REG, R8RC = EA, OE8T = REG
else L8RC = EA, R8RC = REG, OE8T = EA

Timing (clocks): (a) register to register
(b) memory to register
(c) register to memory

Examples:

3
9+EA

16+EA

(a) XOR AH, BL
XOR 81, OX
XOR CX, 01

;result in AH, BL unchanged
;result in 81, OX unchanged
;result in CX, 01 unchanged

(b) XOR AX, MEM_WORO
XOR CL, MEM_BYTE [81]
XOR 81, ALPHA [BX] [81]

(c) XOR BETA [BX] [01], AX
XOR MEM_BYTE, OH
XOR GAM MA [01], BX

Immediate Operand to Accumulator:

10011010wl data I data if w=1

if w = 0 then L8RC = AL, RSRC = data, OE8T = AL
else L8RC = AX, R8RC = data, OE8T = AX

Timing (clocks): immediate to register 4

Examples:

a) XOR AL, 11110110B
XOR AL, OF6H

b) XOR AX, 23F6H
XOR AX, 750
XOR ,23F6H ;AX destination

XOR

5-155

XOR

5-156

Immediate Operand to Memory or Register Operand:

11 0 0 0 0 0 0 w 1 mod 1 1 0 rIm I
lSRC = EA, RSRC = data, OEST = EA

Timing (clocks): immediate to register
immediate to memory

Examples:

a) XOR AH, OF6H
XOR Cl, 37
XOR 01, 23F5H

b) XOR MEM_BYTE, 30H

data

4
17+EA

XOR GAMMA [BX] [01], OFACEH
XOR ALPHA [01], VAl_EQUO_33H

Flags Affected: CF, OF, PF, SF, ZF.
Undefined: AF

data if w=1

Description: XOR (exclusive Or) performs the bitwise logical exclusive disjunction
of the source operands and returns the result to the destination operand.

NOTE: The early pages of this Chapter explain mod, reg, rim, EA, DEST, and
other notation. Included there are tables showing the encoding of addressing modes
and registers. In most cases reg is a 3-bit field allowing any register except segment
registers. Instructions referring directly to segment registers use a 2-bit field.

All references to memory implicitly use a segment register in constructing an address
(see Chapter 2). Except for 110 and interrupts, the choice of segment register
depends on the address-expression in the assembly language source line and on the
ASSUME directive which applies to that line. See Chapter 2.

Whenever an address-expression including a variable name is used, i.e. a name for a
memory location containing data, the MODRM byte will be followed by 2 bytes giv
ing the computed displacement from the segment-base-address. If a byte or word of
immediate-data is also used, it will follow that displacement.

INDEX TO INSTRUCTION MNEMONICS

AAA, ASCII Adjust for Addition, 5-17
AAD, ASCII Adjust for Division, 5-18
AAM, ASCII Adjust for Multiplication, 5-19
AAS, ASCII Adjust for Subtraction, 5-20
ADC, Add with Carry, 5-21
ADD, Add, 5-23
AND, And, 5-25

CALL, Call, 5-28
CBW, Convert Byte to Word, 5-30
CLC, Clear Carry, 5-31
CLD, Clear Direction, 5-32
CLI, Clear Interrupt, 5-33
CMC, Complement Carry, 5-34
CMP, Compare, 5-35
CMPS, Compare byte or word (of string), 5-37
CMPSB, Compare byte string, 5-37
CMPSW, Compare word string, 5-37
CWD, Convert Word to Double Word, 5-38

DAA, Decimal Adjust for Addition, 5-39
DAS, Decimal Adjust for Subtraction, 5-40
DEC, Decrement, 5-41
DIV, Divide, 5-43

ESC, Escape, 5-46

HLT, Halt, 5-47

IDIV, Integer Divide, 5-48
IMUL, Integer Multiply, 5-50
IN, Input byte or word, 5-52
INC, Increment, 5-53
INT, Interrupt, 5-55
INTO, Interrupt on Overflow, 5-56
IRET, Interrupt Return, 5-57

JA, Jump on Above, 5-58
JAE, Jump on Above or Equal, 5-59
JB, Jump on Below, 5-60
JBE, Jump on Below or Equal, 5-61
JC, Jump on Carry, 5-60
JCXZ, Jump on CX Zero, 5-62
JE, Jump on Equal, 5-63
JG, Jump on Greater, 5-64
JGE, Jump on Greater or Equal, 5-65
JL, Jump on Less, 5-66
JLE, Jump on Less or Equal, 5-67
JMP, Jump, 5-68
JNA, Jump on Not Above, 5-71
JNAE, Jump on Not Above or Equal, 5-72
JNB, Jump on Not Below, 5-73
JNC, Jump on No Carry, 5-73
JNBE, Jump on Not Below or Equal, 5-74
JNE, Jump on Not Equal, 5-75

JNG, Jump on Not Greater, 5-76
JNGE, Jump on Not Greater or Equal, 5-77
JNL, Jump on Not Less, 5-78
JNLE, Jump on Not Less or Equal, 5-79
JNO, Jump on Not Overflow, 5-80
JNP, Jump on Not Parity, 5-81
JNS, Jump on Not Sign, 5-82
JNZ, Jump on Not Zero, 5-83
JO, Jump on Overflow, 5-84
JP, Jump on Parity, 5-85
JPE, Jump on Parity Even, 5-86
JPO, Jump on Parity Odd, 5-87
JS, Jump on Sign, 5-88
JZ, Jump on Zero, 5-89

LAHF, Load AH with Flags, 5-90
LDS, Load Pointer into DS, 5-91
LEA, Load Effective Address, 5-92
LES, Load Pointer into ES, 5-93
LOCK, Lock Bus, 5-94
LODS, Load byte or word (of string), 5-95
LODSB, Load byte (string), 5-95
LODSW, Load word (string), 5-95
LOOP, Loop, 5-96
LOOPE, Loop While Equal, 5-97
LOOPNE, Loop While Not Equal, 5-98
LOOPNZ, Loop While Not Zero, 5-99
LOOPZ, Loop While Zero, 5-100

MOV, Move, 5-101
MOVS, Move byte or word (of string), 5-105
MOVSB, Move byte (string), 5-105
MOVSW, Move word (string), 5-105
MUL, Multiply, 5-106

NEG, Negate, 5-108
NOP, No operation, 5-109
NOT, Not, 5-110

OR, Or, 5-111
OUT, Output byte or word, 5-113

POP, Pop, 5-114
POPF, Pop Flags, 5-116
PUSH, Push, 5-117
PUSHF, Push Flags, 5-119

RCL, Rotate through Carry Left, 5-120
RCR, Rotate through Carry Right, 5-122
REP, Repeat, 5-124
RET, Return, 5-125
ROL, Rotate Left, 5-127
ROR, Rotate Right, 5-129

SAHF, Store AH into Flags, 5-131
SAL, Shift Arithmetic Left, 5-132
SAR, Shift Arithmetic Right, 5-134
SBB, Subtract with Borrow, 5-136
SCAS, Scan byte or word (of string), 5-138

5-157

Index to Instruction Mnemonics

SCASB, Scan byte (string), 5-138
SCASW, Scan word (string), 5-138
SHL, Shift Left, 5-139
SHR, Shift Right, 5-141
STC, Set Carry, 5-143
STD, Set Direction, 5-144
STI, Set Interrupt, 5-145
STOS, Store byte or word (of string), 5-146
STOSB, Store byte (string), 5-146
STOSW, Store word (string), 5-146
SUB, Subtract, 5-147

5-158

8086 Assembly Language

TEST, Test, 5-149

WAIT, Wait, 5-151

XCHG, Exchange, 5-152
XLA T, Translate, 5-154
XOR, Exclusive Or, 5-155

CHAPTER 6
CODEMACROS INTRODUCTION

This chapter describes codemacros, which define 8086 instructions. Codemacros
should not be confused with macros, which are described in Chapter 7.

A codemacro is a preset body of code which you define, a skeleton in which most
instructions and values are fixed. They are automatically assembled wherever the
macro is invoked (used as an instruction), which saves your rewriting them every
time that sequence is needed.

However, certain names used in the definition are NOT fixed. They are stand-ins,
which are replaced by names or values that you supply in the same line that invokes
the codemacro. These stand-ins are called "dummy" or "formal" parameters. They
simply "hold the place" for the actual parameters to come. Formal parameters thus
indicate where and how the actual parameters are to be used.

You invoke the codemacro by using its name as an instruction, e.g.,:

MOV
MAC1
ADD

•
•
•

BX, WORD3
PARAM1, PARAM2
AX, WORD4

•
•
•

MACl above represents the use of some codemacro you defined earlier. It appar
ently requires 2 parameters, that is, the definition used 2 formals to be replaced by
these actual parameters supplied above when you invoke the codemacro.

In fact, the MOV and ADD instruction above are codemacros. The assembler's
entire instruction set is defined and implemented as a large number of codemacros.
(The definitions are in APPENDIX A). Once you understand how this is done, you
may add instructions, or even replace those supplied as part of the assembler.

The type of macro used to implement this assembly language is called a codemacro,
to distinguish it from text macros described in Chapter 7. The latter are more
familiar to programmers because previous assembly languages have included such a
facility. Text macros are not discussed in this chapter. The presentation below will
describe creating and using codemacros.

These codemacros are encoded at codemacro definition time into a very compact
form, so that all defined codemacros may reside simultaneously in memory. Each
definition specifies a certain combination of parameters and will match only those.
Other combinations of parameters may be accommodated by redefining the
codemacro. Multiple definitions of the same codemacro name are chained together;
so that when the codemacro is called, each link of the chain can be checked for a
match of operands.

Since the 8086 instruction set consists of codemacros, it is natural to refer to a
codemacro being called as an "instruction"; and to refer to its actual parameters as
"operands" .

For example, the language has an ADD instruction that works properly with any
general register or memory location as a destination operand or as a source operand,

6-1

Code Macros Introduction 8086 Assembly Language

6-2

codemacros to generate the 11 different machine instructions appropriate to these
different cases and combinations. The correct one is used because the specification
of its formal parameters is matched by the actual parameters supplied in your source
code. The details of how this works are covered in this chapter.

The definition of a codemacro begins with a line specifying its name and a list of its
formal parameters, if any:

or
CODEMACRO name [formal_list]

CODEMACRO name PREFX

where formal_list is a list of formals, each in the form

form_name:specifier_letter [modifier_letter] [range]

These square brackets indicate optional items; they are not actually used in the state
ment that you code. The single word CODEMACRO and the name are both re
quired. The formals are optional. If they are present, then each one must be follow
ed by one of the specifier letters A, C, D, E, M, R, S, X. After the specifier letter
comes an optional modifier letter: b, d, or w. There follows an optional range
specifier, which consists of a pair of parentheses enclosing either one number, or
two numbers separated by a comma. The semantics of specifiers, modifiers, and
ranges are described below.

When no formals are used, you may code the keyword PREFX, indicating the
codemacro is to be used as a prefix to other instructions. This too is optional. Ex
amples of prefixes in the 8086 instruction set are LOCK and REP.

The definition ends with a line as follows:

ENDM

Between the first and last lines of a codemacro definition is the body of the macro,
the actual bit patterns and formal parameters which will be assembled and replaced
each time the macro is invoked. Only a few kinds of directive are allowed in
codemacros. They are:

1. SEGFIX

2. NOSEGFIX

3. MODRM
4. RELB

5. RELW
6. DB

7. OW

8. DO

9. Record initialization

Each of these directives, along with the special expression operand PROCLEN, are
explained further on in this chapter.

8086 Assembly Language Code Macros Introduction

Some simple examples of codemacros:

Codemacro STC
DB OF9H ; this sets the carry flag (CF) to 1.
Endm

Codemacro PUSHF
DB 9CH ; pushes all flags into top word on stack.
Endm

Codemacro ADD dst:Ab, src:Db
DB04H
DBsrc
Endm

The first two examples simply allow a machine instruction to be invoked by the use
of a name, which is usually more easily remembered ("mnemonic") than a string of
numbers.

The third example is one of the 11 macros defining the ADD instruction, or more
precisely, defines one of the 11 ADD instructions. (There are 11 in order to cover all
the valid combinations of parameters.) It has two formal parameters, called "dst"
and "src", for destination and source operands. These formals could be called
anything, e.g.,:

Codemacro ADD anything:Ab, other:Db
DB04H
DB other
Endm

is the identical macro in function and format.

Specifiers

Every formal parameter must have a specifier letter, which indicates what type of
operand is needed to match the formal parameter. There are eight possible specifier
letters:

1. A meaning Accumulator, that is AX or AL.

2. C meaning Code, i.e., a label expression only.

3. D

4. E

meaning Data, i.e., a number to be used as an immediate value.

meaning Effective address, i.e., either an M (memory address) or an R
(register) .

5. M meaning a memory address. This can be either a variable (with or without
indexing) or a bracketed register expression.

6. R

7. S

8. X

meaning a general Register only, not an address-expression, not a register in
brackets, and not a segment register.

meaning a Segment register only, either CS, DS, ES, or SS.

meaning a direct memory reference, a simple variable name with no
indexing.

A more detailed discussion of which operands match which specifier letters appears
in the instruction-matching section later in this chapter.

6-3

Code Macros Introduction 8086 Assembly Language

6-4

Modifiers

The optional modifier letter imposes a further requirement on the operand, relating
either to the size of data being manipulated, or to the amount of code generated by
the operand. The meaning of the modifier depends on the type of the operand:

• For variables, the modifier requires the operand to be of a certain TYPE: "b"
for byte, "w" for word, "d" for dword.

• For labels, the modifier requires the object code generated to be of a certain
amount: "b" for an 8-bit relative displacement on a NEAR label, "w" for
NEAR labels which are outside the -128 to 127 short displacement range, and
"d" for FAR labels.

• For numbers, the modifier requires the number to be of a certain size: "b" for
-256 through 255: and "w" for other numbers. The specifier-modifier pair
"Dd" is never matched.

Note that this manual uses upper-case letters for specifiers and lower-case letters for
modifiers. This is a useful language convention to clarify the code. However it is not
required-as in all source code outside of strings, the distinction between upper and
lower case is ignored by the assembler.

Range Specifiers

If a range is specified, it can be a single expression or two expressions separated by a
comma. Each expression must evaluate to a register or a pure number, i.e., not an
address. The list of number values corresponding to range registers is given in the
instruction-matching section later in this chapter. The following shows the first lines
(only) of three codemacros in the current language which use range specifiers:

1. Codemacro IN dst:Aw,port:Rw(DX)

2. Codemacro ROR dst:Ew,count:Rb(CL)

3. Codemacro ESC opcode:Db(O,63),adds:Eb

The first of these is one of the four codemacros for the IN (input) instruction. It says
that if a register is to specify the port from which to input a word, only DX will
match this codemacro. Any other register will fail to match, and the source line will
be flagged as erroneous (e.g., IN AX,BX is in error).

The second is one of the four ROtate Right codemacros. It says the word rotated can
be any word register except a segment register, or any word in memory. It is to be
rotated right some number of bit positions ("count"), where "count" is specified as
a byte register, and further specified to be CL. No other register will match (e.g.,
ROR DL is in error).

The third says the "opcode" supplied as the first parameter to the ESC instruction
must be a byte of immediate-data of value 0 to 63 inclusive.

Segfix

SEGFIX is a directive, included in some codemacro definitions, which instructs the
assembler to determine whether a segment-override prefix byte is needed to access a
given memory location. If the override byte is needed, it is output as the first byte of
the instruction. If it is not needed, no action is taken.

The form of the directive is:

SEGFIX formal_name

8086 Assembly Language Code Macros Introduction

where "formal_name" is the name of a formal parameter which represents the
memory address. Because it is a memory address, the formal must have one of the
specifiers E, M, or X.

In the absence of a segment-override prefix byte, the 8086 hardware uses either OS
or SS. Which one depends on which base register, if any, was used. BP implies SS.
BX implies OS. No base register also implies OS. (This, of course, includes the three
possibilities of SI alone, 01 alone, or no indexing at all.) The assembler must decide
whether this hardware-implied segment register is actually the one that will reach the
intended memory location.

The assembler examines the segment attribute of the memory-address expression
provided as the actual parameter. This attribute could be a segment, a group, or a
segment register.

• If it is a segment, the assembler determines whether that segment or a group
containing that segment has been ASSUMEd into the hardware-implied seg
ment register. If so, no override byte is needed. If not, the assembler checks the
ASSUMEs of other segment registers, looking for the segment or a group con
taining it. If found, the override byte for that segment register is issued. If not
found, an error is reported.

• If it is a group, the assembler takes the same action as for a segment, except that
the possibility of an including group is ruled out: the group itself must be
ASSUMEd into one of the segment registers. Otherwise an error is reported.

• If it is a segment register, the assembler sees if it is the hardware-implied
segment register. If so, no override byte is issued. If not, the override byte for
the specified segment register is issued.

The bit patterns for the override bytes are as follows:

00100110 for the ES override
00101110 for the CS override
00110110 for the S8 override
00111110 for the OS override

Nosegfix

NOSEGFIX is used for certain operands in those instructions for which a prefix is il
legal because the instruction cannot use any other segment register but ES for that
operand. This applies only to the destination operand of these string instructions:
CMPS, MOVS, SCAS, STOS.

The form of the directive is

N08EGFIX segreg, formal_name

where "segreg" is one of the four segment registers ES, CS, SS, OS, and
"formal_name" is the name of a memory-address formal parameter. As a memory
address, the formal must have one of the specifiers E, M, or X.

The only action the assembler performs when it encounters a NOSEGFIX in
assembling an instruction is to perform an error check-no object code is ever
generated from this directive.

The assembler looks up the segment attribute of the actual parameter (memory
address) corresponding to "formal_name". If the attribute is a segment register, it
must match "segreg". If the attrjbute is a group, it must be ASSUMEd into

Code Macros Introductio' 8086 Assembly Language

6-6

"segregn
• If the attribute is a segment, it or a group containing it must be

ASSUMEd into "segregn
• If these tests fail and "formal_namen is thus deter

mined not to be reachable from "segregn
, an error is reported.

The only value for "segregn actually used by the string instructions listed above is
ES.

Modrm
This directive instructs the assembler to create the ModRM byte, which follows the
opcode byte on many of the 8086's instructions. The byte is constructed to carry the
following information:

I. the indexing-type or register number to be used in the instruction.

2. which register is (also) to be used, or more information to select the instruction.

The MODRM byte carries the information in three fields:

The mod field occupies the two most significant bits of the byte, and combines with
the rim to form 32 possible values: 8 registers and 24 indexing modes.

The reg field occupies the next three bits following the mod field, and specifies either
a register number or three more bits of opcode information. The meaning of the reg
field is determined by the first (opcode) byte of the instruction.

The rim field occupies the three least significant bits of the byte. It can specify a
register as the location of an operand, or form part of the addressing-mode encoding
in combination with the mod field as described above.

The bit patterns corresponding to each indexing mode and register combination are
given in Chapter 1 and Appendix B. They need not concern you when you are
writingcodemacros, since the assembler takes care of the encoding when you pro
vide the operands.

The form of the imperative is

where "formaLor_numbern is either the name of a formal parameter, or an ab
solute number: and "formal_namen is the name of another formal parameter.

"formal_or_numbern represents the quantity which goes into the reg field of the
ModRM byte. If it is a number, then that same value is always plugged into the field
every time that codemacro definition is invoked. The number in this case is a con
tinuation of the opcode identifying which instruction the hardware is to execute.

If it is a formal, then the corresponding operand (usually a register number) is
plugged in.

"formal-namen represents an effective-address parameter. The assembler examines
whether the operand supplied is a register, variable, or indexed variable, and con
structs the mod and rim fields which correctly represent the operand. If the operand
calls for an 8-bit or 16-bit offset displacement, the assembler generates that as well.

8086 Assembly Language Code Macros Introduction

As an example of an 8086 instruction using ModRM:

Codemacro ADD dstRw, src:Ew
Segfix src
OB3
MODRM dst, src
Endm

The specifiers R wand Ew indicate this codemacro will match only when the actual
parameters in the invocation line are a full word general register destination, and a
full word source, memory or general register.

Example 1:

ADD OX, [BX] [SI] becomes

00000011 10010000
76543210 76543210

The first byte identifies this as an ADD of a memory word into a register. This par
ticular byte covers only 1 of the 4 cases that are possible depending on the lowest 2
bits. If bit 1 (direction) is a 0, the ADD is FROM a register TO either a register or a
memory location. If bit 1 is ai, then the ADD is TO a register FROM a register or
memory location. The least significant bit, bit 0, tells whether the data being ADDed
is byte (0) or word (1).

The second byte is the MODRM byte, with DX encoded as 010 in bits 5,4,3, a mode
of lOin bits 7, 6, and an RM of 000 (see Chapter 1 or Appendix B for more detail).

If the source line had included a variable, e.g.,

ADD OX, MEMWORD [BX] [SI]

then the offset of MEMWORD (low-order byte first, high byte last) would follow
the MODRM byte.

Example 2:

ADD OX, [01]

00000011 10010101
76543210 76543210

As a different example, consider a destination of a word in memory and a source of
immediate-data. The relevant codemacros are:

Codemacro ADD dstEw,src:Dw
Segfix dst
DB81H
MODRM O,dst
DWsrc
Endm

Codemacro ADD dstEw,src:Db (-128, 127)
SEGFIX dst
OB83H
MODRM O,dst
DB src
Endm

6-7

Code Macros Introduction 8086 Assembly Language

6-8

The object code generated for the instruction and data are different in the 2 cases of'
a byte of data or a word of data.

Furthermore, the MODRM line for these instructions specifies a "for
mal_or_number" field of zero, i.e., 3 bits all zero, whereas the MODRM line for
the two examples above specified a field of dst, which became 010 to represent DX.

Example 3:

ADD [01], 513

10000011 10000101 00000001 00000010

Example 4:

ADD BYTE PTR [BX] [SI], 4

10000001 10000000 00000100

The immediate-data byte or word follows the MODRM byte.

Relb and Relw
These directives, used in calls and jumps, instruct the assembler to generate the
displacement between the end of the instruction and the label which is supplied as an
operand. This means RELB generates the 1 byte (and RELW the 2 byte) displace
ment, or distance in bytes, between the instruction pointer value (at the end of the
codemacro) and the destination address.

The directives have the following form:

RELB formal_name
or

RELW formal_name

where "formal_name" is the name of a formal with a "C'" (Code) specifier.

The assembler assumes that all RELB and REL W directives occur immediately after
a single opcode byte in the codemacro (as in all the JUMP and CALL instructions in
the 8086 instruction set). It needs this assumption to determine (during codemacro
matching) where the displacement starts from, so that an operand can be identified
as "Cb" or "Cw". Although the assembler allows you to define codemacros in
which RELB and RELW occur elsewhere in the definition (e.g., a multi-instruction
codemacro), you run the risk of making the wrong match when the codemacro is in
voked. If a "b" is thus matched as "w", a wasted byte is generated: if a "w" is thus
matched as a "b", an error is reported.

Examples of RELB and REL W as they appear in the 8086 instruction set are:

Codemacro JMP place:Cw
DBOE9H
RELW place
Endm

Codemacro JE place:Cb
DB74H
RELB place
Endm

8086 Assembly Language Code Macros Introduction

These are direct jumps to labels in the CS segment. The specifier on the formal
parameter of the first macro calls for a NEAR label in the current CS segment (Cd
would mean FAR). This means a 16 bit offset, able to reach any byte in the im
mediate 64K bytes of address higher than the start of the segment. REL W computes
the distance and provides it as a word to follow the OE9H instruction byte.

If the offset of the target is 513, then this codemacro would generate the instruction:

11101001 00000001 00000010

The distance begins at the end of that RELW word, i.e., if you were counting the
bytes to that label, the first byte counted would be the one after the 3 bytes compris
ing this jump.

NOTE

A match only occurs if the label was assembled under the same ASSUME
CS:name as the jump. Only if there is a match is object code actually
generated.

The second example is a conditional jump, executed only if its conditions are met. In
this case, a Jump if Equal, the jump occurs if ZF=O. Conditional jumps are always
self-relative and limited to destinations whose distance can fit in 1 byte. This means
destinations no further ahead than 127 bytes and no further behind this instruction
than -128 bytes.

If the target is 99 bytes ahead, then this codemacro would generate the instruction:

01110100 01100011

The distance counted begins with the byte after these 2 bytes above.

DB, OW, and DO

These directives are similar to the DB, DW, and DD directives which occur outside
of codemacro definitions (see Chapter 3); however, there are some differences in the
operands they accept.

The form of the directives is:

or

or

DB cmac_expression

DW cmac_expression

DD cmac_expression

where cmac_expression i~ either an expression without forward references which
evaluates to an absolute number; a formal parameter name; or a formal parameter
name with a dot-record field shift construct.

An absolute number means that the same value is to be assembled every time this
codemacro definition is invoked. A formal parameter means that the corresponding
actual operand is to be assembled. A dot-record field shift construct means that the
actual operand is to be shifted and then plugged in, as discussed later in this chapter.

The operands to these codemacro initializations are restricted, in that lists and DUP
counts are not allowed.

6-9

Code Macros Introduction 8086 Assembly Language

6-10

Record Initializations

The record initialization directive allows you to control bit fields smaller than one
byte in codemacro definitions. The form of the directive is:

where record_name is the name of a previously-defined record (see Chapter 3), and
cmac_expressioI1-list is a list of cmac_expressions, separated by commas. (These
particular square brackets are not used in writing the list; their meaning here is that
the list is optional.) A cmac_expression is, as in the above section, either a number,
a formal, or a shifted formal. In addition, null cmac_expressions are allowed in the
list; in which case the default record field value as specified in the RECORD defini
tion is used.

The directive instructs the assembler to put together a byte or a word (depending on
the record), using the constant numbers and supplied operands as specified in the ex
pression list. The values to be plugged in might not fit into the record fields; in that
case, the least significant bits are used, and no error is reported.

Using the Dot Operator to Shift Parameters

A special construct allowed as the operand to a DB, DW, or DD, or as an element of
the operand to a record initialization, is the shifted formal parameter. The form of
this construct is

where formal_name is the name of a formal whose corresponding operand will be
an absolute number; and record_field_name is the name of a record field. The
assembler evaluates this expression when the codemacro is invoked, by right-shifting
the operand provided using the shift count defined by the record field.

The example in the 8086 instruction set where this feature is used is the ESC instruc
tion, which permits communication with other devices using the same bus. Given an
address, ESC puts that address on the bus; given a register operand, no address is
put on the bus. This enables execution of commands from an external device both
with or without an associated operand. These commands are represented in the ESC
codemacro as numbers between 0 and 63 inclusive. The interpretation of the number
is done by the external device.

R53 Record RF1 :5, RF2:3
R233 Record RF6:2, mid3:3, RF7:3
Codemacro ESC opcode:Db(0,63), addr:E
Segfix addr
R53 <11011 B, opcode.mid3>
ModRM opcode, addr
EndM

The R53line in the body of the codemacro generates 8 bits as follows: the high-order
5 bits become 11011 B, and the low-order 3 bits are filled with the actual parameter
supplied as "opcode" shifted right by the shift count of mid3, namely 3.

8086 Assembly Language Code Macros Introduction

Example:

Assume that you wish to use ESC with an "opcode" of 39 on an "addr" of MEM
WORD, whose offset is 477H in ES, indexed by DI.

ESC 39, ES: MEMWORD [01]
SEGFIX addr becomes ES: = 0010 0110B

39 = 00111001 B

opcode.MID3 = (000)00111

R53 <11011 B,opcode. mid3> becomes 11011111 B

for [DI],MOD = 10,R/M = 101

MODRM opcode,addr puts "opcode" into bits 5, 4, 3 of the modrm byte, with bits
7, 6, 2, 1, 0 filled by the appropriate mod and RIM from "addr".

Since opcode is 6 bits and the field is only 3 bits wide, only the low-order 3 are used,
namely 111, and the high-order bits (100) are ignored.

Therefore MODRM opcode,addr becomes 1011 1101B followed by the offset of
MEMWORD, 0111 0111 00000100.

Therefore the full object code for this ESC source line is:

0010 0110 (byte 1)

1101 1111 (byte 2)

1011 1101 (byte 3)

0111 0111 (byte 4)

0000 0100 (byte 5)

Note that opcode's 6 bits are split between the last 3 bits of byte 2 and bits 5, 4, 3 of
byte 3.

PROCLEN

This special operand equals 0 if the current PROC is declared NEAR, and OFFH if it
is declared FAR. Code outside of PROC ... ENDP blocks is considered NEAR. The
RET codemacros use this operator in creating the correct machine instructions to
return from a CALL to a NEAR or FAR procedure:

Codemacro RET
R413 <OCH,PROCLEN,3>
Endm

Instead of the more familiar DB or DW storage allocation commands, this
codemacro makes use of a previously defined record. It is used here the same way a
DB would be, but with the initialization given inside angle brackets to show that
each field in the record gets its own initial value. You can tell there are at least 3
fields in the record (if this invocation validly matches the definition, i.e., is not an
error) because 3 values are given, separated by commas.

6-11

Code Macros Introduction 8086 Assembly Language

6-12

Four such records are defined as one of the first acts of the assembler, to be used in
defining its instruction set. They are listed in APPENDIX A along with the
codemacros for ASM86:

R53 Record RF1 :5, RF2:3

R323 Record RF3:3, RF4:2, RF5:3

R233 Record RF6:2, Mid3:3, RF7:3

R413 Record RF8:4, RF9:1, RF10:3

The last line above, R413, defines an 8 bit record of 3 fields: the high-order 4 bits (7,
6, 5, 4) called RF8, the next (bit 3) called RF9, and the low-order 3 (bits 2, 1, 0)
called RFI0. (When R413 is used as a storage allocation command, initial values for
all fields must be specified within angle brackets because none were specified in the
definition.)

In the codemacro for RET, the field RF8 is set to OCH = 1100, and RFI0 is set to 3 =
011. Field RF9, which becomes bit 3 of the allocated record byte, will be 0 if the cur
rent PROC (in which the RET appears) is typed NEAR, or it will be 1 if the PROC is
typed FAR.

Note that PROCLEN is defined to give 8 bits, all zeros or all ones, but that R413
uses only one bit. The field size determines how many bits are used, and if more are
supplied then the high-order bits are ignored beyond the field width.

Matching of Instructions to Codemacros

This section describes what might aptly be termed the heart of the 8086 assembly
language. The careful ordering of the chain of codemacro definitions of a given in
struction (for example, the ADD instruction) combines with the varied set of typing
requirements on the operands to produce a single assembly language instruction
mnemonic which represents many hardware instructions.

The algorithm for matching an instruction to a particular codemacro definition is as
follows:

1. In pass 1, actual parameters are evaluated. Those containing forward references
are treated as a special type, as described in each of the cases below.

2. If any of the actual parameters is a register expression without an associated
type (e.g., [BXD, or if an implicit reference to the accumulator is made (e.g.,
"MOV,3"), then the other parameters are checked to see if at least one contains
an unambiguous modifier type. Numbers matching "b" do not suffice; but
numbers matching "w", explicitly-given registers, and all typed variables do
suffice to distinguish the modifier type. If no such parameter is found, the error
message "INSUFFICIENT TYPE INFORMATION TO DETERMINE COR
RECT INSTRUCTION" is issued, and no match is attempted.

3. The chain of codemacro definitions for a given instruction is searched for a
match, beginning with the last one defined and working backwards. In order for
a definition to match, the number of actual parameters must match the number
of formals in the particular definition, and each actual must match the formal in
specifier type, modifier (if given in the formal), and range (if given in the for
mal). The run-down of which actuals match which formals is as follows:

8086 Assembly Language Code Macros Introduction

a. SPECIFIERS.
Forward references match C,D,E,M,X.
AX and AL match A,E,R.
Labels match C.
Numbers match D.
Non-indexed variables match E,M,X.
Indexed variables and register expressions match E,M.
Registers except segment registers match E,R.
Segment registers CS,DS,ES,SS match S.

b. MODIFIERS.
The nature of modifier-matching depends on what the matched specifier is.
For numbers: Numbers between -256 and 255 match "b" only. Other

numbers match "w" only.
For labels: NEAR labels with the SAME CS-assume which are in the range
-126 to + 129 from the beginning of the codemacro match "b" only.

Other NEAR labels with the same CS assume match "w" only.
NEAR labels with a different CS-assume match no modifier.
FAR labels match "d".

For variables: Type BYTE matches "b".
Type WORD matched "w".
Type DWORD matches "d".
Other numeric types match no modifier.

Forward references match any modifier, except when typing information is
attached, with BYTE PTR, SHORT, FAR PTR, etc.

Index-register expressions without a type associated with them (e.g., [BX])
match either "b" or "w" .

c. RANGES.
Range specifiers are legal only for parameters which are numbers or
registers (specifiers A, D, R, S). If one specifier follows the formal, the
value of the actual must match; if two follow the formal, the value must fall
within the inclusive range of the specifiers. For this matching, registers
which are passed as actuals assume the following numeric values:

AL: 0
CL: 1
DL: 2
BL: 3
AH: 4
CH: 5
DH: 6
BH: 7
AX: 0
CX: 1
DX: 2
BX: 3
SP: 4
BP: 5
SI: 6
DI: 7
ES: 0
CS: 1
SS: 2
DS: 3

Forward references do not match the formal if there is a range specifier.

4. If a match is found, the number of bytes of object code generated is estimated.
Forward-reference variables, unless explicitly overridden, are assumed not to
need a segment override byte. ModRMs involving forward references are
assumed to require 16-bit displacements, except if the reference has SHORT, in
which case an 8-bit displacement is assumed.

6-13

Code Macros Introduction 8086 Assembly Language

6-14

5. In pass 2, the search through the codemacro chain starts all over again, starting
at the end of the chain and working backwards just as in pass 1. Resolution of
forward references might cause a different codemacro to be matched.

6. Object code generated by the instruction is issued in pass 2. If the number of
bytes output exceeds the pass 1 estimate, an error message is issued and the extra
bytes are withheld. The instruction is thus incomplete and the program should
not be executed. If the number of bytes is less than the pass 1 estimate, the re
maining space is padded with 90H's (Nap; i.e., no operation).

The ADD instruction (like many other instructions) provides an excellent example of
codemacro matching. The 11 codemacro definitions of the ADD instruction cover
the following cases:

DESTINATION

1. BYTE MEMORY
2. WORD MEMORY
3. WORD MEMORY
4. WORD MEMORY
5. AL
6. AX
7. AX
8. MEMORY BYTE OR BYTE-REGISTER
9. MEMORY WORD OR WORD-REGISTER

SOURCE

IMMEDIATE BYTE
IMMEDIATE BYTE (not between -128 and 127)
IMMEDIATE BYTE (from -128 to 127)
IMMEDIATE WORD
IMMEDIATE BYTE
IMMEDIATE BYTE
IMMEDIATE WORD
BYTE-REGISTER
WORD-REGISTER

10. BYTE-REGISTER MEMORY BYTE OR BYTE-REGISTER
MEMORY WORD OR WORD-REGISTER 11. WORD-REGISTER

Each of the above English-language phrases is abbreviated in the codemacro defini
tions into a two-letter specifier-modifier combination. Once you are used to the ab
breviations, the codemacros themselves are easier to scan and understand than the
above English summary. Here are the first lines of each codemacro described above,
in the same order, with an English reminder of its meaning, using EA to represent an
effective address expression resolving to either a memory or register reference:

1. CodeMacro ADD dst:Eb, src:Db (TO EA byte FROM data byte)

2. CodeMacro ADD dst:Ew, src:Db (TO EA word FROM large data byte)

3. CodeMacro ADD dst:Ew, src:Db(-128,127) (TO EA word FROM signed data byte)

4. CodeMacro ADD dst:Ew, src:Dw (TO EA word FROM data word)

5. CodeMacro ADD dst:Ab, src:Db (TO AL FROM data word)

6. CodeMacro ADD dst:Aw, src:Db (TO AX FROM data byte)

7. CodeMacro ADD dst:Aw, src:Dw (TO AX FROM data word)

8. CodeMacro ADD dst:Eb, src:Rb (TO EA byte FROM register byte)

9. CodeMacro ADD dst:Ew, src:Rw (TO EA word FROM register word)

10. CodeMacro ADD dst:Rb, src:Eb (TO register byte FROM EA byte)

11. CodeMacro ADD dst:Rw, src:Ew (TO register word FROM EA word)

The ordering of the codemacros is crucial. For example, the instruction "ADD
AX,3" matches not only definition #6, but also definition #2, since as a register, AX
qualifies as an Ew as well as an Aw. Since definition #6 produces less object code, it
should be selected before definition #2. Hence, it is given later, so that when the
assembler searches backwards from #11 up, it comes across #6 first.

Assuming that the following user symbols have been defined with the following
attributes:

BYTE_VAR
WORD_VAR
WORD_EXPR
B_ARRAY

byte variable
word variable
memory-address expression
byte variable

8086 Assembly Language Code Macros Introduction

the following assembler instructions would match the indicated codemacro defini
tion line above:

ADD AX,250 -6

ADD AX,350 -7

ADD BX, WORD_EXPR -11

ADD BX,DX -11

ADD BYTE_VAR,Al -8

ADD BYTE_VAR,254 -1

ADD WORD_ VAR,CX -9

ADD DH,BARRAY[SI] -10

ADD Cl, BYTE_ VAR -10

ADD Al,3 -5

ADD WORD_VAR,35648 -4

ADD WORD_ VAR, OFFSET B_ARRA Y - 4

ADD [BX] [SI], AH -8

ADD [BP],Cl -8

ADD DX,[DI] -11

ADD AX, [SI] [BP] -11

ADD WORD_VAR,3 -2

ADD WORD_ VAR,255 -3

NOTE

Codemacros are limited to a maximum of 128 internal bytes, which is reach
ed at approximately 60 bytes of generated object code.

6-15

CHAPTER 7
MACRO PROCESSING

LANGUAGE (MPL)

This chapter describes MPL, the MCS-86 Macro Processing Language. (Macros
should not be confused with codemacros, which pertain to individual machine
instructions, and are discussed in Chapter 6.) Appendix L presents a more rigorous
treatment of MPL.

MPL extends the MCS-86 Assembly Language to include these capabilities:

• Macro definition and invocation

• Macro-time string manipulation

• Macro-time expression evaluation

• Conditional assembly

• Macro-time console 110

Conceptual Overview of Macro Processing

Understanding macro processing requires a different perspective from the way
assembly languages and high-level procedural languages are understood as treating
source files. When you invoke ASM86 to assemble your source file, all MPL
statements in your source file are evaluated before the actual assembly process
starts. Your MPL statements are either function definitions or function calls. The
functions can be MPL's built-in functions or your own user-defined functions. You
use the MPL built-in function DEFINE to define your own functions.

MPL deals in strings. If you think of your source file as one long string, then its
MPL statements (function definitions and function calls) are substrings of that one
long string. MPL replaces function definitions with the null string, and each
function call with its value, which is always a string, and may be the null string.
Similarly, any arguments present in function calls are given as strings, and may be
interpreted by the function (depending on its definition) as integer values. Thus,
depending on its context, the expression "86H" could represent the 3-character
string '86H' or the 17-bit value +00000000 1000 0110B.

The following scheme illustrates these concepts:

1. Your source file as seen by the Macro Processor:

(---------plaintext ---------(macro-def)---------(macro-call)----------plaintext ---------)

2. An internal, intermediate form after the macro-definition is stored:

(----------plaintext -------------o-------------(macro-call)----------plain text ----------)

Where '0' represents the null string and 'macro-call' contains '86H'.

3. The macro called may then consider '86H' as a string or an integer value:

(-----------plain tex t ---------------------------(86 H)--------------------plain text -----------)

(---------plaintext-------------------------(+0000 0000 1000 011 OB)-----plaintext -----)

4. The resulting macro expansion then becomes input to the assembler-proper:

(--plain tex t -- --)

7-1

Macro Processor Language 8086 Assembly Language

7-2

What Is Macro-Time?

Macro-time is the term given to the time-frame within which the macro processor
acts on your source file, copying it to an intermediate form for assembly, and pro
cessing your macro definitions and macro calls. No object code is created during
macro-time. Macro-time is followed by:

• Assembly-time, when object code is created

• Link-time, when external references are resolved

• Locate-time, when code and data are bound to absolute addresses

• Run-time, when your program executes

Since MPL allows you to generate virtually any character string, which will then be
assembled, linked, located, and run, macro processing influences the entire develop
ment cycle of your program. However, since the macro processor itself produces no
object code, it cannot interrogate the assembly-time status of your program (such as
referencing the assembler-proper's symbol table).

What Is a Macro?

A macro is a shorthand notation for a source text string. The shorthand notation is
the macro name; the string it represents is the macro value. You define your own
macros using the MPL function DEFINE, which has the format:

OJo*DEFINE (macro-call) (replacement-pattern)

Macro Expansions and Side Effects

A careful distinction must be made between the value of a macro or built-in function
and its side-effects. At call-time, when the macro or built-in function is called, the

_ macro processor replaces the call with the value (an ASCII string) of the macro or
built-in function, as well as performing the operations inherent in the macro or
built-in function.

The value of the DEFINE built-in function is the null (empty) string; therefore,
when the call to DEFINE is made to define your user macro, the call is replaced by
the null string. That is, the call is not copied from your source file to the
intermediate file. The significance of the call to DEFINE is not its value, but its side
effect; that is, defining your user macro (entering it in the macro symbol table).

If, for example, you are coding a program which contains several calls to a pro
cedure SUBROUTINE, and you want to push/pop registers ES, DS, AX, CX, DX,
BX, SI, and DI before/after the call, you could first define the macro
CALLSUBROUTINE as follows:

8086 Assembly Language Macro Processor Language

%*OEFINE (CALLSUBROUTINE) (
PUSH ES
PUSH OS
PUSH AX
PUSH CX
PUSH OX
PUSH BX
PUSH SI
PUSH 01
CALL SUBROUTINE
POP 01
POPSI
POPBX
POP OX
POPCX
POP AX
POP OS
POPES

Now wherever the macro call OJoCALLSUBROUTINE appears in your source file,
the macro processor replaces it with the defined character string, including all
carriage-returns, line-feeds, tabs, and blanks.

Two remarks are in order:

1. The definition of the macro begins with "OJo*DEFINE". (The asterisk (*) is
termed the "call-literally" character, and means that no macro expansion is
requested at this time. The macro processor is said to be in literal mode.)

2. Opening and closing carriage-return-line-feed's are included inside the
replacement-pattern part of this macro definition so that the source file passed
to the assembler-proper will not contain run-on lines.

What Is Macro Processing?

The macro processor, which is part of the MCS-86 Macro Assembler, copies your
source file to an intermediate file to be assembled. During the copying process, the
macro processor examines each character of your source file for a distinguished
character called the metacharacter, which can be any ASCII character, but by
default is the percent-sign (0J0). When the metacharacter is detected, the
macroprocessor knows that what follows is intended for macro processing.

The metacharacter signals the macro processor that what follows is:

• A user macro definition, such as:

%*OEFINE (AR(NAME, TYPE, LENGTH) (%NAME O%TYPE %LENGTH OUP(?)
)

This defines a macro AR with three parameters (NAME, TYPE, LENGTH),
which, when called with actual arguments (strings or function calls which
evaluate to strings) , expands to an assembly-language DB, DW, or DD directive
defining an array with OJoLENGTH units (bytes, words, or doublewords) having
the name OJoNAME. Notice that parameters are listed in the macro-name part of
the definition without metacharacters, but in the replacement-pattern part of
the definition each parameter is prefixed by the metacharacter 0J0. Notice also

7-3

Macro Processor Language 8086 Assembly Language

7-4

that the carriage-return (following DUP(?) is meant to be part of the macro
definition, since we want the data definition directive to be on a line by itself.

• A user macro invocation (call), such as:

%AR(LASZLO, W, 500)

This call is replaced by its value, which according to the preceding definition is
the following string, including the terminating carriage-return (and line-feed):

LASZLO DW 500 DU P(?)

Similarly, the call:

%AR(GONZO, B, 2048)

expands to:

GONZO DB 2048 DUP(?)

including the final carriage-return-line-feed.

• A user call to an MPL built-in function, such as:

%IF (%EQS(%ANSWER,YES)) THEN (%AR(LASZLO, W, 500)) FI

This call to the MPL built-in function IF evaluates to the first array definition
above if the value of ANSWER (a user-defined function, presumably
incorporating the MPL built-in functions IN and OUT) is exactly equal to the
string 'YES', and evaluates to the null (empty) string otherwise.

These three types of MPL statements result in the respective actions:

1. If a macro definition follows, the macro processor saves the definition.

2. If a macro call follows, the macro processor retrieves the definition of the called
macro, computes the value (an ASCII string) of the macro based on the call,
and places it in the intermediate file at the point of call. This is called expanding
the macro.

3. If a call to an MPL built-in function follows, the macro processor replaces the
call with the value of the built-in function, much the same as in the previous
case. Calls to MPL built-in functions will be discussed later; however, this sec
tion describes one such MPL built-in function-DEFINE, which you call to
define your macros. Strictly speaking, then, the first item on the above list is
really a special case of the third.

Aside from macro definitions and calls, the text of your source file has no meaning
to the macro processor. The macro processor forms the "front-end" of the
assembler, and as such, it cannot detect errors in your 8086 assembly language direc
tives or instructions.

Why Use Macros?

Since a macro defines a string of text (called the macro value) that will replace a I

macro call, the usefulness of a macro depends on three characteristics:

• Its ability to represent a string of text using a shorter string

• Its ability to be used in different contexts; in a word, its flexibility

• Its side-effects; for instance, DEFINE, MATCH, arid OUT.

8086 Assembly Language Macro Processor Language

The example CALLSUBROUTINE above has the first characteristic, but not the
second; CALLSUBROUTINE is a "constant" macro-its value never changes,
unless you redefine it. You can redefine your macros (but not MPL's built-in func
tions) any time you want (with the exception that a macro definition may not modify
itself). At call-time, the macro processor refers to the most recent definition of each
user macro.

Parameters and Arguments

A macro can also be defined so that part of it varies, depending on the information
supplied to the macro in the form of arguments.

Returning to a previous example of the procedure call to SUBROUTINE, preceded
by mUltiple PUSHes and followed by multiple POPs, we see that the macro
CALLSUBROUTINE as defined has limited usefulness-we cannot use it for calls
to other procedures besides ROUTINE.

We can code a macro to specify the same sequence of PUSHes, a call to any pro
cedure (not just ROUTINE), and the same sequence of POPs, as follows:

%*DEFINE (CALLSUB(ROUTINE)) (
PUSH ES
PUSH OS
PUSH AX
PUSH CX
PUSH OX
PUSH BX
PUSH SI
PUSH 01
CALL %ROUTINE
POP 01
POPSI
POPBX
POPDX
POPCX
POP AX
POP OS
POPES

Now to generate a call to procedure AXOLOTL, for example (together with the
preceding PUSHes and following POPs, as well as carriage-returns, line-feeds, tabs,
and blanks), all you need to code is:

%CALLSUB(AXOLOTL)

. In this example, ROUTINE is called a formal parameter, or simply a parameter. (It
is also known as a "dummy" parameter, since its name in the definition of
CALLSUB is irrelevant.)

When CALLSUB is called with a value for the formal parameter (ROUTINE), the
actual value (AXOLOTL) is referred to as an argument.

7-5

Macro Processor Language 8086 Assembly Language

7-6

In short, the parameter ROUTINE acts as a place-holder for the argument
AXOLOTL.

In using macro definitions that have parameter lists, and corresponding macro calls
that have argument lists:

• The parameter list of a macro definition is enclosed in parentheses following the
macro name; parameters are separated by commas, as in:

% *DEFINE (BIGMAC(P1 ,P2,P3,P4,P5)) (text-string using %P1, %P2, %P3, %P4, %P5)

When a parameter (to be replaced by an argument at call-time) appears in the
replacement-string of the definition, be sure to prefix the metacharacter (070) to
it.

• The argument list of a macro call is enclosed in parentheses following the macro
name; arguments are separated by commas, as in:

%BIGMAC(CATSUP,MUSTARD,ONION,PICKLE,LETTUCE)

• The only occurrence of the metacharacter in the macro call is that prefixed to
the macro-name, unless one or more arguments are macros. If you use a macro
as an argument, then you prefix the metacharacter to the argument as well. For
instance, if the macro YELLOWSTUFF is defined:

%*DEFINE (YELLOWSTUFF) (MUSTARD)

Then you could call BIGMAC as follows:

%BIGMAC(CATSUP,%YELLOWSTUFF,ONION,PICKLE,LETTUCE)

and obtain the same macro expansion.

• You can use any number of parameters/arguments.

This chapter describes a subset of MPL in which commas delimit
parameters/arguments. More general constructs are possible, as described in
Appendix L, Macro Processor Language: Full Capabilities

Evaluation of the Macro Call

The macro processor evaluates the call %CALLSUB(AXOLOTL) as follows:

1. The macro processor recognizes the metacharacter (%), and momentarily
suspends copying your source file while it looks up the definition of CALLSUB
in its macro symbol table.

2. Finding CALLSUB in the symbol table, the macro processor sees that
CALLSUB is defined using one parameter, and hence needs one user-supplied
argument in order to be expanded.

3. Upon finding the string' AXOLOTL' in parentheses immediately following the
%CALLSUB macro call, the macro processor picks up 'AXOLOTL' as the
argument to the macro call.

8086 Assembly Language Macro Processor Language

4. Then, using the definition of CALLSUB as the string of PUSHes, POPs, the
CALL, and all carriage-returns, line-feeds, tabs, and blanks in the definition,
the macro processor computes the value of the call OJoCALLSUB(AXOLOTL)
to be the ASCII string:

PUSH ES
PUSH DS
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH SI
PUSH DI
CALL AXOLOTL
POPDI
POPSI
POP BX
POPDX
POPCX
POPAX
POPDS
POPES

5. The macro processor replaces the macro call with the value of the macro,
exactly at the point of call.

A Comment-Generating Macro

Macro definitions and calls can be placed anywhere in your source file: as constant
character strings (the first example), as operands to instructions (the second exam
ple), as in-line routines (the example following the next), as arguments to function
calls, or simply as character strings that are more easily defined as macro functions
and called as needed than rekeyed each time.

Consider this comment-generating macro, HEADER, which accepts 5 arguments,
and is defined as follows:

% *DEFINE (HEADER(ROUTINE,DATE,NAME,PURPOSE,REGCLOB)) (
.** ,
;* ROUTINE NAME: %ROUTINE
;* DATE: %DATE
;* PROGRAMMER'S NAME: %NAME
;* PURPOSE OF ROUTINE: %PURPOSE
;* REGISTERS CLOBBERED: %REGCLOB
.** ,

Note that in the macro definition of HEADER above:

• The definition begins with %*DEFINE. This informs the macro processor that
no expansion is to take place. (That is, this is a definition.)

• In the DEFINE function's pattern for parameterized macro definitions:

% *DEFINE (macro-name(parameter-list» (replacement-pattern)

• The metacharacter (%) does not appear in the macro-name or parameter-list
fields.

7-7

Macro Processor Language 8086 Assembly Language

7-8

• The metacharacter (0/0) does appear as a prefix to parameter names in the
replacement-pattern, since the macro processor needs to know that the first
'ROUTINE' in 'ROUTINE NAME: %ROUTINE' is not itself a macro call, but
the second is.

• The "hanging" left parenthesis at the right in the first line denotes that the
macro body begins with a carriage-return. (Otherwise, the expanded macro
might start in the middle of a line.) Similarly, the lone right-parenthesis which
terminates the replacement-pattern denotes that the macro body ends with a
carriage-return.

The macro call:

%HEADER(LASZLO,5/15/79,G. BOOLE,UPDATE NETWORK STRUCTURES,AX/SI/DI)

results in the expansion:

.****.*._.*******-*-**-****.-.** ••• **.****-******-***************** ,
;* ROUTINE NAME: LASZLO
;* DATE: 5/15/79
;* PROGRAMMER'S NAME: G. BOOLE
;* PURPOSE OF ROUTINE: UPDATE NETWORK STRUCTURES
;* REGISTERS CLOBBERED: AX/SliDI
.*-* ••• * •• ********* •• *****.*****-***._**--*.-.-*-*_.*************** ,

A Macro to Move Word Strings at Run-Time

You can use macros for routines.For instance, your source file might require these
three variants of the same code to move a word-string from a DS-based segment to
an ES-based segment:

1. Move 5 Words from TABLE to FIELD

MOVCX,5
LEA SI, TABLE
LEA DI, FIELD
REP MOVSW

;Register CX contains number of words to move.
;1 st word to be moved is at DS:TABLE.
;1st word to be moved to ES:FIELD.
;Loop here while CX decrements to O.

2. Move LENGTH Words from ARRAY[BX] to ADTAB+8

MOV CX, LENGTH
LEA SI, ARRAY[BX]
LEA DI, ADTAB+8
REP MOVSW

;Reg. CX contains number of words to move.
;1 st word to move is at DS:ARRAY[BX].
;1 st word to move to ES:ADTAB + 8.
;Loop here while CX>O.

3. Move A~ Words from STRUC.WDS to [BX]

MOVCX,AX
LEA SI, STRUC.WDS
LEA DI, [BX]
REP MOVSW

;Move count to CX.
;1 st word to move is at DS:STRUC.WDS.
;1st word to move to ES:[BX].
;Move a word at a time until CX=O.

By parameterizing the three operand fields that differ in these text-strings, we obtain
the replacement-pattern of the macro we need to generate all three instances:

MOV CX, COUNT
LEA SI, SOURCE
LEA DI, DEST
REP MOVSW

8086 Assembly Language Macro Processor Language

Using the MPL built-in function DEFINE, we can name a macro representing the
common form of the three separate instances:

%*OEFINE (MOVE(COUNT, SOURCE, OEST)) (
MOV CX, %COUNT
LEA SI, %SOURCE
LEA 01, %OEST
REP MOVSW

Note that in this macro definition, which conforms to the pattern for the DEFINE
function:

0/0 *DEFINE (macro-name) (replacement-pattern)

1. The metacharacter (Olo) and the call-literally character (*) are prefixed to
DEFINE.

2. Neither the metacharacter (Olo) nor the call-literally character (*) occur in the
macro-name field, but that

3. The metacharacter (Olo) is prefixed to each parameter-name in the
replacement-pattern. The call-literally character does not appear in the
rep lacemen t -pa ttern.

4. The replacement-pattern is defined by its appearance between the second pair of
parentheses in the pattern:

% *OEFINE (macro-name) (replacement-pattern)

This means that MOVE consists of the opening and closing carriage-returns given in
its replacement-pattern, as well as the text between them. Without these opening and
closing carriage-returns, the first and last lines of the expanded macro would be run
together with the last line before, and the first line after, the macro call.

Calling MOVE with Actual Arguments

Now with the MOVE macro defined for this assembly, it is unnecessary to code the
sequence of instructions over again every time we wish to move a word-string. Our
user macro MOVE can be invoked (called) using actual arguments in place of the
formal parameters COUNT, SOURCE, and DEST. The formal parameters are
simply place-holders until you supply actual values as arguments in macro calls.

For example, the macro calls:

%MOVE(5, TABLE, FIELD)

%MOVE(LENGTH, ARRAY[BX], AOTAB+8)

%MOVE(AX, STRUC.WOS, [BX])

expand to (1), (2), and (3) above, respectively.

7-9

Macro Processor Language 8086 Assembly Language

7-10

A Macro to Move Both Byte- and Word-Strings

By introducing one additional parameter into the definition, we can generalize the
MOVE macro (which moves word-strings only) to the MOVER macro (which moves
both byte- and word-strings):

%*DEFINE MOVER(COUNT, SOURCE, DEST, TYPE)) (
MOV CX, %COUNT
LEA SI, %SOURCE
LEA 01, %DEST
REP MOVS% TYPE

Now the call:

%MOVER(100, TABLE, FIELD, W)

moves 100 words from DS:TABLE to ES:FIELD, since a MOVSW is generated in
the expansion.

However, the call:

MOVER(100, TABLE, FIELD, B)

moves 100 bytes from DS:TABLE to ES:FIELD, since a MOVSB is generated in the
expansion.

M PL Identifiers

MPL identifiers, used for function and parameter names, are different from your
assembly-language identifiers. An MPL identifier has the following characteristics:

1. The first character must be an alphabetic character A through Z. Upper- and
lower-case alphabetic characters are not distinguished.

2. Successive characters may be alphabetic, numeric (0 through 9), or the
underscore (_) character, sometimes called the "break" character, and
represented on some keyboards by a back-arrow. Its ASCII value is 5FH.

3. As with the assembly-language proper, identifiers may be any length but are
considered unique only up to 31 characters.

Numbers As Strings in MPL
MPL maps ASCII strings in your source file into ASCII strings in an intermediate
file to be assembled.

For instance, the MPL built-in function LEN accepts a string argument (or a macro
whose value is a string), and has the string value 'xyH', where x and yare hex
adecimal digits giving the length of the argument string.

Thus, the value of OJoLEN(ABC) is the ASCII string 03H. Similarly, the value of
OJoLEN(ABCDEFGHIJ) is the ASCII string OAH.

Furthermore, like other MPL built-in functions and user macros, LEN can accept a
macro as an argument. In this case, the value of LEN is an ASCII string representing
the length of the macro value string.

If, for example, ALPHA and DECIMAL are defined as follows:

% *DEFINE (ALPHA) (ABCDEFGHIJKLMNOPQRSTUVWXYZ)

%*DEFINE (DECIMAL) (0123456789)

then it follows that OJoLEN(OJoALPHA) has the value lAH, and
0J0 LEN(OJo DECIMAL) has the value OAH. Note that OJoLEN(ALPHA) and
OJoLEN(DECIMAL) are still meaningful, and have the values 05H and 07H,
respectively.

8086 Assembly Language Macro Processor Language

Expression Evaluation; the EVAL Built-in Function

Since MPL deals in strings, the macro processor does not normally attempt to
evaluate strings expressing numeric quantities. (Exceptions to this general rule are
the built-in functions REPEAT, IF, WHILE, and SUBSTR, decribed below).

Thus, if you code:

%LEN(%ALPHA) + %LEN(%DIGIT)

the macro processor will treat the expression as a string, and will replace it with:

1AH + OAH

without processing it any further.

If you want an expression to be evaluated, you can use the MPL built-in function
EV AL function, which takes the form:

OJoEVAL(expression)

In this case, the desired evaluation is performed, and an ASCII string of hex
adecimal digits is returned as the value of EV AL. For the example, we have:

%EVAL(%LEN(%ALPHA) + %LEN(%DIGIT))

which first reduces to:

%EVAL(1AH + OAH)

and is then evaluated as an arithmetic expression to obtain the string:

24H

as the value of the call.

Arithmetic Expressions

Arithmetic operations are 17-bit, as used by the assembler proper. Note that dyadic
(two-argument) operators are infix (as assembler-proper operators), unlike MPL's
outfix operators, and that infix operators do not require the metacharacter
preceding a call:

Infix: %VALUE1 EO 3

Outfix: %EOS(%VALUE1, 3)

(compare numbers)

(compare strings)

Arithmetic expressions allow the following operators, in high-to-Iow order of
precedence:

Parenthesized Expressions

HIGH, LOW

Multiplication and Division: *, I, MOD, SHL, SHR

Addition and Subtraction: +, - (both unary and binary)

Relational: EO, L T, LE, GT, GE, NE

Logical NOT

Logical AND

Logical OR, XOR

7-11

Macro Processor Language 8086 Assembly Language

7-12

Expressions are evaluated left-to-right, with operations of higher precedence per
formed first, unless precedence is overridden using parentheses.

Examples can be found at the end of Chapter 4. It is essential to remember that these
arithmetic, relational, and Boolean operators are identical to the assembly-language
operators of the same names. The difference between using these operators in the
MPL context as opposed to the usual assembly-language context is that:

1. For the operations to be performed, MPL expressions must be enclosed within
an OJoEV AL(expression) call.

2. Although the value returned by EV AL is always an ASCII string of hexadecimal
digits, and not a "pure number", the hexadecimal string itself can be used as a
number with arithmetic operators.

3. Assembly-time symbols such as those defined by EQU are not available at
macro-time, and cannot be included in an argument to EV AL.

Range of Values

The permissible range of value is -OFFFFH (-65535) to OFFFFH (65535).

The Length FUnction (LEN)

The MPL built-in LEN is called as follows:

0J0 LEN (string)

and returns as a hexadecimal value the number of characters in the argument string.

For example, OJoLEN(A,B,C) = 5. OJoLEN(ABC) = 3.

If ABC has been defined, as in:

%*DEFINE (ABC) (ABRACADAVER)

then you would request the length ('OBH') of that string by calling as follows:

%LEN(%ABC)

The string OBH would then replace the call to LEN, and would be interpreted as a
number (by arithmetic operators) or a string (by MPL operators or functions).

String Comparator (Lexical-Relational) Functions

The string comparator functions are:

MPL Function Answers the Question With One Of

EQS Are the strings lexically equal? -1 H(Yes), OOH (No)

NES Are the strings lexically unequal? -1 H(Yes), OOH (No)
\

LTS Does the first precede the second -1H(Yes)
in their dictionary ordering? OOH (No)

LES Does the first precede or equal the -1H (Yes)
second in their dictionary ordering? OOH (No)

GES Does the first follow or equal the -1 H (Yes)
second in their dictionary ordering? OOH (No)

GTS Does the first follow the second -1H (Yes)
in their dictionary ordering? OOH (No)

8086 Assembly Language Macro Processor Language

The value returned (-IH or OOH) is a character string, and not a "pure number".

Thus, the function call:

%LTS(101 ,101 B)

returns the string '-I H', or "True", because the string' 101' precedes the string
'IOIB' in the lexical sense.

And the function call:

%EQS(OAH,10)

returns the string 'OOH', or "False", because the two strings are not equal in the lex
ical sense (even though, if interpreted, they represent the same number).

Control Functions (IF, REPEAT, WHILE)

The functions IF , REPEAT, and WHILE are useful for controlling the expansion of
macros depending on whether an expression evaluates to True (-IH, or any odd
number) or False (OOH, or any even number).

Unlike most instances of expressions in MPL (except for SUBSTR, described
below), expressions in the first clause of IF, REPEAT, and WHILE are
automatically interpreted as numbers, not strings. As a result, you do not need to
code OJoEV AL(expr) as the first clause to the functions; the expression itself suffices.

The syntax for these expressions is as follows:

IF (expr) THEN (replacement-value) [ELSE (replacement-value)] FI

REPEAT (expr) (replacement-value)

WHILE (expr) (replacement-value)

where:

• "expr" must evalute to an integer. (Note that it is not necessary to code
OJoEV AL(expr) for these three functions; the expression is automatically
evaluated without your specifying EVAL.)

• "replacement-value" is an arbitrary string with balanced parentheses, and can
contain macro calls.

The IF Function

If "expr" evaluates to an ODD integer, it is considered "True" and the value of the
THEN-clause replaces the IF call. If macro calls appear in the THEN clause, the
calls are made and replaced by their (string) values. Any side-effects inherent in the
definition of the macro(s) called are performed.

If "expr" evaluates to an EVEN integer, it is considered "False" and the THEN
clause is ignored. The ELSE clause, if present, is then treated as if it were the
THEN-clause in the "True" case.

7-13

Macro Processor Language 8086 Assembly Language

7-14

For example, the call:

%IF (%LEN(ABC) EO 3) THEN (%PROCESS) FI

Says, in effect:

1. Treat the expression OJoLEN(ABC) EQ 3 as a number, and evaluate it. (The IF
built-in function, like several others, accepts an expression and treats it as a
number, so you do not have to use EVAL here.)

2. If OJoLEN(ABC) EQ 3 evaluates False (OOH), end processing of this call. (There
is no ELSE clause in this particular instance.)

3. If OJoLEN(ABC) EQ 3 evaluates True (-lH), evaluate the call OJoPROCESS (a
user-defined function). This means:

• Replace the entire OJoIF call with the value of OJoPROCESS (possibly null).

• Perform any side-effects indicated in the definition of %PROCESS.

Since the value of OJoLEN(ABC),EQ 3 is True (-lH), the call to PROCESS is made,
%PROCESS is evaluated, and its value (a string) replaces the %IF call. Any side- ef
fect processing inherent in the definition of process is also performed. (For instance,
PROCESS may define a new user macro.)

If, on the other hand, the following IF call is made:

%IF (%EOS(%LEN(ABC), 3)) THEN (%PROCESS) FI

The IF-clause first reduces to:

% EOS(03H, 3)

And since the string comparator function EQS does not regard '03H' as equal to '3',
the expression evaluates to False, or OOH. Hence, PROCESS is not called.

As another example, the call:

%IF (%LEN(%STRING) GT 255) THEN (% TRUNC) ELSE (%CONCAT) FI

results in the following:

1. The user macro-call OJoSTRING is evaluated and replaced by a (possibly null)
string.

2. The length of the string is computed by LEN.

3. The relational expression:

xyH GT 255

is evaluated, where "xyH" represents the value of OJoLEN(OJoSTRING).

4. If the hexadecimal value xyH returned by LEN is greater than 255, the
user-macro TRUNC is evaluated, and any side-effects inherent in its definition
are performed. The value of TRUNC replaces the IF call (in this case the line).
The ELSE-clause is ignored.

5. If the hexadecimal value returned by LEN is less than or equal to 255, the
expression OJoTRUNC is ignored, but the user macro CONCAT is called,
expanded, and any side-effects are performed.

8086 Assembly Language Macro Processor Language

The REPEAT Function

The expression "expr" is evaluated only once; the "replacement-value" is then
evaluated "expr" times, and becomes the value of the REPEAT function.

The format of the REPEAT function call is:

OJoREPEAT (expr) (string)

For example,

%REPEAT (10) (%REPEAT (4)(-) +)

generates the string:

---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- + ---- +

The WHILE Function

The WHILE function call has the format:

0J0 WHILE (expr) (replacement-value)

where "expr" is evaluated until it is False (Even) as follows:

1. The expression "expr" is first evaluated to determine whether the second
("replacement-value") need be evaluated:

• If "expr" evaluates to an odd ("True") number, then "replacement-value"
is evaluated, including all macro calls and side-effects.

• If "expr" evaluates to an even number ("False"), then no further
processing is performed for the macro call.

2. At this point, if "expr" evaluated True, "expr" is reevaluated
("replacement-value" may have called a macro to change a value in the expres
sion), and the two listed conditions again apply. This "looping" is continued
until "expr" evaluates "False".

For example, the macro call:

%WHILE (%EQS(%ANSWER,YES)) (%CONTINUE)

Evaluates as follows:

1. IJfoANSWER (a user function) is evaluated, and lexically compared to the string
'YES'. (Presumably, the definition of ANSWER includes macro-time console
110, defined below.)

2. If the strings compare equal, OJoCONTINUE (a user function) is evaluated,
including side-effects. The value (a string) of %CONTINUE replaces the
% WHILE call. Note that side-effects could include redefining ANSWER. Step
1 above is then repeated.

3. If the strings compare unequal, processing of this WHILE call stops. Any
OJoCONTINUE values placed in the intermediate file remain.

7-15

Macro Processor Language 8086 Assembly Language

7-16

The MATCH Function

The MATCH function allows you to manipulate lists. The syntax is:

MATCH (name 1 , name2) (list)

where "list" is a string value consisting of a list of strings (none of which contains a
comma) separated by commas. The value of the MATCH function is always null.
MATCH is used for its side-effects, which are as follows:

• namel is assigned as a value the substring of "list" preceding the first
occurrence of a comma

• name2 is assigned as a value the substring of "list" following the first
occurrence of a comma

Its primary use is to isolate and name substrings of a given string, as shown in the
following example, and also in the final example under "Console I/O".

For example, the following call to WHILE:

%WHILE (%LEN(%L1ST) NE 0) (%MATCH (ITEM, LIST) (%L1ST) %PROCESS(%ITEM))

results in the following macro processing:

1. First the length of the string defined by the user-macro LIST is evaluated. If it is
nonzero, the second clause of WHILE is evaluated. If it is zero, macro expan
sion stops.

2. MATCH in the second clause of WHILE looks for a comma in the string
defined by LIST. If a comma is found, the substring of LIST preceding the
comma is assigned as the value of ITEM, and LIST takes on as a new value its
substring following the occurrence of the comma.

3. Processing at this point is still in the second clause of WHILE. Next, ITEM is
evaluated (the substring just found preceding the comma) and is fed to
PROCESS (a user-defined macro) as an argument. If PROCESS has a value, it
is inserted in the intermediate file, replacing the WHILE call.

4. Now the second clause of WHILE has been processed, so the macro processor
returns to the first clause to evaluate the condition. Here, this is the same as
saying, "Go to Step 1 above." Note that LIST has been redefined.

As you can see, this represents a different perspective on algorithms from that
usually encountered in assembly-languages and garden-variety procedural
languages. The net effect of the preceding example is to filter through the list, stop
ping at each comma, and assigning each substring between commas (and the sub
string preceding the first comma, and the substring following the last comma) to
ITEM, and then processing ITEM with the macro call to PROCESS. This represents
an extremely powerful tool for programming any machine, and especially the 8086.
Finally, when you consider that MPL permits virtually any character combination to
be used as a delimiter-specifier (not just commas), you can appreciate the assembly
time processing power here.

NOTE

This is actually a simplified form of MATCH, using a comma as a delimiter
to match against in a list. The MPL language and implementation permit
delimiters of very nearly any character combination. An example below
(under "Console I/O") shows a different use of MATCH, matching
against the carriage-return and line-feed characters considered jointly as a
single delimiter. Refer to Appendix L for the full definition of MATCH.

8086 Assembly Language Macro Processor Language

Console I/O; Interactive Macro Assembly

The MPL built-in functions IN and OUT perform macro-time console 110.

IN reads one line (including line-feed and carriage-return) from the console input
device. The value of IN is the string typed, including the terminating carriage-return
and line-feed bytes (ODOAH). The syntax is:

IN

OUT writes a string to the console output device. OUT has one parameter, the string
to be written. The syntax of OUT is:

OUT (string)

where "string" must have the same number of left- and right-parentheses. The value
of OUT is the null string.

MATCH can be used to strip the terminating carriage-return and line-feed
characters from the value of IN:

%MATCH (INPUT %CRLF NULL) (%IN)

where CRLF is defined as follows (note the embedded carriage-return):

%*DEFINE (CRLF) (
)

If this is done, the above call to MATCH assigns the input text to INPUT and the
null string (i.e. the string following the carriage-return-line-feed) to NULL.

The following example, when included in your source file and submitted for
assembly, will prompt you for information to define a record array in which each
record contains three fields. The prompt character is ">"):

%*DEFINE (REC(F)) LOCAL RECORDNAME (

%RECORDNAME RECORD %ITEM %REPEAT (%F-1) (, %ITEM)

%ARRAYNAME %RECORDNAME %EVAL(%NUMREC) DUP «»
)

%*DEFINE (ITEM) (%FLDNAME: %FLDWIDTH = %FLDVAL)

%*DEFINE (FLDNAME) (%OUT(NAME OF FIELD?) %GET)

%*DEFINE (FLDWIDTH) (%OUT(WIDTH OF FIELD?) %GET)

%*DEFINE (FLDVAL) (%OUT(INITIAL VALUE OF FIELD?) %GET)

%*DEFINE (ARRAYNAME) (%OUT(NAME OF RECORD ARRAY?) %GET)

%*DEFINE (NUMREC) (%OUT(NUMBER OF RECORDS IN ARRAY?) %GET)

%*DEFINE (GET) (%MATCH (LINE %(

) NULL) (%IN) %LlNE)

%REC(3)

If you want five fields instead, for example, change the call from OJoREC(3) to
OJoREC(5). Or, you can define a function prompting you (or a user) for the number
of record fields. Once you have some facility with MPL, you'll see vast possibilities.
For instance, by inserting calls to EV AL in the definitions, you can increase the
capability of the program to include expression (rather than constant) input.

7-17

Macro Processor Language 8086 Assembly Language

7-18

The SET Function

The SET function allows you to assign a macro-time numeric value to a macro-time
variable. The format is:

OJoSET (name, value)

where:

name is an MPL identifier

value is an expression acceptable to ,EV AL

For instance,

%SET (LINES, 10)
%SET (MAX, 80 - %LEN(%STRING))
%SET (CHARS, %MAX"%L1NES)

You can use SET to redefine the same macro-time variable.

For example,

%SET (LINES, 10)
o
o
o

%SET (LINES, 15)
o
o
o

%SET(L1NES, %L1NES+1)

the last statement increments the macro-time variable LINES by 1.

Unlike the other MPL built-in functions, the SET function can be redefined (but
this is not recommended).

For example,

% "DEFINE(SET(X)(%DEFINE(%X)(-H))

The SUBSTR Function

You can isolate a substring of a string or string expression using the SUBSTR built
in function. The format is:

SU~STR(string-expr, expr 1, expr2)

where:

string-expr is a string or an MPL expression which evaluates to a string.

exprl evaluates to a string constant representing a number. This number is
taken to be the character number of the beginning of the selected substring of
the value of string-expr. The first character of the argument string is character
number 1.

expr2 evaluates to a string representing a number. This number is taken to be
the length of the selected substring.

8086 Assembly Language Macro Processor Language

SUBSTR evaluates to a null string if:

• exprl = 0 or exprl > %LEN(string-expr)

• string-expr evaluates to the null string

• expr2 = 0

If expr2 > OJoLEN(string-expr) - exprl + 1, then the selected substring begins at
character number exprl and ends at character number %LEN (string-expr).

SUBSTR Examples

%SUBSTR(ABC,1,2) = AB
%SUBSTR(A B C, 1,3) = A B
%SUBSTR(ABC, 0, 1) = (null)
%SUBSTR(ABC, 4, 1) = (null)
%SUBSTR(ABC, 2, 2) = BC
%SU BSTR(ABC, 2, 3) = BC
%SU BSTR(ABC, 3, 1) = C
%SUBSTR(%(A,B,C), 1,2) = A,

7-19

CHAPTER 8
MODELS OF COMPUTATION:
RECOMMENDED PRACTICES

Recommendations

1. Place EQUates to registers and numbers at the top of your program.

2. Place data segments before code segments.

3. Within code segments, place definitions of any variables early, meaning as near
as you can to the first segment directive defining that segment.

4. Where possible, make modules private (non-combinable) and paragraph
aligned.

5. Try to consolidate the use of public symbols in modules assembled separately
from those which neither need them as externals nor supply them as publics.

The basic unit of assembly program in this language is a module. Within modules
the basic unit of contiguous code or data is a segment. Memory layout and ad
dressability (via base addresses in the "segment registers") require the use of
segments. Segments can be placed anywhere in memory by the LOCATE facility.
Their order in an assembly is thus not necessarily their sequence in memory during
execution.

To the assembler, however, certain orderings are distinctly preferable in the interest
of creating optimal code using minimal memory. These orderings prevent most of
the ambiguities and possible errors associated with forward referencing.

Forward-referencing refers to the assembler working with a variable or label whose
definition has not yet been scanned. In this situation the assembler must reserve
enough room for the address or number to come. It chooses either the most pro
bable case of 1 word (based on these recommendations) or the "worst" case of 2
words, i.e., room for both the offset and segment (paragraph-number). In the
absence of user-supplied data, it chooses 2 bytes. Given the definitions of segments
and variables prior to their use in instructions, the assembler can choose the optimal
8086 machine instruction to generate and can reserve only the minimum bytes
needed.

A one word offset is adequate to access any byte within the 64K bytes above a base
address in one of the segment registers, and 64K is the maximum size of a segment.
The assumption is that the definition will be found later in this assembly. Otherwise
you would have already supplied it in a segment scanned earlier, or in an EXTRN
directive, which gives its attribute and says not to expect its full definition in this seg
ment. If this reasoning fails because you supply no definition at all, then an error is
flagged for you to resolve before re-assembling.

When a 2-word space is reserved, it is always adequate. If the forward-reference is
ultimately defined in this segment, 1 word suffices and the other is unused. This is
safe but non-optimal. If the forward-reference is never defined even in an EXTRN,
an error is flagged.

The recommendation that code be placed in segments which are non-combinable
and paragraph-aligned allows faster assembly, linkage, and relocation as well as in
creased optimization of code. When a one-module program has no groups, no need
for external variables or labels, and provides no publics, then linking can be skipped
entirely. The program is ready for direct relocation into absolute addresses.

8-1

Recommended Practices 8086 Assembly Language

8-2

Forward Referencing

This is a 2-pass assembler, meaning it goes through a representation of your source
code twice.

By placing data segments early in the module, and variables early within code
segments, you enable the assembler to recognize the attributes (type, segment, off
set) of these operands in the code it sees later. Armed with this knowledge, it pro
duces the tighest code it can, by using 1 byte instead of 2, or 2 bytes instead of 4,
wherever possible. References to data always use a 2 byte offset, but transfers of
control (jumps or calls) can vary requiring 1 or 2 or 4 bytes depending on the context
of definition and usage.

In the absence of special coding, the assembler assumes forward references require 1
word, with no implicit segment override to be discovered later. You may code an ex
plicit segment override, and in some cases cause a double-word space or a byte space
to be reserved for the forward reference instead of the usual word. Registers may not
:be forward-referenced, i.e., if a forward-reference is later found to be defined as a
register, you get an error.

Variables and Labels

For a forward-reference variable, e.g.,

MOV AL, FRVAR

which could be defined anywhere beyond this reference, the assembler reserves a full
word for the offset of the variable. Fora forward-reference label, e.g.,

JMP FRLAB

the assumption is that FRLAB will be typed NEAR later in this segment, hence 1
word is sufficient for its address.

However, if FRLAB is found to be declared FAR, or not in the current segment or
group then you get an error. Such a reference would require an operand of 2 words,
the first being the offset address of the label in its segment, the second being the
segment-base-address for insertion into CS. Thus 2 words are needed but only 1 was
reserved after the JMP instruction word.

If it turns out in pass 2 that a smaller operand is sufficient, the remainder of the
space in pass 1 is no-op instructions (90H). This is usually of little concern if
forward-references are kept to a minimum, by following the above recommended
practices.

In some cases you know that when the reference is ultimately resolved, it will fit in
less space (or more) than the assembler can assume. You may override the default by
using the attribute-changing operators of the language. For example, if you know
that FRLAB was to be defined within the next 127 bytes of this segment, you could
write:

JMP SHORT FRLAB

8086 Assembly Language Recommended Practices

causing the assembler to reserve only 1 byte for this forward-reference, instead of
the normal 2 bytes. (A segment-override may be required, as discussed below.)

Similarly, if you know FRLAB is a label defined later in a different code segment,
you may write:

JMP FAR PTR FRLAB

causing the assembler to reserve 2 words instead of only 1.

There are some further issues mentioned below which are discussed in greater detail
under the ASSUME and GROUP directives.

Segments

A forward-reference ,in an ASSUME directive, e.g.,

ASSUME DS:FORWREF, ES:SEG2

will be taken to be a segment name. If FORWREF turns out later to be a group
name, or anything else other than a segment name, you will get an error message and
must re-assemble.

A forward-referenced variable might need a segment prefix byte. If so, you must
code it or refer to it explicitly, e.g.,

MOV AL, ES:FRVAR

MOV AL, SEG2:FRVAR

Otherwise the assembler leaves no room for that prefix byte in pass 1, and if it turns
out in pass 2 to be necessary, you will get an error message and must re-assemble.
Note that this use of SEG2 above generates a prefix byte only because in the prior
ASSUME, SEG2 is not in OS.

PLM86 Linking Conventions

GROUPs are necessary to link ASM86 and PLM86 programs and procedures in
some cases. There are established conventions for passing data, parameters, or ad
dresses between programs written in these languages.

These cases and conventions are described in detail in the MCS-86 Macro Assembler
Operating Instructions for ISIS-II Users.

8-3

R53 Record
R323 Record
R233 Record
R413 Record

CodeMacro
DB
EndM

CodeMacro
DW
EndM

CodeMacro
OW
EndM

CodeMacro
DB
EndM

CodeMacro
Segfix
DB
ModRM
DB
EndM

CodeMacro
Segfix
DB
ModRM
DW
EndM

CodeMacro
Segfix
DB
ModRM
DB
EndM

CodeMacro
Segfix
DB
ModRM
DW
EndM

CodeMacro
DB
DB
EndM

RF1 :5, RF2:3
RF3:3, RF4:2, RF5:3
RF6:2, Mid3:3, RF7:3
RF8:4, RF9:1, RF10:3

AAA
37H

AAD
OAD5H

AAM
OAD4H

AAS
3FH

Adc dst:Eb, src:Db
dst
80H
2, dst
src

Adc dst:Ew, src:Db
dst
81H
2, dst
src

APPENDIX A I
CODEMACRO DEFINITIONS

CodeMacro Adc dst:Aw, src:Db
DB 15H
DW src
EndM

CodeMacro Adc dst:Aw, src:Dw
DB 15H
DW src
EndM

CodeMacro Adc dst:Eb, src:Rb
Segfix dst
DB 10H
ModRM src,dst
EndM

CodeMacro Adc dst:Ew, src:Rw
Segfix dst
DB 11 H
ModRM src,dst
EndM

CodeMacro Adc dst:Rb, src:Eb
Segfix src
DB 12H
ModRM dst,src
EndM

CodeMacro Adc dst:Rw, src:Ew
Segfix src
DB 13H
ModRM dst,src
EndM

CodeMacro Add dst:Eb, src:Db
Segfix dst

Adc dst:Ew, src:Db(-128, 127) DB 80H
dst ModRM 0, dst
83H DB src
2, dst EndM
src

CodeMacro Add dstEw,src:Db
Segfix dst

Adc dstEw, src:Dw DB 81H
dst ModRM 0, dst
81H OW src
2, dst EndM
src

CodeMacro Add dstEw, src:Db(-128,127)
Segfix dst

Adc dstAb, src:Db DB 83H
14H ModRM 0, dst
src DB src

EndM

A-I

Codemacro Definitions 8086 Assembly Language

CodeMacro Add dst:Ew, src:Dw CodeMacro And dst:Ew, src:Dw
Segfix dst Segfix dst
DB 81H DB 81H
ModRM 0, dst ModRM 4, dst
DW src DW src
EndM EndM

CodeMacro Add dst:Ab, src:Db CodeMacro And dst:Ab, src:Db
DB 04H DB 24H
DB src DB src
EndM EndM

CodeMacro Add dst:Aw, src:Db CodeMacro And dst:Aw, src:Db
DB 05H DB 25H
DW src DW src
EndM EndM

CodeMacro Add dst:Aw, src:Dw CodeMacro And dst:Aw, src:Dw
DB 05H DB 25H
DW src DW src
EndM EndM

CodeMacro Add dst:Eb, src:Rb CodeMacro And dst:Eb, src:Rb
Segfix dst Segfix dst
DB 0 DB 20H
ModRM src,dst ModRM src,dst
EndM EndM

CodeMacro Add dst:Ew, src:Rw CodeMacro And dst:Ew, src:Rw
Segfix dst Segfix dst
DB 1 DB 21H
ModRM src,dst ModRM src,dst
EndM EndM

CodeMacro Add dst:Rb, src:Eb CodeMacro And dst:Rb, src:Eb
Segfix src Segfix src
DB 2 DB 22H
ModRM dst,src ModRM dst,src
EndM EndM

CodeMacro Add dst:Rw, scr:Ew CodeMacro And dst:Rw, src:Ew
Segfix src Segfix src
DB 3 DB 23H
ModRM dst,src ModRM dst,src
EndM EndM

CodeMacro And dst:Eb, src:Db CodeMacro Call addr:Ew
Segfix dst Segfix addr
DB 80H DB OFFH
ModRM 4, dst ModRM 2,addr
DB src EndM
EndM

CodeMacro And dst:Ew, src:Db CodeMacro Call addr:Ed
Segfix dst Segfix addr
DB 81H DB OFFH
ModRM 4, dst ModRM 3,addr
DW src EndM
EndM

A-2

8086 Assembly Language Codemacro Definitions

CodeMacro Call addr:Cd CodeMacro Cmp dst:Ab, src:Db
DB 9AH DB 3CH
DO addr DB src
EndM EndM

CodeMacro Call addr:Cb CodeMacro Cmp dst:Aw, src:Db
DB OEBH DB 3DH
RelW addr OW src
EndM EndM

CodeMacro Call addr:Cw CodeMacro Cmp dst:Aw, src:Dw
DB OEBH DB 3DH
RelW addr OW src
EndM EndM

CodeMacro CBW C~deMacro Cmp dst:Eb, src:Rb
DB 9BH Segfix dst
EndM DB 3BH

CodeMacro CLC ModRM src,dst

DB OFBH EndM

EndM CodeMacro Cmp dst:Ew, src:Rw

CodeMacro CLD Segfix dst
DB 39H DB OFCH
ModRM src,dst EndM
EndM

CodeMacro CLI
CodeMacro Cmp dst:Rb, src:Eb DB OFAH

Segfix src EndM
DB 3AH

CodeMacro CMC ModRM dst,src
DB OF5H EndM
EndM

CodeMacro Cmp dst:Rw, src:Ew
CodeMacro Cmp dst:Eb, src:Db Segfix src

Segfix dst DB 3BH
DB BOH ModRM dst,src
ModRM 7, dst EndM
DB src

CodeMacro CmpS SI_ptr:Eb, DI_ptr:Eb EndM
NoSegfix ES,DI_ptr

CodeMacro Cmp dst:Ew, src:Db Segfix SI_ptr
Segfix dst DB OA6H
DB B1H EndM
ModRM 7, dst CodeMacro CmpS SI_ptr:Ew,DI_ptr:Ew
OW src NoSegfix ES,DI_ptr EndM Segfix SI_ptr

CodeMacro Cmp dst:Ew, src:Db(-12B,127) DB OA7H

Segfix dst EndM

DB B3H CodeMacro CmpSB
ModRM 7, dst DB OA65H
DB src EndM
EndM

dst:Ev/, src:Dw
CodeMacro CmpSW

CodeMacro Cmp DB OA7H
Segfix dst EndM
DB B1H
ModRM 7, dst CodeMacro CWD
OW src DB 99H
EndM EndM

A-3

Codemacro Definitions 8086 Assembly Language

CodeMacro DAA CodeMacro IDiv divisor:Eb
DB 027H Segfix divisor
EndM DB OF6H

ModRM 7, divisor
CodeMacro DAS EndM

DB 02FH
EndM CodeMacro IDiv divisor:Ew

Segfix divisor
CodeMacro Dec dst:Eb DB OF7H

Segfix dst ModRM 7, divisor
DB OFEH EndM
ModRM 1, dst
EndM CodeMacro Imul mplier:Eb

Segfix mplier

CodeMacro Dec dst:Ew DB OF6H

Segfix dst ModRM 5, mplier

DB OFFH EndM

ModRM 1, dst
EndM CodeMacro Imul mplier:Ew

Segfix mplier

CodeMacro Dec dst:Rw DB OF7H

R53 <01001 B,dst>
ModRM 5, mplier

EndM EndM

CodeMacro Div divisor:Eb
CodeMacro In dst:Ab,port:Db

DB OE4H
Segfix divisor DB port
DB OF6H EndM
ModRM 6, divisor
EndM

CodeMacro In dst:Aw,port:Db

CodeMacro Div divisor:Ew
DB OE5H
DB port

Segfix divisor EndM
DB OF7H
ModRM 6, divisor

CodeMacro In dst:Ab,port:Rw(DX) EndM
DB OECH

CodeMacro Esc opcode:Db(0,63), addr:Eb
EndM

Segfix addr
R53 <11011 B,opcode.mid3> CodeMacro In dst:Aw, port: Rw(DX)
ModRM opcode,addr DB OEDH
EndM EndM

CodeMacro Esc opcode:Db(0,63), addr:Ew CodeMacro Inc dst:Eb
Segfix addr Segfix dst
R53 <11011 B,opcode.mid3> DB OFEH
ModRM opcode,addr ModRM 0, dst
EndM EndM

CodeMacro Esc opcode:Db(0,63), addr:Ed CodeMacro Inc dst:Ew
Segfix addr Segfix dst
R53 <11011 B,opcode.mid3> DB OFFH
ModRM opcode,addr ModRM 0, dst
EndM EndM

CodeMacro Hit CodeMacro Inc dst:Rw
DB OF4H R53 <01000B,dst>
EndM EndM

A-4

8086 Assembly Language Codemacro Definitions

CodeMacro Int itype:Db CodeMacro JL place:Cb
DB OCDH DB 7CH
DB itype RelB place
EndM EndM

CodeMacro Int itype:Db(3) CodeMacro JLE place:Cb
DB OCCH DB 7EH
EndM RelB place

EndM
CodeMacro IntO

DB OCEH CodeMacro Jmp place:Ew
EndM Segfix place

DB OFFH
CodeMacro Iret ModRM 4, place

DB OCFH EndM
EndM

CodeMacro Jmp place:Md
CodeMacro JA place:Cb Segfix place

DB 77H DB OFFH
RelB place ModRM 5, place
EndM EndM

CodeMacro JAE place:Cb CodeMacro Jmp place:Cd
DB 73H DB OEAH
RelB place DD place
EndM EndM

CodeMacro JB place:Cb CodeMacro Jmp place:Cb
DB 72H DB OEBH
RelB place RelB place
EndM EndM

CodeMacro JBE place:Cb CodeMacro Jmp place:Cw
DB 76H DB OE9H
Rj91B place RelW place
EndM EndM

JC Equ JB JNA Equ JBE

CodeMacro JCXZ place:Cb JNAE Equ JB
DB OE3H
RelB place JNB EquJAE
EndM

JNBE Equ JA

CodeMacro JE place:Cb JNC Equ JNB DB 74H
RelB place CodeMacro JNE place:Cb EndM

DB 75H
RelB place

CodeMacro JG place:Cb EndM
DB 7FH
RelB place JNG EquJLE
EndM

JNGE Equ JL
CodeMacro JGE place:Cb

DB 7DH JNL Equ JGE
RelB place
EndM JNLE EquJG

A-5

Codemacro Definitions 8086 Assembly Language

CodeMacro JNO place:Cb CodeMacro Lock Prefx
DB 71H DB OFOH
RelB place EndM
EndM

CodeMacro LodS SI_ptr:Mb
CodeMacro JNP place:Cb Segfix SI_ptr

DB 7BH DB OACH
RelB place EndM
EndM

CodeMacro LodS SI_ptr:Mw
CodeMacro JNS place:Cb Segfix SI_ptr

DB 79H DB OADH
RelB place EndM
EndM

CodeMacro LodSB
JNZ Equ JNE DB OACH

EndM
CodeMacro JO place:Cb

CodeMacro DB 70H LodSW
RelB place DB OADH
EndM EndM

CodeMacro JP place:Cb CodeMacro Loop place:Cb

DB 7AH .- DB OE2H

RelB place RelB place

EndM EndM

JPE Equ JP
CodeMacro LoopE place:Cb

DB OE1H
RelB place

JPO Equ JNP EndM

CodeMacro JS place:Cb CodeMacro LoopNE place:Cb
DB 78H DB OEOH
RelB place RelB place
EndM EndM

JZ Equ JE LoopNZ Equ LoopNE

CodeMacro LAHF
LoopZ Equ LoopE

DB 9FH CodeMacro Mov dst:Eb, src:Db
EndM Segfix dst

DB OC6H
CodeMacro LDS dst:Rw, src:Ed ModRM 0, dst

Segfix src DB src
DB OC5H EndM
ModRM dst, src
EndM CodeMacro Mov dst: Ew, src: Db

Segfix dst

CodeMacro LES dst:Rw, src:Ed
DB OC7H
ModRM 0, dst Segfix src DW src DB OC4H EndM

ModRM dst, src
EndM CodeMacro MOV dst:Ew, src:Dw

Segfix dst
CodeMacro LEA dst:Rw, src:M DB OC7H

DB 8DH ModRM 0, dst
ModRM dst, src DW src
EndM EndM

A-6

8086 Assembly Language Codemacro Definitions

CodeMacro Mov dst:Rb, src:Db CodeMacro Mov dst:Aw, src:Xw
R53 <10110B,dst> Segfix src
DB src DB OA1H
EndM OW src

EndM
CodeMacro Mov dst:Rw, src:Db

R53 <10111 B,dst> CodeMacro Mov dst:Xb, src:Ab
DW src Segfix dst
EndM DB OA2H

CodeMacro Mov dst:Rw, src:Dw
DW dst

R53 <10111 B,dst>
EndM

DW src CodeMacro Mov dst:Xw, src:Aw
EndM Segfix dst

CodeMacro MOV dst:Eb, src:Rb DB OA3H
DW dst Segfix dst EndM DB 88H

ModRM src, dst CodeMacro MovS SI_ptr:Mb, DI_ptr:Mb EndM NoSegfix ES, SI_ptr
CodeMacro Mov dst:Ew, src:Rw Segfix DI_ptr

Segfix dst OB OA4H
DB 89H EndM
ModRM src, dst
EndM CodeMacro MovS SI_ptr:Mw, DI_ptr:Mw

NoSegfix ES, SI_ptr
CodeMacro Mov dst:Rb, src:Eb Segfix DI_ptr

Segfix src DB OA5H
DB 8AH EndM
ModRM dst, src
EndM CodeMacro MovSB

DB OA4H
CodeMacro Mov dst:Rw, src:Ew EndM

Segfix src
DB 8BH CodeMacro Mul mplier:Eb
ModRM dst, src Segfix mplier
EndM DB OF6H

CodeMacro Mov dst:Ew, src:S ModRM 4, mplier

Segfix dst EndM

DB 08CH CodeMacro Mul mplier:Ew ModRM src, dst
EndM Segfix mplier

DB OF7H
CodeMacro Mov dst:S(ES), src:Ew ModRM 4, mplier

Segfix src EndM
DB 08EH
ModRM dst, src CodeMacro Neg dst:Eb
EndM Segfix dst

DB OF6H
CodeMacro Mov dst:S(SS,DS), src:Ew ModRM 3, dst

Segfix src EndM
DB 08EH
ModRM dst, src CodeMacro Neg dst:Ew
EndM Segfix dst

DB OF7H
CodeMacro Mov dst:Ab, src:Xb ModRM 3, dst

Segfix src EndM
DB OAOH
OW src CodeMacro Nii
EndM EndM

A-7

Codemacro Definitions 8086 Assembly Language

CodeMacro Nop CodeMacro OR dst:Ew, src:Rw
DB 90H Segfix dst
EndM DB 9

ModRM src,dst
CodeMacro Not dst:Eb EndM

Segfix dst
CodeMacro OR dst:Rb, src:Eb DB OF6H

ModRM 2, dst Segfix src

EndM DB OAH
ModRM dst,src
EndM

CodeMacro Not dst:Ew
Segfix dst CodeMacro OR dst:Rw, src:Ew
DB OF7H Segfix src
ModRM 2, dst DB OBH
EndM ModRM dst, src

EndM
CodeMacro OR dst:Eb, src:Db

Segfix dst CodeMacro Out port: Db,dst:Ab
DB 80H DB OE6H
ModRM 1, dst DB port
DB src EndM
EndM

CodeMacro Out port:Db,dst:Aw
CodeMacro OR dst:Ew, src:Dw DB OE7H

Segfix dst DB port
DB 81 H EndM
ModRM 1, dst
DW src CodeMacro Out port: Rw(DX), dst:Ab
EndM DB OEEH

EndM

CodeMacro OR dst:Ew, src:Db
Segfix dst CodeMacro Out port:Rw(DX),dst:Aw
DB 81H DB OEFH
ModRM 1, dst EndM
OW src
EndM CodeMacro Pop dst:Ew

Segfix dst
CodeMacro OR dst:Ab, src:Db DB 08FH

DB OCH ModRM 0, dst
DB src EndM
EndM

CodeMacro Pop dst:S(ES)
CodeMacro OR dst:Aw, src:Db R323 <0,dst,7>

DB ODH EndM
DW src
EndM CodeMacro Pop dst:S(SS,DS)

CodeMacro OR dst:Aw, src:Dw
R323 <0,dst,7>

DB ODH
EndM

DW src
EndM CodeMacro Pop dst:Rw

R53 <01011 B,dst>

CodeMacro OR dst:Eb, src:Rb EndM

Segfix dst
DB 8 CodeMacro PopF
ModRM src,dst DB 9DH
EndM EndM

A-8

8086 Assembly Language Codemacro Definitions

CodeMacro Push src:Ew CodeMacro RCR dst:Ew, count:Rb(CL)
Segfix src Segfix dst
DB OFFH DB OD3H
ModRM 6, src ModRM 3, dst
EndM EndM

CodeMacro Push src:S CodeMacro Rep Prefx
R323 <0,src,6> DB OF3H
EndM EndM

CodeMacro Push src:Rw CodeMacro RepE Prefx
R53 <01010B,src> DB OF3H
EndM EndM

CodeMacro PushF CodeMacro RepNE Prefx
DB 9CH DB OF2H
EndM EndM

CodeMacro RCL dst:Eb, count:DB(1) RepNZ Equ RepNE
Segfix dst
DB ODOH RepZ Equ RepE
ModRM 2, dst
EndM CodeMacro Ret src:Db

R413 <OCH, Proclen,2>
CodeMacro RCL dst:Ew, count:Db(1) DW src

Segfix dst EndM
DB OD1H
ModRM 2, dst CodeMacro Ret src:Dw
EndM R413 <OCH,Proclen,2>

OW src
CocieMacro RCL dst:Eb, count:Rb(CL) EndM

Segfix dst
DB OD2H CodeMacro Ret
ModRM 2, dst R413 <OCH, Proclen ,3>
EndM EndM

CodeMacro RCL dst:Ew, count:Rb(CL) CodeMacro ROL dst: Eb, count: Db(1)
Segfix dst Segfix dst
DB OD3H DB ODOH
ModRM 2, dst ModRM 0, dst
EndM EndM

CodeMacro RCR dst:Eb, count:Db(1) CodeMacro ROL dst:Ew, count:Db(1)
Segfix dst Segfix dst
DB ODOH DB OD1H
ModRM 3, dst ModRM 0, dst
EndM EndM

CodeMacro RCR dst:Ew, count:Db(1) CodeMacro ROL dst:Eb, count:Rb(CL)
Segfix dst Segfix dst
DB OD1H DB OD2H
ModRM 3, dst ModRM 0, dst
EndM EndM

CodeMacro RCR dst:Eb, count:Rb(CL) CodeMacro ROL dst:Ew, count:Rb(CL)
Segfix dst Segfix dst
DB OD2H DB OD3H
ModRM 3, dst ModRM 0, dst
EndM EndM

A-9

Codemacro Definitions 8086 Assembly Language

CodeMacro ROR dst:Eb, count:Db(1) CodeMacro SAR dst:Ew, count:Db(1)
Segfix dst Segfix dst
DB ODOH DB OD1H
ModRM 1, dst ModRM 7, dst
EndM EndM

CodeMacro ROR dst:Ew, count:Db(1) CodeMacro SAR dst: Eb, cou nt: Rb(CL)

Segfix dst Segfix dst

DB OD1H DB OD2H

ModRM 1, dst ModRM 7, dst

EndM EndM

CodeMacro ROR dst:Eb, count:Rb(CL)
CodeMacro SAR dst:Ew, count:Rb(CL)

Segfix dst
Segfix dst

DB OD2H
DB OD3H

ModRM 1, dst
ModRM 7, dst

EndM
EndM

CodeMacro Sbb dst:Eb, src:Db
CodeMacro ROR dst:Ew, count:Rb(CL) Segfix dst

Segfix dst DB 80H
DB OD3H ModRM 3, dst
ModRM 1, dst DB src
EndM EndM

CodeMacro SAHF CodeMacro Sbb dst:Ew, src:Db
DB 9EH Segfix dst
EndM DB 81H

ModRM 3, dst

CodeMacro SAL dst:Eb, count:Db(1)
DW src

Segfix dst
EndM

DB ODOH CodeMacro Sbb dst:Ew, src:Db(-128,127)
ModRM 4, dst
EndM

Segfix dst
DB 83H
ModRM 3, dst

CodeMacro SAL dst:Ew, count:Db(1) DB src
Segfix dst EndM
DB OD1H
ModRM 4, dst CodeMacro Sbb dst:Ew, src:Dw
EndM Segfix dst

DB 81H

CodeMacro SAL dst:Eb, count:Rb(CL) ModRM 3, dst
Segfix dst DW src

DB OD2H EndM
ModRM 4, dst
EndM CodeMacro Sbb dst:Ab, src:Db

DB lCH

CodeMacro SAL dst:Ew, count:Rb(CL)
DB src

Segfix dst
EndM

DB OD3H CodeMacro Sbb dst:Aw, src:Db
ModRM 4, dst
EndM

DB 1DH
DW src
EndM

CodeMacro SAR dst: Eb, count: Db(1)
Segfix dst CodeMacro Sbb dst:Aw, src:Dw
DB ODOH DB 1DH
ModRM 7, dst DW src
EndM EndM

A-lO

8086 Assembly Language Codemacro Definitions

CodeMacro Sbb dstEb, src:Rb CodeMacro SHR dst:Ew, countRb(CL)
Segfix dst Segfix dst
DB 18H DB OD3H
ModRM src,dst ModRM 5, dst
EndM EndM

CodeMacro Sbb dstEw, src:Rw CodeMacro STC
Segfix dst DB OF9H
DB 19H EndM
ModRM src,dst
EndM

CodeMacro STD
CodeMacro Sbb dstRb, src:Eb DB OFDH

Segfix src EndM
DB 1AH
ModRM dst,src CodeMacro STI
EndM DB OFBH

CodeMacro Sbb dstRw, src:Ew EndM

Segfix src
DB 1BH CodeMacro StoS DI_ptr:Mb
ModRM dst,src NoSegfix ES, DI_ptr
EndM DB OAAH

EndM
CodeMacro ScaS DI_ptr:Mb

NoSegfix ES, DI_ptr
CodeMacro StoS DI __ ptr:Mw DB OAEH

EndM NoSegfix ES, DI_ptr
DB OABH

CodeMacro ScaS DI_ptr:Mw EndM

NoSegfix ES, DI_ptr
DB OAFH CodeMacro StoSB
EndM DB OAAH

EndM
CodeMacro ScaSB

DB OAEH
CodeMacro StoSW EndM

DB OABH

CodeMacro ScaSW EndM

DB OAFH
EndM CodeMacro Sub dstEb, src:Db

Segfix dst
SHL Equ SAL DB 80H

ModRM 5, dst
CocleMacro SHR dstEb, countDb(1) DB src

Segfix dst EndM
DB ODOH
ModRM 5, dst CodeMacro Sub dstEw, src:Db
EndM Segfix dst

CodeMacro SHR dst:Ew, countDb(1)
DB 81H
ModRM 5, dst

Segfix dst DW src
DB OD1H EndM
ModRM 5, dst
EndM

CodeMacro Sub dst:Ew, src:Db(-128,127)
CodeMacro SHR dst:Eb, countRb(CL) Segfix dst

Segfix dst DB 83H
DB OD2H ModRM 5, dst
ModRM 5, dst DB src
EndM EndM

A-ll

Codemacro Definitions 8086 Assembly Language

CodeMacro Sub dst:Ew, src:Dw CodeMacro Test dst:Ew, src:Dw
Segfix dst Segfix dst
DB 81H DB OF7H
ModRM 5, dst ModRM 0, dst
DW src DW src
EndM EndM

CodeMacro Sub dst:Ab, src:Db CodeMacro Test dst:Ab, src:Db
DB 2CH DB OA8H
DB src DB src
EndM EndM

CodeMacro Sub dst:Aw, src:Db CodeMacro Test dst:Aw, src:Db
DB OA9H DB 2DH DW src DW src

EndM EndM

CodeMacro Sub dst:Aw, src:Dw
CodeMacro Test dst:Aw, src:Dw

DB OA9H
DB 2DH DW src
DW src EndM
EndM

CodeMacro Test dst:Eb, src:Rb
CodeMacro Sub dst:Eb, src:Rb Segfix dst

Segfix dst DB 84H
DB 28H ModRM src,dst
ModRM src,dst EndM
EndM

CodeMacro Test dst:Ew, src:Rw
CodeMacro Sub dst:Ew, src:Rw Segfix dst

Segfix dst DB 85H
DB 29H ModRM src,dst
ModRM src,dst EndM
EndM

CodeMacro Test dst:Rb, src:Eb
Segfix src

CodeMacro Sub dst:Rb, src:Eb DB 84H
Segfix src ModRM dst,src
DB 2AH EndM
ModRM dst,src
EndM CodeMacro Test dst:Rw, src:Ew

Segfix src
CodeMacro Sub dst:Rw~ src:Ew DB 85H

Segfix src ModRM dst,src
DB 2BH EndM
ModRM dst,src
EndM CodeMacro Wait

DB 09BH
CodeMacro Test dst:Eb, src:Db EndM

Segfix dst
DB OF6H CodeMacro Xchg dst:Eb, src:Rb
ModRM 0, dst Segfix dst
DB src DB 86H
EndM ModRM src, dst

EndM
CodeMacro Test dst:Ew, src:Db

Segfix dst CodeMacro Xchg dst:Ew, src:Rw
DB OF7H Segfix dst
ModRM 0, dst DB 87H
DW src ModRM src, dst
EndM EndM

A-12

8086 Assembly Language Codemacro Definitions

CodeMacro Xchg dst:Rb, src:Eb CodeMacro Xor dst:Ab, src:Db
Segfix src DB 34H
DB 86H DB src
MadRM dst, src EndM
EndM

CodeMacro Xor dst:Aw, src:Db
CodeMacro Xchg dst:Rw, src:Ew DB 35H

Segfix src DW src
DB 87H EndM
ModRM dst, src
EndM CodeMacro Xor dst:Aw, src:Dw

DB 35H
Code-Macro Xchg dst:Rw, src:Aw DW src

R53 <10010B,dst> EndM
EndM

CodeMacro Xor dst:Eb, src:Rb
CodeMacro Xchg dst:Aw, src:Rw Segfix dst

R5~-J <10010B,src> DB 30H
EndM ModRM src,dst

EndM
CodeMacro Xlat table:Mb

Segfix table CodeMacro Xor dst:Ew, src:Rw
DB OD7H Segfix dst
EndM DB 31H

ModRM src,dst
CodeMacro XlatB EndM

DB OD7H
EndM CodeMacro Xor dst:Rb, src:Eb

Segfix src
CodeMacro Xor dst:Eb, src:Db DB 32H

Segfix dst ModRM dst,src
DB 80H EndM
ModRM 6, dst
DB src CodeMacro Xor dst:Rw, src:Ew
EndM Segfix src

DB 33H
CodeMacro Xor dst:Ew, src:Db ModRM dst,src

Segfix dst EndM
DB 81H
ModRM 6, dst Purge R53,R323,R233,R413
DW src Purge RF1 ,RF2,RF3,RF4,RF5
EndM Purge RF6,RF7,RF8,RF9

Purge RF10,Mid3
CodeMacro Xor dst:Ew, src:Dw

Segfix dst
DB 81H
ModRM 6, dst
DW src
EndM END

A-I3

APPENDIX BI
MEMORY ORGANIZATION

The location of an operand in an 8086 register or in memory is specified in many in
structions by up to three fields. These fields are the mode field (mod), the register
field (reg), and the registerlmemory field (rim). When used, they occupy the second
byte of the instruction sequence. Any DISPlacement bytes (1 or 2) come last.

The mod field occupies the two most significant bits of the byte, and specifies how
the rim field is to be used.

The reg field occupies the next three bits following the mod field, and can specify
either an 8-bit register or a 16-bit register to be the location of an operand. In some
instructions it can further specify the instruction encoding instead of naming a
register.

The rim field either can be the location of the operand (if in a register) or can specify
how the 8086 will locate the operand in memory, in combination with the mod field
as shown below.

These fields are set automatically by the assembler in generating your code. They are
discussed in greater detail in Chapter 7 on Code macros.

The effective address (EA) of the memory operand is computed according to the
mod and rim fields:

If mod = 00 then OISP = 0*, dlsp-Iow and dlsp-hlgh are absent
If mod = 01 then OISP = dlsp-Iow sign-extended to 16 bits, dlsp-hlgh Is absent
If mod = 10 then OISP = dlsp-hlgh: dlsp-Iow
If rim = 000 then EA'" (BX) + (SI) + OISP
If rim'" 001 then EA = (BX) + (01) + OISP
If rim = 010 then EA = (BP) + (SI) + OISP
If rim = 011 then EA = (BP) + (01) + OISP
If rim = 100 then EA = (SI) + DISP
If rim = 101 then EA = (01) + OISP
If rim = 110 then EA = (BP) + OISP*
Itrlm ... 111 then EA = (BX) + OISP

* except If mod = 00 and rim = 110 then EA = dlsp-hlgh: dlsp-Iow
Instructions referencing 16-blt objects Interpret EA as addressing the low-order byte;
the word Is addressed by EA + 1, EA.

Encoding:

mod reg rim
dlsp-Iow

or
data-low

dlsp-hlgh
or

data-high

B-1

Memory Organization

reg is assigned according to the following table:

B-2

16-blt (w = 1)

000 AX
001 CX
010 OX
011 BX
100 SP
101 BP
110 SI
111 01

8-blt (w = 0)

000 AL
001 CL
010 OL
011 BL
100 AH
101 CH
110 OH
111 BH

8086 Assembly Language

APPENDIX C I
FLAG OPERATIONS

FLAG REGISTERS

Flags are used to distinguish or denote certain results of data manipulation. The
8086 provides the four basic mathematical operations (+, -, *, /) in a number of
different varieties. Both 8- and 16-bit operations and both signed and unsigned
arithmetic are provided. Standard two's complement representation of signed
values is used. The addition and subtraction operations serve as both signed and
unsigned operations. In these cases the flag settings allow the distinction between
signed and unsigned operations to be made (see Conditional Transfer instructions in
Chapter 9).

Adjustment operations are provided to allow arithmetic to be performed directly on
unpacked decimal digits or on packed decimal representations, and the auxiliary flag
(AF) facilitates these adjustments.

Flags also aid in interpreting certain operations which could destroy one of their
operands. For example, a compare is actually a subtract operation; a zero result in
dicates that the operands are equal. Since it is unacceptable for the compare to
destroy either of the operands, the processor includes several work registers reserved
for its own use in such operations. The programmer cannot access these registers.
They are used for internal data transfers and for holding temporary values in
destructive operations, whose results are reflected in the flags.

Your program can test the setting of five of these flags (carry, sign, zero, overflow,
and parity) using one of the conditional jump instructions. This allows you to alter
the flow of program execution based on the outcome of a previous operation. the
auxiliary carry flag is reserved for the use of the ASCII and decimal adjust instruc
tions, as will be explained later in this section.

It is important for you to know which flags are set by a particular instruction.
Assume, for example, that your program is to test the parity of an input byte and
then execute one instruction sequence if parity is even, a different instruction se
quence if parity is odd. Coding a JPE (jump if parity is even) or JPO (jump if parity
is odd) instruction immediately following the IN (input) instruction would produce
false results, since the IN instruction does not affect the condition flags. The jump
conditionally executed by your program would reflect the outcome of some previous
operation unrelated to the IN instructions.

For the operation to work correctly, you must include some instruction that alters
the parity flag after the IN instruction, but before the jump instruction. For exam
ple, you can add zero to the input byte in the accumulator. This sets the parity flag
without altering the data in the accumulator.

In other cases, you will want to set a flag though there may be a number of interven
ing instructions before you test it. In these cases, you must check the operation of
the intervening instructions to be sure that they do not affect the desired flag.

The flags set by each instruction are detailed in the individual instructions in
Chapter 6 of this manual.

Details of Flag Usage. Six flag registers are set or cleared by most arithmetic
operations to reflect certain properties of the result of the operation. They follow
these rules below, where "set" means set to 1 and "clear" means clear to O. Further
discussion of each of these flags follows the concise description.

C-l

Flag Operations 8086 Assembly Language

C-2

CF is set if the operation resulted in a carry out of (from addition) or a borrow
into (from subtraction) the high-order bit of the result; otherwise CF is
cleared. •

AF is set if the operation resulted in a carry out of (from addition) or borrow into
(from subtraction) the low-order four bits of the result; otherwise AF is
cleared.

ZF is set if the result of the operation is zero; otherwise ZF is cleared.

SF is set if the high-order bit of the result is set; otherwise SF is cleared.

PF is set if the modulo 2 sum of the low-order eight bits of the result of the
operation is 0 (even parity); otherwise PF is cleared (odd parity).

OF is set if the signed operation resulted in an overflow, i.e., the operation
resulted in a carry into the high-order bit of the result but not a carry out of the
high-order bit, or vice versa; otherwise OF is cleared.

Carry Flag. As its name implies, the carry flag is commonly used to indicate
whether an addition causes a "carry" into the next higher order digit. (However, the
increment and decrement instructions (INC, DEC) do not affect CF.) The carry flag
is also used as a "borrow" flag in subtractions.

The logical AND, OR, and XOR instructions also affect CF. These instructions set
or reset particular bits of their destination (register or memory). See the descriptions
of the logic instruction in Chapter 6.

The rotate and shift instructions move the contents of the operand (registers or
memory) one or more positions to the left or right. They treat the carry flag as
though it were an extra bit of the operand. The original value in CF is only preserved
by RCL and RCR. Otherwise it is simply replaced with the next bit rotated out of the
source, i.e., the high-order bit if an RCL is used, the low-order bit if RCR.

Example:

Addition of two one-byte numbers can produce a carry out of the high-order bit:

Bit Number:

AEH
+ 74H-

122H

7654

1010
0111
0010

3210

1110B
0100B
0010B - 22H ;carry flag -1

An addition that causes a carry out of the high-order bit of the destination sets the
flag to 1; an addition that does not cause a carry resets the flag to zero.

Sign Flag. The high-order bit of the result of operations on registers or memory can
be interpreted as a sign. Instructions that affect the sign flag set the flag equal to this
high-order bit. A zero indicates a positive value; a one indicates a negative value.
This value is duplicated in the sign flag so that conditional jump instructions can test
for positive and negative values. The high order bit for byte value is bit 7; for word
values it is bit 15.

8086 Assembly Language Flag Operations

Zero Flag. Certain instructions set the zero flag to one. This indicates that the last
operation to affect ZF resulted in all zeros in the destination (register or memory). If
that result was other than zero, then ZF is reset to O. a result that has a carry and a
zero result sets both flags, as shown below:

10100111
+ 01011001

00000000 Carry Flag = 1
Zero Flag = 1
meaning yes, zero

Parity Flag. Parity is determined by counting the number of one bits set in the
destination of the last operation to affect PF. Instructions that affect the parity flag
set the flag to one for even parity and reset the flag to zero to indicate odd parity.

Auxiliary Carry Flag. The auxiliary carry flag indicates a carry out of bit 3 of the
accumulator. You cannot test this flag directly in your program; it is present to
enable the Decimal Adjust instructions to perform their function.

The auxiliary carry flag is affected by all add, subtract, increment, decrement, com
pare, and all logical AND, OR, and XOR instructions.

C-3

APPENDIX D I
EXAMPLES

In this Appendix, several sample problems are presented, each with several
solutions.

Each code example has comments and is followed by explanatory paragraphs.
Inevitably there will still be a few undefined words and less-than-crystal concepts.
You may prefer to look them up in the "index as soon as you encounter them. This
thoroughness will increase your depth of understanding but will also slow your use
of this chapter.

Another way to go about it is to note unclear items on a pad as you read-but to
continue reading, leaving the detailed exploration and analysis until later. Many
early questions will be answered by later examples and text; twice through this
chapter might build familiarity that could save time in studying the manual as a
whole.

The first two examples illustrate transferring control to one of eight routines,
depending on which bit of the accumulator has been set to 1 (by earlier instructions,
not shown).

Examples 3, 4, and 5 discuss additional methods of passing data and parameters to
procedures, illustrating the use of both the registers and the stack for passing
parameters. Examples 6 and 7 cover multibyte addition and subtraction. Interrupt
procedures and timing loops are described in examples 8 ~nd 9. Examples 10-13 il
lustrate input! output control.

The 8086 code examples given here are not optimal, and the presentation is not an
attempt at an exhaustive and complete overview of the language. These examples are
presented more as a gradual method of building familiarity, perhaps suggestive of
further improvements, rather than as ideal, finished models. Some instruction usage
is not introduced until the need for it has been suggested by the discussion of prior
code.

Examples 1 and 2

Consider a program that executes one of eight routines depending on which bit of
the accumulator is set:

Jump to routine 1 if the accumulator holds 00000001
Jump to routine 2 if the accumulator holds 00000010
Jump to routine 3 if the accumulator holds 00000100
Jump to routine 4 if the accumulator holds 00001000
Jump to routine 5 if the accumulator holds 00010000
Jump to routine 6 if the accumulator holds 00100000
Jump to routine 7 if the accumulator holds 01000000
Jump to routine 8 if the accumulator holds 10000000

MAIN PROGRAM

I
BRANCH TABLE
PROGRAM

I _---,
I _-- I
L----- I

I
I

JUMP
ROUTIN!'s

(normal procedure return sequence not provided by branch table program)

D-l

Examples

0-2

8086 Assembly Language

Example 1 below is a routine which transfers control to one of the eight possible pro
cedures depending on which bit of the accumulator is 1.

It moves the low-order bit of the accumulator into a flag register to find the one
signalling the correct routine, and then transfers based on that flag. This routine
uses seven instructions, including a test to prevent an infinite loop and an indirect
transfer via register BX.

Example 2 achieves the same transfer using a different technique for selecting the
appropriate address. It shifts the high-order bit of AL, and uses register SI as an in
dex into the branch table.

Each example contains comments, and is followed by a brief explanation.

Example 1:

The 8086 assembly language mnemonics used below can be read and (briefly) inter
preted as follows:

ASSUME

MOV
CMP

JE

SHR

JNB

JMP

ADD

TYPE

tells assembler what you intend to put in the segment registers during
execution (required)

moves 2nd operand ("source") into 1st operand ("destination")

compares 2 operands by subtracting 2nd from 1 st

jumps to label given if comparison said "equal"

shifts operand 1 bit to the right, putting lowest order bit into carry flag

jumps to label given if carry flag is zero

jumps to label, if given; or jumps-indirect to address held as contents
of the given variable or register, as here

adds source into destination

means how many bytes in each entry. The branch table is in words,
each 2 bytes

BRANCH_ADDRESSES SEGMENT
BRANCH_ TABLE_1 DW ROUTINE_1

DW ROUTINE_2
DW ROUTINE_3
DW ROUTINE_4
DW ROUTINE_5
DW ROUTINE_6
DW ROUTINE_7
DW ROUTINE_8

BRANCH_ADDRESSES ENDS

DW PROCESS_31
DW PROCESS_61
DW PROCESS_81

8086 Assembly Language

PROCEDURE_SELECT SEGMENT

ASSUME CS:PROCEDURE_SELECT,
& DS:BRANCH_ADDRESSES

L:

MOV BX,BRANCH_ADDRESSES
MOV DS,BX ; moves above segment

; base-address Into segment register OS.

CMP AL,O ; this test assures that
JE CONTINUE_MAIN_LlNE ; some bit of AL has been

; set by earlier Instructions to specify
; a routine (prior Insts. not shown).

SHR AL,1

JMPWORD PTR [BX]

; BX set to location
; holding address of first routine.
; puts least-significant
; bit of AL into the carry flag (CF).
; If CF = 0, the ON bit
; In AL has not yet
; been found.
; if CF = 1, then control
; is transferred (see
; explanation below).

NOT _YET: ADD ; If no transfer, then

JMP L
CONTIN U E_MAIN _LIN E:

PROCEDURE_SELECT ENDS

; the bit that is ON has
;notyetbeenfound,so
; BX Is set to pOint to
; the next entry In the
; address-table, by adding 2.
; jump to L to shift and retest
; we reach here only If
; no bit was set to
; indicate a desired
; routine

The line after "L:", JNB NOT_YET, reads "jump if not below", which means
jump if CF = O. This will skip over the next line's transfer if the "1" bit, signalling
the desired procedure, has not yet appeared. If it has been found, CF will be 1 and
this conditional jump JNB will be skipped. The appropriate procedure is then reach
ed by the indirect jump instruction JMP WORD PTR [BX].

A jump is always to an address in the code segment, i.e., relative to CS. The offset
defining that address in the code segment is not given explicitly here. Instead, an in
direct JMP is used, with [BX] given as a pointer to the cell where that offset is
stored.

Examples

D-3

Examples

D-4

8086 Assembly Language

Register BX as used here within square brackets automatically refers to the contents
of a location in the data segment. The contents of that location are the desired offset
for the jump. In other words, the Instruction Pointer is replaced by the contents of a
cell in the data segment, a cell whose offset is in BX. The next instruction, ADD BX,
TYPE BRANCH_ T ABLE_I, adds 2 to BX, the index into the branch table. This
causes BX to point to the next word of the table. The contents of that word are the
offset of the' 'next" routine, again in the code segment.

Only BX, BP, SI, and DI are permitted within square brackets.

BRANCH_ T ABLE_2 is unused in this example. It is shown only as an indication
that data segments may contain multiple tables referenced at different times by dif
ferent code segments.

NOTES

Note that the ASSUME statement is necessary, to identify what the run
time contents of CS and DS will be.

If you have already looked at the Attributes of Symbols section in Chapter
2, then it should be noted also that all routines whose labels are in the
branch table must be defined under the same CS:assumption as the code
that transfers to them. The reason is that in this example, they are to be
NEAR jumps, using only the one word offset. They need not necessarily be
in the same segment, but the same contents of CS must be ASSUMEd. This
is also indicated by the phrase WORD PTR preceding [BX], indicating the
intent to use one word from the table as an offset.

This restriction does not apply to FAR jumps or calls. Thus it would not be
necessary to ensure that the same ASSUME CS:name in fact applied to each
branch table entry, if the requirements for FAR jumps were coded. These
requirements are given below:

In the above example, it would be necessary to change the JMP
WORD PTR [BX] to read JMP DWORD PTR [BX]. It would
also be necessary to change each BRANCH_ TABLE entry into an
entry of the form

DD ROUTINE_1

so that the transfer would replace the contents of CS as well as IP.
Attributes of symbols, such as NEAR and FAR, are discussed in
Chapters 2, 4, and 5. PTR is also discussed in Chapter 5 on Expres
sions. Jumps and calls are further explained later in this appendix
and in Chapter 6. ASSUME is in Chapter 4.

8086 Assembly Language

Example 2:

BRANCH_ADDRESSES SEGMENT
BRANCH_ TABLE_1 DW ROUTINE_1

DW ROUTINE_2
OW ROUTINE_3
OW ROUTIN E_4
DW ROUTIN E_5
OW ROUTINE_6
OW ROUTINE_7
DW ROUTINE_8

BRANCH_ T ABLE_2 DW PROCESS_31
DW PROCESS_61
DW PROCESS_81

BRANCH_ADDRESSES ENDS

PROCEDURE_SELECT SEGMENT

&
ASSUME CS:PROCEDURE_SELECT,

OS:BRANCH_ADDRESSES

MOV BX,BRANCH_ADDRESSES ; base-address of
MOV DS,BX ; segment containing lists

LEA BX, BRANCH_ TABLE_1 ; base-address of list of
; branch addresses

MOV SI,7*TVPE BRANCH_ TABLE_1 ; points initially to last
; such entry in list

MOV CX,8 ; loop-counter allowing 8
; shifts maximum

L: SHL AL,1 ; shifts high-order AL bit
; into CF

JNB NOT_VET ; if CF = 0, routine
; represented by that bit
; not desired

JMP WORD PTR [BX][SI] ; if CF = 1, transfer to
; procedure represented b~
; most recent bit tested

NOT_VET: SUB SI,TVPE BRANCH_ TABLE_1 ; adjust index register to
; point to "next"
; branch-address

LOOP L ; decrement CX, if CX > 0,
; transfer to L so as to
; shift AL and retest

CONTINUE_MAIN_LlNE: ; we reach here only If
; no bit was set to

PROCEDURE_SELECT ENDS

; indicate a desired
; routine

Examples

Examples

D-6

8086 Assembly Language

In Example 2 several elements have changed, though the net result is the same. In
stead of being incremented, BX stays constant, pointing to the beginning of the list
of branch addresses. SI is used as an index (subscript) within that list.

The number of shifts is controlled by the count register CX, which the LOOP in
struction automatically decrements after each iteration. The accumulator AL is
searched from its most-significant-bit using the shift-left instruction (SHL) instead
of SHR. This accounts for the initialization of SI to 14, pointing initially to the last
branch-address in the list, 14 bytes past the base-address in BX. SI is subsequently
decremented in each iteration just as Example 1 's BX was incremented.

The instruction JMP WORD PTR [BX][SI] uses the sum of BX and SI just as Exam
ple 1 used BX alone. That is, the sum gives the offset of a word in the data segment,
and the contents of that word replaces the IP. The next instruction executed is thus
the one whose code-segment offset was stored in the branch table.

If more than I bit were set in AL, these two examples would select different routines
due to selecting the rightmost or leftmost such bit.

Transferring Data to Procedures
The data on which a procedure performs its operations may be made available in
registers or memory locations. In many applications, however, reserving registers
for this purpose can be inconvenient to the system flow of control and uneconomical
in execution time, requiring frequent register saves and restores.

Reserving memory, on the other· hand, can be uneconomical of space, especially if
such data is needed only temporarily. It is often preferable to use and reuse a special
area called a stack, storing and deleting interim data and parameters as needed.

Regardless of the method used to pass data to procedures, a stack will be necessary
and useful. The CALL instruction uses the stack to save the return address. The
RET instruction expects the return address to be on the stack. The stack is also
usually used to save the caller's register values at the beginning of a procedure.
Then, just before the procedure returns to the caller, these values can be restored.

Example 3 shows the use of memory to pass parameters. Registers are used for this
in Example 4. Example 5 uses a stack.

One way to use memory to pass data is to place the required elements (called a
parameter list) in some data area. You then pass the first address of this area to the
procedure.

For example, the following procedure, ADSUB, expects the address of a three-byte
parameter list in the SI register. It adds the first and second bytes of the list, and
stores the result in the third byte of the list.

The first time ADSUB is called, at label CALLI, it loads the accumulator from
PLIST, adds the value from the next byte and stores the result in PLIST + 2. Return
is then made to the instruction at RETI.

AFTER first call to ADSUB:

SI 06 PLIST

08 PLlST+1

14 PLIST+2

8086 Assembly Language

The second time ADSUB is called, at label CALL2, the prior instruction has caused
the SI register to point to the parameter list LIST2. The accumulator is loaded with
10, 35 is added, and the sum is stored at LIST2 + 2. Return is then made to the in
struction at RET2.

Example 3:
PARAMS SEGMENT
PLiST

LlST2

DB
DB
DB

DB
DB
DB

PARAMS ENDS

STACK SEGMENT

6
8
?

10
35
?

DW 4 DUP (?)
STACK_TOP LABEL WORD
STACK ENDS

ADDING SEGMENT
ASSUME CS:ADDING, DS:PARAMS, SS:STACK

START:

CALL1:
RET1:

CALL2:
RET2:

ADSUB

MOV
MOV
MOV
MOV
MOV
MOV
CALL

LEA
CALL

PROC
MOV
ADD
MOV
RET

ADSUB ENDP

ADDING ENDS
END START

AX,PARAMS
DS,AX
AX,STACK
SS,AX
SP ,OFFSET STACK_TOP
SI,OFFSET PLiST
ADSUB

SI,LlST2
ADSUB

AL,[SI]
AL,[SI+1]
[SI+2],AL

The instructions just prior to each CALL load the SI register with the offset of the
first parameter to be added. The MOV statement prior to CALLI makes use of the
OFFSET operator (discussed in Chapter 5). If this operator were omitted, SI would
receive the contents of PLIST instead of its offset. The LEA instruction prior to
CALL2 automatically puts the offset of its source (2nd operand) into the register
destination (1st operand). The MOV statement is more efficient, but may only be
used if just the offset is being loaded into the register. If the address involves an in
dexing register (e.g., PLIST [SI + 1]), then the LEA should be used, since this will
add the contents of the SI, 1, and the offset of PLIST, putting the sum in the
destination register.

Examples

. D-7

Examples

D-8

8086·Assembly Language

A More General Solution

The approach used in Example 3 has its limitations, however. As coded, ADSUB
will process a list of two and only two numbers to be added, and they must be con
tiguous in memory. Suppose you wanted a subroutine (GENAD) which would add
an array containing an arbitrary number of bytes, located anywhere in memory, and
leave the sum in the accumulator.

CALL to GENAD:

El ax
I

r:l
L:.I

.. PARM1

PARM2

PARM3

PARM4

Example 4 below shows how this process can be written in the 8086 assembly
language. GENAD returns the sum in the accumulator. It receives the address of the
array in the BX register, and the number of array elements in CX.

Example 4:

INITIAL_PARAMETERS SEGMENT
RESULT DB 0
PARM DB 6,82,13,16

INITIAL_PARAMETERS ENDS

GPR EQU GENERAL_.PROCEDURES
PR1 EQU INITIAL_PARAMETERS

GENERAL_PROCEDURES SEGMENT
ASSUME CS::GPA, DS:PA1 ; uses short synonyms from EQUs

; The procedure is placed first, to avoid forward referencing
; the FAA procedure GENAD86. Note that the program start address
; is after the procedure, at label "START".

GENAD86 PAOC FAA
PUSH SI

INIT: MOV AL,O
MOV SI,O

; save current value of SI
; on the stack (discussed below),
; so that this routine can use this
; register freely, restoring its
; original contents just prior to
; returning control to calling routine.
; initialize AL to receive sum.
; initialize SI to point to first array element

8086 Assembly Language

MORE?: ADD AL, [aX] [SI] ; add next array element to sum.
; ax pOints to the start of the array,
; and SI selects an element of the array.

INC SI ; have SI index the next array element.
LOOP MORE? ; continue looping until CX is zero (all

; array elements have been added into AL)

POP SI ; restore original contents of SI.
RET ; transfer to instruction immediately

; following CALL.

GENAD86 ENDP

; Program execution starts here (due to the label "start" named on the END directive below).
; Point DS to the INITIAL_PARAMETERS segment, and call GENAD86 with the array PARM.

START: MOV AX, INITIAL_PARAMETERS
MOV DS, AX

MOV CX, SIZE PARM
MOV ax, OFFSET PARM
CALL GENAD86
MOV RESULT, AL

; number of elements is passed in CX
; address of array PARM is passed in ax.

; Sum is returned in AL

HLT ; ******* end of program *******
GENERAL_PROCEDURES ENDS

END START

In Example 4 the general guidelines for the 8086 Assembly Language are followed
by coding first the data segments and EQUs, followed by the code segments which
refer to these program elements. The EQUs enable names to be used in place of
numeric values, or shorter synonyms instead of longer names.

A forward reference to an EQU is allowed. An EQU may refer to a later-defined
simple name, (but not to a later-defined full address-expression).

In GENAD86, the first action is to save (PUSH) onto the stack the current value of
SI before using it. Just before the RETurn, this value is restored (via POP). Thus
this procedure does not destroy the status of registers (except AL and CX) possibly
relied upon by the calling routine. Stacks are discussed in Chapter 4. Further ex
amples appear below.

The routine does not explicitly save the value of CS because the CALL and RETurn
save CS on the stack and restore it automatically. The accumulator AL is here ex
pected to be usable without saving its pre-CALL contents. Using AL, the sum is
modulo 256.

The FAR type declaration on the PROC statement forces the use of "long" CALLs
to and RETurns from this procedure. This means the procedure is not expected to be
in the same segment as all of the CALLs to it. In a "long" CALL the contents of CS
are PUSHed onto the stack first, then the IP is PUSHed onto the stack. (This allows
an eventual return to the next sequential instruction.) Control is then transferred to
the procedure by first moving into CS the segment base address for the procedure,
and then replacing the contents of IP with the offset of the procedure in that seg
ment. A "long" RETurn reverses this process by POPping the former IP contents
back off the stack into IP, and then POPping the former CS contents off the stack
back into CS.

Examples

D-9

Examples

D-1O

8086 Assembly Language

Within the inner body of GENAD86, the statement

MOV AL,O

initializes the sum to zero. The statement

MOV 81,0

initializes SI to zero, to index the first element of the passed array.

The first statement in the loop

ADD AL, [SX] [81]

adds the array element indexed by SI into the sum in the accumulator (recall that the
BX register points to the parameter array). In the next statement (INC SI), the array
index in SI is incremented to point to the next array element. The last statement in
the loop

LOOP MORE?

executes the loop repeatedly until the count in CX (passed in as a parameter) is
exhausted.

As mentioned earlier, BX, BP, SI, and DI are the only registers permitted within
square brackets. Such usage is further restricted: in anyone expression you may use
BX or BP, but not both, and SI or DI, but not both. Thus [BX][SI] is valid but
[BX][BP] is not. This is discussed in greater detail in Chapter 5.

Using a Stack

Passing parameters on the stack offers different advantages than passing them in
registers. Passing parameters in registers is faster, but more complicated. The con
ventions as to which parameter should end up in which register can be confusing,
especially if there are many procedures.

For parameters passed on the stack, the convention need only specify the order they
should be pushed onto the stack. High level language compilers (e.g., PL/M-86)
generate code which passes parameters on the stack. Therefore, any procedure
which expects its parameters on the stack is callable from PlIM (see Appendix B of
the Operator's Guide for more details). The 8086 also offers special instructions to
facilitate using the stack for passing parameters. The RET instruction has an op
tional byte count (e.g., RET 4), which says how many bytes should be popped off
the stack in addition to the return address. This makes returning from procedures
very easy. Moreover, since the BP indexing-register uses the SS segment by default,
it is very economical to use BP to reference data near the top of the stack.

Use of stacks may require some further introduction. A stack segment is expected to
be used relative to the contents of the stack-segment register SS, just as a code seg
ment uses CS and data segments use DS or ES. The stack segment below is defined
for use in this discussion and the examples.

PARAMS_PASS SEGMENT STACK
DW 12 DUP (0)

LAST_WORD LABEL WORD
PARAMS_PASS ENDS

8086 Assembly Language

Four instructions use a stack in predefined ways: PUSH, CALL, POP, and
RETurn. They automatically use the stack pointer SP as an offset to the segment
base-address in SS. One of your first actions in a module which will use a stack must
be to initialize SS and SP. e.g.,

MOV AX,PARAMS_PASS
MOV SS,AX
MOV SP, OFFSET LAST_WORD

This use of LAST_WORD is critically important due to the built-in actions of the
four instructions named above.

The first two, PUSH and CALL, store additional words on the stack by decrement
ing SP by 2. Thus the stack "grows downward" from the last word in the stack seg
ment toward the segment-base-address lower in memory. Each successive address
used for new data on the stack is a lower number. The location pointed to by SP is
called the Top Of Stack (TOS). When a word is stored on the stack, e.g., by the
instruction

PUSH SOURCE_DATA

SP is decremented by 2 and the source data is moved onto the stack at the new offset
now in SP. As described above in Example 4, CALL implicitly uses PUSH before
transferring control to a procedure.

The instruction

POP DESTINATION

takes the word at TOS, i.e., pointed at by SP, and moves that word into the
specified destination. POP also then automatically adds 2 to SP. This causes SP to
point to the next higher-addressed word in the stack segment, farther from the seg
ment's base-address. The figures accompanying the examples below show the expan
sion and contraction of a stack.

Example 5 below illustrates the use of a stack to pass the number of byte parameters
plus the address of the first one. For this example all the parameters are expected in
successive bytes after that one.

Supplying the N umber of Parameters and the First Address,
On the Stack
Example 5:

params_pass SEGMENT STACK
DW 12 DUP (?) ; reserve 12 words of stack space

last_word LABEL WORD ; last_word is the offset of top of stack
params_pass ENDS

SEGMENT

first DB 11,22,33,44,55,66
second DB 4,5,6
third DB 94,88
result DX ?
data_items ENDS

stk_usage_xmpl SEGMENT
ASSUME CS: stLusage_xmpl, DS: dat~items, SS:params_pass

Examples

D-ll

Examples

D-12

genaddr PROC

PUSH
PUSH
PUSH
PUSH
MOV
MOV

MOV
adder: ADD

ADC
INC
LOOP

POP
POP
POP
RET

genaddr ENDP

FAR

BP ; save old copy of BP
BP, SP ; move tos to BP (see figure 4)
BX ; save BX, so ok to use BX in genaddr
CX ; save CX, so ok to use CX in genaddr (figure 5)
CX, [BP + 6] ; get count of number of bytes in array
BX, [BP + 8] ; get address of array of bytes

AX,O
AL, [BX]
AH,O
BX

; AX := O. AX holds running sum in adder loop.
; add In the first byte
; and add any carry into AH.
; point to next byte to be added in.

8086 Assembly Language

adder ; CX := ex -1; IF CX < > 0 THEN GOTO ADDER;

CX
BX
BP
4

; The registers must be restored in the
; reverse order they were pushed.

; return, popping off the 2 WORD parameters

stLusage_xmpl ENDS

caller

start:

caller

SEGMENT
ASSUME CS: caller, OS: data_items, SS: params_pass

MOV AX, data_items
MOV DS,AX
MOV AX, params __ pass
MOV SS,AX
MOV SP, offset last_word

MOV AX, OFFSET first
PUSH AX
MOV AX, SIZE first
PUSH AX
CALL genaddr

MOV result,AX

MOV AX, OFFSET second
PUSH AX
MOV AX, SIZE second
PUSH AX
CALL genaddr

MOV result,AX'

MOV AX, OFFSEST third
PUSH AX
MOV AX, SIZE third
PUSH AX
CALL genaddr

MOV result,AX

HLT
ENDS
END start

; paragraph number of data segment to AX
; and then to OS.
; paragraph number of stack segment to AX
; and then to SS
; offset of the stacLtop to the SP

; offset of first to AX
; then onto the stack
; number of bytes in first array to AX
; then onto the stack
; Call the far procedure

; same as above except doing second

; same as above except doing third

8086 Assembly Language Examples

OOOOOH --------....

OFFFFFH ----------

Figure 1

OOOOOH

~ OS

CS

~ SS

OLDIP -4-- TOS .--SP

OLDes

NUMBER OF PARAMETERS

PARAMETER ADDRESS

OFFFFFH

Figure 2

D-13

Examples

OFFFFFH

OLD BP

OlDIP

OlDCS

NUMBER OF PARAMETERS

PARAMETER ADDRESS

OOOOOH

Figure 3

OOOOOH

OLD BX

OLD BP

OlDIP

OlDCS

NUMBER OF PARAMETERS

PARAMETER ADDRESS

OFFFFFH

Figure 4

D-14

---- OS

~ CS

~ SS

I.--TOS -4--SP

----OS

----CS

----SS

~TOS -4--SP
____ BP

8086 Assembly Language

8086 Assembly Language

OOOOOH

~DS

~CS

~SS

OlDCX ~TOS ~SP

OLD BX

OLD BP '--BP

OlDIP

OlDCS

NUMBER OF PARAMETERS

PARAMETER ADDRESS

OFFFFFH

Figure 5

To indicate why each register was saved, the above code has each PUSH placed just
prior to the first local use of that register. Earlier examples clustered those PUSHes
at the top of the routine, just as the POPs appear (in reverse order) at the end. This
makes it easy to see the proper order of saving and restoring. In either case you must
consider carefully where the parameters are relative to the pointer you are using,
e.g., BP. Making your own diagrams can help.

Note that the RET instruction of "genaddr" is a RET 4; the two parameters are
popped off the stack as the RETurn is executed. Without the 4, this 12 word stack
named "PARAMS_PASS" could only be used three times. The fourth call would
cause two words outside that segment to be clobbered.

This is why: prior to each call the parameter words are pushed onto the stack. Then
each call uses two words of the stack to store the return address. Each execution of
the procedure pushes three more words onto the stack to preserve register values.
These last five words are popped off by the procedure's end and return, but those
first two parameters would remain.

After three calls, the old six parameter words would use up half the stack. The first
would be in LAST_WORD-2, next in LAST_WORD-4, LAST_WORD-6, etc.
to LAST_WORD-12. The fourth use of the procedure would put on the two
parameters, and then the return address would go in LAST _ W 0 RD-18 and
LAST _ WORD-20. The procedure's PUSHes of original register contents would
fill LAST_WORD-22 and LAST_WORD-24, and then two words outside
PARAMS_P ASS. (Those two words would be at offsets of + OFFFE and
+ OFFFC, since address arithmetic is done modulo 64K. That is, the offset of
LAST_WORD is 24, so the location whose offset is 26 less than 24 has offset
OFFFE.)

Examples

D-15

Examples

D-16

LAST _WORD-2
-4
-6
-8
-10
-12
-14
-16
-18

LAST _WORD-20
LAST _WORD-22
LAST _WORD-24

0000
-0000

FFFE
-0002

FFFC

1st param
2nd param
3rd param
4th param
5th param
6th param
7th param
8th param
instr pOinter
oldCS
old BP
old BX

+22
+20
+18
+16
+14
+12
+10
+8
+6
+4
+2
o

MulUbyte Addition and Subtraction

8086 Assembly Language

The carry flag and the ADC (add with carry) instructions may be used to add un
signed data quantities of arbitrary length. Consider the following addition of two
three-byte unsigned hexadecimal numbers:

32AF8A
+ 84BA90

B76A1A

To perform this addition, you can use ADD or ADC to add the low-order" byte of
each number. ADD sets the carry flag for use in subsequent instructions, but does
not include the carry flag in the addition.

Step 3

32
84

B7

carry=1

Step 2

AF
BA

6A

carry=1

Step 1

8A
90

1A

The routine below performs this multibyte addition, making these assumptions:

The numbers to be added are stored from low-order byte to high-order byte begin-
ning at memory locations FIRST and SECOND, respectively. .

The result will be stored from low-order byte to high-order byte beginning at
memory location FIRST, replacing the original contents of these locations.

MEMORY BEFORE

FIRST + SECOND + CF

8A + 90 + 0 = 1A

AF + BA + 1 = 6A

32 + 84 + 1 = B7

MEMORY AFTER

FIRST SECOND

1A

6A

B7

90

BA

84

8086 Assembly Language

The routine uses an ADC instruction to add the low-order bytes of the operands.
This could cause the result to be high by one if the carry flag were left set by some
previous instruction. This routine avoids the problem by clearing the carry flag with
the CLC instruction just before LOOPER.

Since none of the instructions in the program loop affect the carry flag except ADC,
the addition with carry will proceed correctly.

When location DONE is reached, bytes FIRST through FIRST + 2 will contain
IA6AB7H, which is the sum shown at the beginning of this section, from low-order
byte to high -order byte.

If you change the ADC instruction to an SBB instruction, the routine becomes a
multibyte subtraction process. It will then subtract the number beginning at SE
COND from that at FIRST, placing the result at FIRST. (Different length numbers
are not handled.)

Example 6:

ADDDATA SEGMENT

FIRST DB 8AH ,OAFH, 32H
90H,OBAH,84H
ENDS

SECOND DB
ADDDATA

MUL TIBYTE_ADD SEGMENT

ASSUME
,&
START:

LOOPER:

DONE:

CS:MULTIBYTE_ADD,
DS:ADDDATA
MOV AX,ADDDATA
MOV DS,AX
MOV CX,LENGTH FIRST ; Number of bytes in each

MOV SI,O
CLC

; addend.Controls # of loop iterations.

; Clears any prior carry.
MOV AL, SECOND [SI] ; Each successive byte

; replaces AL
ADC FIRST [SI], AL ; Parallel byte added with carry.
INC SI ; Index incremented by 1
LOOP LOOPER; CX = CX-1. Repeat till CX=O,

; then fall thru to DONE

MULTIBYTE_ADD ENDS
END START

The two numbers could be of different lengths, e.g., one 5 bytes long and the other 3
bytes long. If so, the routine below would perform the multibyte addition. However,
a carry out of the highest byte of the longer number would be lost. This could be
handled by additional code to check the flags, or by the expedient of an extra high
order byte on the longer number.

Examples

D-17

Examples

D-18

SEGMENT

FIRST DB 11,22,33
NUM1 DW LENGTH FIRST

SECOND DB 99,88,77,66,55
NUM2 DW LENGTH SECOND

MULTLTWO

ASSUME
&

START:

ENDS

SEGMENT

CS:MUL TL TWO,
DS:ADD_DATA_2

MOV AX,ADD_DATA_2
MOV DS,AX

8086 Assembly Language

;The routine determines which number is longer and stores the result there. The size in
; bytes of the smaller number controls LOOP1, i.e., where both numbers do have a byte of
; data to be added.
; The difference in size controls LOOP2, which is needed if there is a final carry.

MOV AX, NUM2 ; Initially assume NUM2larger, and
LEA BX, SECOND ; give BX address of longer number,
LEA BP, FIRST ; BP address of shorter number.

CMP AX, NUM1 ; Check assumption.
JGE NUM2_BIGGER ; continue with values as they

, are unless N2 < N1.

XCHG AX, NUM1 ; Switch NUM2 and NUM1, exchanging
XCHG AX, NUM2 ; through AL NUM2 now> NUM1.

XCHG BX, BP ; Must also now switch addresses
; referred to, so that number
; of bytes still corresponds
; with correct number, and sum
; goes to longer place.

NUM2_BIGGER: MOV CX, NUM2
SUB CX, NUM1 ; NUM2 now gets difference

MOV NUM2, CX
MOV CX, NUM1 ; of sizes. Use smaller number

; of bytes for central add.
CLC ; Clear carry of possible prior setting.
MOV SI, 0 ; Initialize index to bytes

; of addends. Then SI=SI + 1.
LOOP1: MOV AL, DS: [BP] [SI] ; Get byte of shorter number.

ADC [BX] [SI], AL ; Add it to relevant byte of
INC SI ; longer number. Then SI=SI + 1
LOOP LOOP1

MOV CX, NUM2 ; Number~of bytes yet unused
; in longer number.

8086 Assembly Language

LOOP2: JNB DONE ; If no carry, CF=O, then done.
ADC BYTE PTR [BX) [SI),O ; Add carry to remaining bytes
INC SI ; of longer number. Then SI=SI + 1.

LOOP LOOP2
DONE:

MULTL TWO ENDS
END START

With some additional instructions, this same routine will do arithmetic for packed
decimal numbers. Packed-decimal means the 8 bits of each byte are interpreted as 2
decimal digits, e.g., OIlOOlllB would mean 67 decimal instead of 67 hexadecimal
(103 decimal).

Below is the core of an 8086 routine to do decimal subtraction for packed-decimal
numbers.

Example 7:

MORE?:

SI,O
CX, NUMBYTES

AL, FIRST [SI)
AL, SECOND [SI)

MOV
MOV
CLC
MOV
SBB
DAS
MOV
INC

SECOND [SI), AL
SI

LOOP MORE?

Interrupt Procedures

Example 8:

; The following illustrates the use of interrupt procedures for the 8086. The code sets up six
; interrupt procedures for a hypothetical 8086 system involved in some type of process
; control application. There are 4 sensing devices and two alarm devices, each of which
; can supply external interrupts to the 8086. The different interrupt-handling procedures
; shown below are arbitrary, that is, the events and responses described are not inherent
; in the 8086 but rather in this hypothetical control application. The procedures merely
; illustrate the diverse possibilities for handling situations of varying importance and
; urgency.

ASSUME CS:INTERRUPT _PROCEDURES, DS:DATA_VAR

DEVICE_1_PORT
DEVICE_2_PORT
DEVICE_3_ PORT
DEVICE_4_PORT
WARNING_LIGHTS
CONTROL_1

EQU
EQU
EQU
EQU
EQU
EQU
EXTRN

OFOOOH
OF002H
OF004H
OF006H
OEOOOH
OE008H
CONVERT_VALUE:FAR
; Positioning this EXTRN here indicates that
; CONVERT_VALUE
; is outside of all segments in this module.

Examples

D-19

Examples

D-20

8086 Assembly Language

INTERRUPT _PROC_ TABLE SEGMENT BYTE AT 0
ORG OBH

; non-maskable interrupt type 2

; One 64K area of memory contains pointers to the routines that handle interrupts. This
; area begins at absolute address zero. The address for the routine appropriate to each
; interrupt type is expected as the contents of the double word whose address is 4 times
; that type. Thus the address for the handler of non-maskable-interrupt type 2 is stored as
; the contents of absolute location B. These addresses are also called interrupt vectors
; since they point to the respective procedures.

ORG BOH

; the first 32 interrupt types (0-31) are defined or reserved by INTEL for present and future
; uses. (See the BOB6 User's Manual for more detail.) User-interrupt type 32 must therefore
; use location 12B (=BOH) for its interrupt vector.

DD ALARM_2
DD • DEVICE_1
DD DEVICE_2
DD DEVICE_3
DD DEVICE_4

; INTERRUPT TYPE 32
; INTERRUPT TYPE 33
; INTERRUPT TYPE 34
; INTERRUPT TYPE 35
; INTERRUPT TYPE 36

INTERRUPT _PROC_ TABLE ENDS

EXTRN
&
EXTRN

SEGMENT PUBLIC

IN PUT _1_ VAL: BYTE, OUTPUT _2_ VAL: BYTE,
INPUT _3_VAL:BYTE, INPUT _4_VAL:BYTE
ALARM_FLAG:BYTE, INPUT _FLAG:BYTE

; The names above are used by 1 or more of the procedures below, but the location or
; value referred to is located (defined) in a different module. These EXTeRNal
; references are resolved when the modules are linked together, meaning all addresses
; will then be known. Declaring these EXTRNs here indicates what segment they are in.

; The names below are defined later in this module. The PUBLIC directive makes their
; addresses available for other modules to use.

PUBLIC

&
ALARM_1, ALARM_2, DEVICE_1, DEVICE_2, DEVICE_3,
DEVICE_4

INTERRUPT_PROCEDURES SEGMENT

ALARM_1 PROC FAR

; The routine for type 2, "ALARM_1" is the most drastic because this interrupt is intended
; to signal disastrous conditions such as power failure. It is non-maskable, i.e., it cannot be
; inhibited by the CLear Interrupts (CLI) instruction.

8086 Assembly Language Examples

MOV OX, WARNING_LIGHTS
MOV AL, OFFH
OUT OX,AL ; turn on all lights
MOV OX, CONTROL_1
MOV AL, 38H ; turn off
OUT OX,AL ; machine
HLT ; stop all processing

ALARM_1 ENOP

ALARM_2 PROC FAR

PUSH OX
PUSH AX
MOV OX, WARNING_LIGHTS
MOV AL, ; turn on warning light #1
OUT OX,AL ; to warn operator of device

MOV ALARM_FLAG,OFFH ; set alarm flag to inhibit
POP AX ; later processes which may

; now be dangerous
POP OX
IRET ; return from interrupt:

; this restores the flags and returns control
; the interrupted instruction stream

ALARM_2 ENOP

OEVICE_1 PROC

OEVICE_1

OEVICE_2

PUSH OX
PUSH AX
MOV OX, OEVICE_1_PORT
IN AL, OX ; get Input byte from device_1
MOV INPUT_1_VAL,AL ;storevalue

MOV INPUT _FLAG,2 ; this may alert another
; routine or device that

POP
POP
IRET

ENOP

PROC

PUSH
PUSH

MOV
MOV
OUT
POP
POP
IRET

AX
OX

OX
AX

AL,
OX,
OX,AL
AX
OX

; this interrupt and input
; occurred

; when this interrupt-type occurs,
; the action necessary is to notify
; device_2_port of the event

OUTPUT _2_ VAL ; get value, to output
OEVICE_2_PORT ; to device_2_port

D-21

Examples 8086 Assembly Language

D-22

DEVICE_2 ENDP

DEVICE_3 PROC

DEVICE_4

PUSH
PUSH
MOV
IN
AND
MOV
POP
POP
IRET

ox ; when a device_3 interrupt occurs,
AX ; only the lower byte at the port is
OX, DEVICE_3_PORT ; of value
AL,DX
AL,OFH ; mask off top four bits
INPUT _3_VAL, AL ; store value for use
AX ; by later routines in another module
OX

PUSH OX
PUSH CX ; a device_4 interrupt provides
PUSH AX ; a value which needs immediate
MOV DX,DEVICE_4_PORT

; conversion by another procedure
IN AL,DX ; before this interrupt-handler can
MOV CL, AL ; allow it to be used at inpuL4_val

CALL
MOV

POP
POP
POP
IRET

ENDP

CONVERT_VALUE
INPUT _4_VAL, AL

AX
CX
OX

; converts input value in CL
; to new result in AL and saves that
; result in input_4_val

INTERRUPT_PROCEDURES ENDS

END

Timing Loop

Example 9:

; This example is a procedure for supplying timing loops for a program. The amount of time
; delayed is set by a byte parameter passed in the AL register, with the amount of time =
; PARAM • 100 microseconds. This is assuming that the 8086 is running at 8 MHZ.

ASSUME CS:TIMER_SEG

TlMER_SEG SEGMENT

TIME PROC

DELAY_LOOP: MOV CL, 78H ; shift count for supplying
SHR CL,CL ; proper delay via SHR countdown
DEC AL ; decrement timer count
JNZ DELAY_LOOP

8086 Assem bly Language

RET
ENDP
ENDS
END

The examples below (10-13) illustrate the type of procedures used by the SDK86
Serial 110 Monitor to communicate with the keyboard and display units during
execution.

The first, SIO_CHAR_RDY, tests whether an input character is awaiting
processing.

The second SIO_OUT -CHAR, outputs a character unless SIO-CHAR_RDY
reports in input character is there, which is handled first.

The third, SIO_OUT _STRING, puts out an entire string of characters, e.g., a page
heading, using SIO-OUT -CHAR for each output byte.

Example 10:

PUSH BP ; save old value
MOV BP, SP

MOV OX,OFFF2H ; address of status port to DX
IN AL,DX ; input from status port
TEST AL,2H ; is read-data-ready line=1,

; i.e., character pending?
JNZ @1 ; if so, return TRUE

MOV AL,O ; if not, return FALSE: AL=O
POP BP ; restore old value
RET ; done, no char waiting

@1:

MOV AL,OFFH ; return TRUE: AL=all ones
POP BP ; restore old value
RET ; done, char is waiting

Example 11:

The above procedure also appears in this example, which introduces names for some
of the specific numbers used above, and for some that will be used in later examples.
These names can make it easier to read the procedure and understand what is going
on, or at least what is intended.

The example also uses BX and reorders the code to save a few bytes.

TRUE EQU OFFH
FALSE EQU OH

STATUS_PORT EQU OFFF2H

Examples

0-23

Examples

D-24

DATA_PORT EQU OFFFOH
ASCILMASK EQU 7FH
CONTROL_S EQU 13H
CONTROL_Q EQU 11 H

CARR_RET EQU OOH

BX
BL, TRUE
DX, STATUS_PORT

; save old BX value
; prepare for one reesult
; check the facts
; char waiting???

8086 Assembly Language

PUSH
MOV
MOV
IN
TEST
JNZ
MOV

AL,OX
AL,2H
RESULT
BL,FALSE

; if 2nd bit ON, char is waiting
; hence skip over FALSE set-up
; here if 2nd bit was OFF,
; hence no char waiting

RESULT: MOV AL,BL
BX

; AL receives whichever result
; restore old BX value POP

RET

Example 12:

ENOP

SIO_OUT _CHAR PROC NEAR

; This routine outputs an input parameter to the USART output port when UART is ready for
; output transmit buffer empty. The input to this routine is on the stack.

PUSH BP
MOV BP, SP

CALL SIO_CHAR_ROY
RCR AL,1
JNB @117

MOV OX, DATA_PORT
IN AL,OX

AND AL, ASCILMASK
MOV CHAR, AL
CMP AL, CONTROL_S
JNZ @117

@115:

GMP CHAR, CONTROL_Q
JZ @117

GALL SIO_GHAR_ROY
RCR AL,1
JNB @115

MOV DX,DATA_PORT
IN AL,DX

; keyboard input pending?
; put low-byte into CF to test
; if no input char waiting from
; keyboard, go to output loop

; char waiting: get it
; char to AL from that port
; strip off high bit, leaving
; ASCII code
; save char
; is char control-S?
; if this halt-display signal
; is not rec'd, continue
; output at @117

; if control-S rec'd, must
; await its release
; Control-Q received?
; if this continuation-signal
; rec'd, to do next output
; keep checking for new keyboard
; input, looping from @115
; to here until input waiting

; get waiting character

8086 Assembly Language

AND
MOV
CMP
JNZ

JMP

@117:
CONTINUE:

MOV
IN
TEST
JZ

MOV
MOV
OUT

POP
RET

Example 13:

AL, ASCII_MASK
CHAR, AL
AL, CARR_RET
@115

NEXTCOMMAND

DX,STATUS_PORT
AL,DX
AL,1
@117

DX,DATA_PORT
AL, (BPJ + 4
DX,AL

BP
2

PROC NEAR

; if char=carriage-return,
; skip this instruction, which
; loops to await control-Q, and
; go to NEXTCOMMAND

; loop until status port
; and transmit line indicate
; ready to put out character

; output port address to OX
; character from stack to AL
; output character in AL through

; restore original BP value
; repositions SP behind prior
; parameter

; Outputs a string stored in the "extra" segment (uses ES as base), the string being
; pOinted to by a 2-word pointer on the stack

PUSH BP
MOV BP, SP
MOV SI,O

LES BX, DWORD PTR (BP] + 4

; load ES with base address and BX witil offset of string (addresses pushed onto stack by
; calling routine)

@121:

CMP BYTE PTR ES: (BXJ (SI], 0
; terminator character is ASCII null = all zeroes.

JZ @122 ; if done, exit

MOV AL,BYTE PTR ES: (BX] (SIJ ; put next char on
PUSH AX
CALL SIO_OUT _CHAR ; stack for output by

INC
JMP

@122:
POP
RET

; this called procedure

SI ; point index to next char
@121

BP
4 ; after return, resets

; SP behind former parameters

Examples

D-25

· ~) n

00 00000000 MOD REGR/M ADD EA,REG
01 00000001 MOD REGR/M ADD EA,REG
02 00000010 MOD REGR/M ADD REG,EA
03 00000011 MOD REGR/M ADD REG,EA
04 00000100 ADD AL,DATA8
05 00000101 ADD AX,DATA16
06 00000110 PUSH ES
07 00000111 POP ES
08 00001000 MOD REGR/M OR EA,REG
09 00001001 MOD REGR/M OR EA,REG
OA 00001010 MOD REGR/M OR REG,EA
OB 00001011 MOD REGR/M OR REG,EA
OC 00001100 OR AL,DATA8
0000001101 OR AX,DATA16
OE 00001110 PUSH CS
OF 00001111 (not used)
10 00010000 MOD REGR/M ADC EA,REG
11 00010001 MOD REGR/M ADC EA,REG
12 00010010 MOD REGR/M ADC REA,EA
13 00010011 MOD REGR/M ADC REG,EA
14 00010100 ADC AL,DATA8
15 00010101 ADC AX,DATA16
16 00010110 PUSH SS
17 00010111 POP SS
18 00011000 MOD REGR/M SBB EA,REG
19 00011001 MOD REGR/M SBB EA,REG
1A 00011010 MOD REGR/M SBB REG,EA
1 B 00011011 MOD REGR/M SBB REG,EA
1C 00011100 SBB AL,DATA8
1000011101 SBB AX,DATA16
1 E 00011110 PUSH OS
1 F 00011111 POP OS
20 00100000 MOD REGR/M AND EA,REG
21 00100001 MOD REGR/M AND EA,REG
22 00100010 MOD REGR/M AND REG,EA
23 00100011 MOD REGR/M AND REG,EA
24 00100100 AND AL,DATA8
25 00100101 AND AX,DATA16
26 00100110 ES:
27 00100111 DAA
28 00101000 MOD REGR/M SUB EA,REG
29 00101001 MOD REGR/M SUB EA,REG
2A 00101010 MOD REGR/M SUB REG,EA
2B 00101011 MOD REGR/M SUB REG,EA
2C 00101100 SUB AL,DATA8
2000101101 SUB AX,DATA16
2E 00101110 CS:
2F 00101111 DAS
30 00110000 MOD REGR/M XOR EA,REG
31 00110001 MOD REGR/M XOR EA,REG
32 00110010 MOD REGR/M XOR REG,EA
33 00110011 MOD REGR/M XOR REG,EA
34 00110100 XOR AL,DATA8
35 00110101 XOR AX,DATA16
36 00110110 SS:
37 00110111 AAA
38 00111000 MOD REGR/M CMP EA,REG
39 00111001 MOD REGR/M CMP EA,REG
3A 00111010 MOD REGR/M CMP REG,EA
3B 00111011 MOD REGR/M CMP REG,EA
3C 00111100 CMP AL,DATA8
3D 00111101 CMP AX,DATA16
3E 00111110 OS:
3F 00111111 AAS
40 01000000 INC AX
41 01000001 INC CX

APPENDIX E
INSTRUCTIONS IN

HEXADECIMAL ORDER

BYTE ADD (REG) TO EA
WORD ADD (REG) TO EA
BYTE ADD (EA) TO REG
WORD ADD (EA) TO REG
BYTE ADD DATA TO REG AL
WORDADDDATATOREGAX
PUSH (ES) ON STACK
POP STACK TO REG ES
BYTE OR (REG) TO EA
WORD OR (REG) TO EA
BYTE OR (EA) TO REG
WORD OR (EA) TO REG
BYTE OR OAT A TO REG AL
WORD OR OAT A TO REG AX
PUSH (CS) ON STACK

BYTE ADD (REG) W I CARRY TO EA
WORD ADD (REG) W I CARRY TO EA
BYTE ADD (EA) W I CARRY TO REG
WORD ADD (EA) WI CARRY TO REG
BYTE ADD DATA W/CARRY TO REG AL
WORD ADD OAT A W I CARRY TO REG AX
PUSH (SS) ON STACK
POP STACK TO REG SS
BYTE SUB (REG) WI BORROW FROM EA
WORD SUB (REG) WI BORROW FROM EA
BYTE SUB (EA) WI BORROW FROM REG
WORD SUB (EA) WI BORROW FROM REG
BYTE SU B OAT A W I BORROW FROM REG AL
WORD SU B OAT A W I BORROW FROM REG AX
PUSH (OS) ON STACK
POP STACK TO REG OS
BYTE AND (REG) TO EA
WORD AND (REG) TO EA
BYTE AND (EA) TO REG
WORD AND (EA) TO REG
BYTE AND DATA TO REG AL
WORDANDDATATOREGAX
SEGMENT OVERIDE WI SEGMENT REG ES
DECIMAL ADJUST FOR ADD
BYTE SUBTRACT (REG) FROM EA
WORD SUBTRACT (REG) FROM EA
BYTE SUBTRACT (EA) FROM REG
WORD SU BTRACT (EA) FROM REG
BYTE SUBTRACT DATA FROM REG AL
WORD SUBTRACT DATA FROM REG AX
SEGMENT OVERIDE WI SEGMENT REG CS
DECIMAL ADJUST FOR SUBTRACT
BYTE XOR (REG) TO EA
WORD XOR (REG) TO EA
BYTE XOR (EA) TO REG
WORD XOR (EA) TO REG
BYTE XOR DATA TO REG AL
WORD XOR OAT A TO REG AX
SEGMENT OVERIDE WI SEGMENT REG SS
ASCII ADJUST FOR ADD
BYTE COMPARE (EA) WITH (REG)
WORD COMPARE (EA) WITH (REG)
BYTE COMPARE (REG) WITH (EA)
WORD COMPARE (REG) WITH (EA)
BYTE COMPARE DATA WITH (AL)
WORD COMPARE DATA WITH (AX)
SEGMENT OVERIDE WI SEGMENT REG OS
ASCII ADJUST FOR SUBTRACT
INCREMENT (AX)
INCREMENT (CX)

E-l

Instructions In Hexadecimal Order

E-2

42 01000010
43 01000011
44 01000100
45 01000101
46 01000110
47 01000111
48 01001000
49 01001001
4A 01001010
4B 01001011
4C 01001100
4001001101
4E 01001110
4F 01001111
50 01010000
51 01010001
52 01010010
53 01010011
54 01010100
55 01010101
56 01010110
57 01010111
58 01011000
59 01011001
5A 01011010
5B 01011011
5C 01011100
5001011101
5E 01011110
5F 01011111
60 01100000
61 01100001
62 01100010
63 01100011
64 01100100
65 01100101
66 01100110
67 01100111
68 01101000
69 01101001
6A 01101010
6B 01101011
6C 01101100
6001101101
6E 01101110
6F 01101111
70 01110000
71 01110001
72 01110010
73 01110011
74 01110100
75 01110101
76 01110110
77 01110111
78 01111000
79 01111001
7A 01111010
7B 01111011
7C 01111100
7001111101
7E 01111110
7F 01111111
80 10000000 MOD 000 RIM
80 10000000 MOD 001 RIM
80 10000000 MOD 010 RIM
80 10000000 MOD 011 RIM
80 10000000 MOD 100 RIM
80 10000000 MOD 101 RIM
80 10000000 MOD 110 RIM
80 10000000 MOD 111 RIM
81 10000001 MOD 000 RIM
81 10000001 MOD 001 RIM

INC OX
INC BX
INC SP
INC BP
INC SI
INC 01
DEC AX
DEC CX
DEC OX
DEC BX
DEC SP
DEC BP
DEC SI
DEC 01
PUSH AX
PUSH CX
PUSH OX
PUSH BX
PUSH SP
PUSH BP
PUSH SI
PUSH 01
POP AX
POP CX
POP OX
POP BX
POP SP
POP BP
POP SI
POP 01
(not used)
(not used)
(not used)
(not used)
(not used)
(not 'Used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
(not used)
JO DISP8
JNO DISP8
JB/JNAE DISP8
JNB/JAE DISP8
JE/JZ DISP8
JNE/JNZ DISP8
JBE/JNA DISP8
JNBE/JA DISP8
JS 0lSP8
JNS DISP8
JP/JPE DISP8
JNP/JPO DISP8
JL/JNGE DISP8
JNL/JGE 0lSP8
JLE/JNG DISP8
JNLE/JG DISP8
ADD EA,DATA8
OR EA,DATA8
ADC EA,DATA8
SBB EA,DATA8
AND EA,DATA8
SUB EA,DATA8
XOR EA,DATA8
CMP EA,DATA8
ADD EA,OATA16
OR EA,DATA16

INCREMENT (OX)
INCREMENT (BX)
INCREMENT (SP)
INCREMENT (BP)
INCREMENT (SI)
INCREMENT (01)
DECREMENT (AX)
DECREMENT (CX)
DECREMENT (OX)
DECREMENT (BX)
DECREMENT (SP)
DECREMENT (BP)
DECREMENT (SI)
DECREMENT (01)
PUSH (AX) ON STACK
PUSH (CX) ON STACK
PUSH (OX) ON STACK
PUSH (BX) ON STACK
PUSH (SP) ON STACK
PUSH (BP) ON STACK
PUSH (SI) ON STACK
PUSH (01) ON STACK
POP STACK TO REG AX
POP STACK TO REG CX
POP STACK TO REG OX
POP STACK TO REG BX
POP STACK TO REG SP
POP STACK TO REG BP
POP STACK TO REG SI
POP STACK TO REG 01

JUMPON OVERFLOW
JUMP ON NOT OVERFLOW

8086 Assembly Language

JUMP ON BELOW INOT ABOVE OR EQUAL
JUMP ON NOT BELOW I ABOVE OR EQUAL
JUMP ON EQUAL/ZERO
JUMP ON NOT EQUAL/NOT ZERO
JUMP ON BELOW OR EQUAL/NOT ABOVE
JUMPON NOT BELOW OR EQUAL/ABOVE
JUMPON SIGN
JUMP ON NOT SIGN
JUMP ON PARITY IPARITY EVEN
JUMP ON NOT PARITY/PARITY ODD
JUMP ON LESS/NOT GREATER OR EQUAL
JUMP ON NOT LESS/GREATER OR EQUAL
JUMP ON LESS OR EQUAL/NOT GREATER
JUMP ON NOT LESS OR EQUAL/GREATER
BYTE ADD DATA TO EA
BYTE OR DATA TO EA
BYTE ADD DATA WI CARRY TO EA
BYTE SU B DATA WI BORROW FROM EA
BYTE AND DATA TO EA
BYTE SUBTRACT DATA FROM EA
BYTE XOR OAT A TO EA
BYTE COMPARE DATA WITH (EA)
WORD ADD DATA TO EA
WORD OR DATA TO EA

8086 Assembly Language Instructions In Hexadecimal Order

81 10000001 MOD 010 RIM ADC EA,DATA16 WORD ADD OAT A WI CARRY TO EA
81 10000001 MOD 011 RIM SBB EA,DATA16 WORD SUB DATA WI BORROW FROM EA
85 10000001 MOD 100 RIM AND EA,DATA16 WORD AND DATA TO EA
81 10000001 MOD 101 RIM SUB EA,DATA16 WORDSUBTRACTDATAFROMEA
81 10000001 MOD 110 RIM XOR EA,DATA16 WORDXOR DATA TO EA
81 10000001 MOD 111 RIM CMP EA,DATA16 WORD COMPARE DATA WITH (EA)
82 10000010 MOD 000 RIM ADD EA,DATA8 BYTE ADD OAT A TO EA
82 10000010 MOD 001 RIM (not used)
82 10000010 MOD 010 RIM ADC EA,DATA8 BYTE ADD OAT A W I CARRY TO EA
82 10000010 MOD 011 RIM SBB EA,DATA8 BYTE SUB DATA WI BORROW FROM EA
82 10000010 MOD 100 RIM (not used)
82 10000010 MOD 101 RIM SUB EA,DATA8 BYTESUBTRACTDATAFROMEA
82 10000010 MOD 110 RIM (not used)
82 10000010 MOD 111 RIM CMP EA,DATA8 BYTE COMPARE DATA WITH (EA)
83 10000011 MOD 000 RIM ADD EA,DATA8 WORD ADD DATA TO EA
83 10000011 MOD 001 RIM (not used)
83 10000011 MOD 010 RIM ADC EA,DATA8 WORD ADD DATA WI CARRYTOEA
83 1 000001.1 MOD 011 RIM SBB EA,DATA8 WORD SUB DATA WI BORROW FROM EA
83 10000011 MOD 100 RIM (not used)
83 10000011 MOD 101 RIM SUB EA,DATA8 WORD SUBTRACT DATA FROM EA
83 10000011 MOD 110 RIM (not used)
83 10000011 MOD 111 RIM CMP EA,DATA8 WORD COMPARE DATA WITH (EA)
84 10000100 MOD REGR/M TEST EA,REG BYTE TEST (EA) WITH (REG)
85 10000101 MOD REGRIM TEST EA,REG WORD TEST (EA) WITH (REG)
86 10000110 MOD REGR/M XCHG REG,EA BYTE EXCHANGE (REG) WITH (EA)
87 10000111 MOD REGR/M XCHG REG,EA WORD EXCHANGE (REG) WITH (EA)
88 10001000 MOD REGR/M MOV EA,REG BYTE MOVE (REG) TO EA
89 10001001 MOD REGR/M MOV EA,REG WORD MOVE (REG) TO EA
8A 10001010 MOD REGR/M MOV REG,EA BYTE MOVE (EA) TO REG
8B 10001011 MOD REGR/M MOV REG,EA WORD MOVE (EA) TO REG
8C 10001100 MOD OSR RIM MOV EA,SR WORD MOVE (SEGMENT REG SR) TO EA
8C 10001100 MOD 1-- RIM (not used)
8010001101 MOD REGR/M LEA REG,EA LOAD EFFECTIVE ADDRESS OF EA TO REG
8E 10001110 MOD OSR RIM MOV SR,EA WORD MOVE (EA) TO SEGMENT REG SR
8E 10001110 MOD -- RIM (not used)
8F 10001111 MOD 000 RIM POP EA POP STACK TO EA
8F 10001111 MOD 001 RIM (not used)
8F 10001111 MOD 010 RIM (not used)
8F 10001111 MOD 011 RIM (not used)
8F 10001111 MOD 100 RIM (not used)
8F 10001111 MOD 101 RIM (not used)
8F 10001111 MOD 110 RIM (not used)
8F 10001111 MOD 111 RIM (not used)
90 10010000 XCHG AX,AX EXCHANGE (AX) WITH (AX), (NOP)
91 10010001 XCHG AX,CX EXCHANGE (AX) WITH (CX)
92 10010010 XCHG AX,DX EXCHANGE (AX) WITH (OX)
93 10010011 XCHG AX,BX EXCHANGE (AX) WITH (BX)
94 10010100 XCHG AX,SP EXCHANGE (AX) WITH (SP)
95 10010101 XCHG AX,BP EXCHANGE (AX) WITH (BP)
96 10010110 XCHG AX,SI EXCHANGE (AX) WITH (SI)
97 10010111 XCHG AX,DI EXCHANGE (AX) WITH (01)
98 10011000 CBW BYTE CONVERT (AL) TO WORD (AX)
99 10011001 CWO WORD CONVERT (AX) TO DOUBLE WORD
9A 10011010 CALL DISP16,SEG16 DIRECT INTER SEGMENT CALL
9B 10011011 WAIT WAIT FOR TEST SIGNAL
9C 10011100 PUSHF PUSH FLAGS ON STACK
9010011101 POPF POP STACK TO FLAGS
9E 10011110 SAHF STORE (AH) INTO FLAGS
9F 10011111 LAHF LOAD REG AH WITH FLAGS
AO 10100000 MOV AL,ADDR16 BYTE MOVE (AD DR) TO REG AL
A110100001 MOV AX,ADDR16 WORD MOVE (ADDR) TO REG AX
A210100010 MOV ADDR16,AL BYTE MOVE (AL) TO ADDR
A310100011 MOV ADDR16,AX WORD MOVE (AX) TO ADDR
A410100100 MOVS DSTBSRC8 BYTE MOVE, STRING OP
A510100101 MOVS DST16,SRC16 WORD MOVE, STRING OP
A610100110 CMPS SIPTR,DIPTR COMPARE BYTE, STRING OP
A710100111 CMPS SIPTR,DIPTR COMPARE WORD, STRING OP
A810101000 TEST AL,DATA8 BYTE TEST (AL) WITH DATA
A910101001 TEST AX,DATA16 WORD TEST (AX) WITH DATA
AA10101010 STOS DST8 BYTE STORE, STRING OP
AB10101011 STOS DST16 WORD STORE, STRING OP
AC10101100 LODS SRC8 BYTE LOAD, STRING OP

Instructions In Hexadecimal Order 8086 Assembly Language

AD10101101 LODS SRC16 WORD LOAD, STRING OP
AE 10101110 SCAS DIPTR8 BYTE SCAN, STRING OP
AF 10101111 SCAS DIPTR16 WORD SCAN, STRING OP
BO 10110000 MOV AL,DATA8 BYTE MOVE OAT A TO REG AL
B110110001 MOV CL,DATA8 BYTE MOVE DATA TO REG CL
B210110010 MOV DL,DATAB BYTE MOVE DATA TO REG DL
B310110011 MOV BL,DATA8 BYTE MOVE DATA TO REG BL
B410110100 MOV AH,DATA8 BYTE MOVE OAT A TO REG AH
B510110101 MOV CH,DATA8 BYTE MOVE OAT A TO REG CH
B610110110 MOV DH,DATA8 BYTE MOVE OAT A TO REG DH
B710110111 MOV BH,DATA8 BYTE MOVE OAT A TO REG BH
B810111000 MOV AX,DATA16 WORD MOVE OAT A TO REG AX
B910111001 MOV CX,DATA16 WORD MOVE DATA TO REG CX
BA 10111010 MOV DX,DATA16 WORD MOVE DATA TO REG OX
BB10111011 MOV BX,DATA16 WORD MOVE OAT A TO REG BX
BC10111100 MOV SP,DATA16 WORD MOVE DATA TO REG SP
BD10111101 MOV BP,DATA16 WORDMOVEDATATOREGBP
BE 10111110 MOV SI,DATA16 WORD MOVE OAT A TO REG SI
BF 10111111 MOV DI,DATA16 WORD MOVE OAT A TO REG 01
CO 11000000 (not used)
C111000001 (not used)
C211000010 RET DATA16 INTRA SEGMENT RETURN, ADD DATA TO REG SP
C311000011 RET INTRA SEGMENT RETURN
C4 11 0t>01 00 MOD REGRIM LES REG,EA WORD LOAD REG AND SEGMENT REG ES
C511000101 MOD REGRIM LOS REG,EA WORD LOAD REG AND SEGMENT REG OS
C611000110 MOD 000 RIM MOV EA,DATA8 BYTE MOVE OAT A TO EA
C611000110 MOD 001 RIM (not used)
C611000110 MOD 010 RIM (not used)
C611000110 MOD 011 RIM (not used)
C611000110 MOD 100 RIM (not used)
C611000110 MOD 101 RIM (not used)
C611000110 MOD 110 RIM (not used)
C611000110 MOD 111 RIM (not used)
C711000111 MOD 000 RIM MOV EA,DATA16 WORD MOVE DATA TO EA
C711000111 MOD 001 RIM (not used)
C711000111 MOD 010 RIM (not used)
C711000111 MOD 011 RIM (not used)
C711000111 MOD 100 RIM (not used)
C711000111 MOD 101 RIM (not used)
C711000111 MOD 110 RIM (not used)
C711000111 MOD 111 RIM (not used)
CB11001000 (not used)
C911001001 (not used)
CA11001010 RET DATA16 INTER SEGMENT RETURN, ADD DATA TO REG SP
CB11001011 RET INTER SEGMENT RETURN
CC11001100 INT 3 TYPE 3 INTERRUPT
CD11001101 INT TYPE TYPED INTERRUPT
CE11001110 INTO INTERRUPT ON OVERFLOW
CF11001111 IRET RETURN FROM INTERRUPT
DO 11010000 MOD 000 RIM ROL EA,1 BYTE ROT ATE EA LEFT 1 BIT
DO 11010000 MOD 001 RIM ROR EA,1 BYTE ROTATE EA RIGHT 1 BIT
DO 11010000 MOD 010 RIM RCL EA,1 BYTE ROTATE EALEFTTHRU CARRY 1 BIT
DO 11010000 MOD 011 RIM RCR EA,1 BYTE ROTATE EA RIGHT THRU CARRY 1 BIT
DO 11010000 MOD 100 RIM SHL EA,1 BYTE SHIFT EA LEFT 1 BIT
DO 11010000 MOD 101 RIM SHR EA,1 BYTE SHIFT EA RIGHT 1 BIT
DO 11010000 MOD 110 RIM (not used)
DO 11010000 MOD 111 RIM SAR EA,1 BYTE SHIFT SIGNED EA RIGHT 1 BIT
0111010001 MOD 000 RIM ROL EA,1 WORD ROTATE EA LEFT 1 BIT
0111010001 MOD 001 RIM ROR EA,1 WORD ROTATE EA RIGHT 1 BIT
0111010001 MOD 010 RIM RCL EA,1 WORD ROTATE EA LEFTTHRU CARRY 1 BIT
0111010001 MOD 011 RIM RCR EA,1 WORD ROTATE EA RIGHT THRU CARRY 1 BIT
0111010001 MOD 100 RIM SHL EA,1 WORD SHIFT EA LEFT 1 BIT
0111010001 MOD 101 RIM SHR EA,1 WORD SHIFT EA RIGHT 1 BIT
0111010001 MOD 110 RIM (not used)
0111010001 MOD 111 RIM SAR EA,1 WORD SHIFT SIGNED EA RIGHT 1 BIT
0211010010 MOD 000 RIM ROL EA,CL BYTE ROT ATE EA LEFT (CL) BITS
0211010010 MOD 001 RIM ROR EA,CL BYTE ROTATE EA RIGHT (CL) BITS
0211010010 MOD 010 RIM RCL EA,CL BYTE ROTATE EA LEFT THRU CARRY (CL) BITS
0211010010 MOD 011 RIM RCR EA,CL BYTE ROTATE EA RIGHTTHRU CARRY (CL) BITS
0211010010 M€>D 100 RIM SHL EA,CL BYTE SHIFT EA LEFT (CL) BITS
0211010010 MOD 101 RIM SHR EA,CL BYTE SHIFT EA RIGHT (CL) BITS
0211010010 MOD 110 RIM (not used)
0211010010 MOD 111 RIM SAR EA,CL BYTE SHIFT SIGNED EA RIGHT (CL) BITS

E-4

8086 Assembly Language Instructions In Hexadecimal Order

0311010011 MOD 000 RIM ROL EA,CL WORD ROTATE EA LEFT (CL) BITS
0311010011 MOD 001 RIM ROR EA,CL WORD ROTATE EA RIGHT (CL) BITS
0311010011 MOD 010 RIM RCL EA,CL WORD ROTATE EA LEFTTHRU CARRY (CL) BITS
0311010011 MOD 011 RIM RCR EA,CL WORD ROTATE EA RIGHT THRU CARRY (CL) BITS
0311010011 MOD 100 RIM SHL EA,CL WORD SHIFT EA LEFT (CL) BITS
0311010011 MOD 101 RIM SHR EA,CL WORD SHIFT EA RIGHT (CL) BITS
0311010011 MOD 110 RIM (not used)
0311010011 MOD 111 RIM SAR EA,CL WORD SHIFT SIGNED EA RIGHT (CL) BITS
0411010100 00001010 AAM ASCII ADJUST FOR MULTIPLY
0511010101 00001010 ADD ASCII ADJUST FOR DIVIDE
0611010110 (not used)
0711010111 XLAT TABLE TRANSLATE USING (BX)
0811011--- MOD --- RIM ESC EA ESCAPE TO EXTERNAL DEVICE
EO 11100000 LOOPNZ/LOOPNE DISP8 LOOP (CX) TIMES WHILE NOT ZERO/NOT EQUAL
E1 11100001 LOOPZI LOOPE DISP8 LOOP (CX) TIMES WHILE ZERO/EQUAL
E211100010 LOOP DISP8 LOOP (CX) TIMES
E311100011 JCXZ DISP8 JUMP ON (CX)=O
E411100100 IN AL,PORT BYTE INPUT FROM PORT TO REG AL
E511100101 IN AX,PORT WORD INPUT FROM PORT TO REG AX
E611100110 OUT PORT,AL BYTE OUTPUT (AL) TO PORT
E711100111 OUT PORT,AX WORD OUTPUT (AX) TO PORT
E811101000 CALL DISP16 DIRECT INTRA SEGMENT CALL
E9 11101001 JMP DISP16 DIRECT INTRA SEGMENT JUMP
EA 11101010 JMP DISP16,SEG16 DIRECT INTER SEGMENT JUMP
EB 1110101 0 JMP DISP8 DIRECT INTRA SEGMENT JUMP
EC11101010 IN AL,DX BYTE INPUT FROM PORT (OX) TO REG AL
ED11101010 IN AX,DX WORD INPUT FROM PORT (OX) TO REG AX
EE 11101010 OUT DX,AL BYTE OUTPUT (AL) TO PORT (OX)
EF 11101010 OUT DX,AX WORD OUTPUT (AX) TO PORT (OX)
FO 11110000 LOCK BUS LOCK PREFIX
F1 11110001 (not used)
F211110010 REPNZ REPEAT WHILE (CX)i=O AND (ZF)=O
-F311110011 REPN REPEAT WHILE (CX)i=O AND (ZF)=1
F4 11110100 HLT HALT
F511110101 CMC COMPLEMENT CARRY FLAG
F6 11110110 MOD 000 RIM TEST EA,DATA8 BYTE TEST (EA) WITH OAT A
F6 11110110 MOD 001 RIM (not used)
F611110110 MOD 010 RIM NOT EA BYTE INVERT EA
F611110110 MOD 011 RIM NEG EA BYTE N EGA TE EA
F611110110 MOD 100 RIM MUL EA BYTE MULTIPLY BY (EA), UNSIGNED
F6 11110110 MOD 101 RIM IMUL EA BYTE MULTIPLY BY (EA), SIGNED
F6 11110110 MOD 110 RIM DIV EA BYTE DIVIDE BY (EA), UNSIGNED
F6 11110110 MOD 111 RIM IDIV EA BYTE DIVIDE BY (EA), SIGNED
F7 11110111 MOD 000 RIM TEST EA,DATA16 WORD TEST (EA) WITH DATA
F7 11110111 MOD 001 RIM (not used)
F7 11110111 MOD 010 RIM NOT EA WORD INVERT EA
F7 11110111 MOD 011 RIM NEG EA WORD NEGATE EA
F7 11110111 MOD 100 RIM MUL EA WORD MULTIPLY BY (EA), UNSIGNED
F7 11110111 MOD 101 RIM IMUL EA WORD MULTIPLY BY (EA), SIGNED
F7 11110111 MOD 110 RIM DIV EA WORD DIVIDE BY (EA), UNSIGNED
F7 11110111 MOD 111 RIM IDIV EA WORD DIVIDE BY (EA), SIGNED
F811111000 CLC CLEAR CARRY FLAG
F9 11111001 STC SET CARRY FLAG
FA 11111010 CLI CLEAR INTERRUPT FLAG
FB11111011 STI SET INTERRUPT FLAG
FC 111111 00 CLD CLEAR DIRECTION FLAG
FD11111101 STD SET DIRECTION FLAG
FE 11111110 MOD 000 RIM INC EA BYTE INCREMENT EA
FE 11111110 MOD 001 RIM DEC EA BYTE DECREMENT EA
FE 11111110 MOD 010 RIM (not used)
FE 11111110 MOD 011 RIM (not used)
FE 11111110 MOD 100 RIM (not used)
FE 11111110 MOD 101 RIM (not used)
FE 11111110 MOD 110 RIM (not used)
FE 11111110 MOD 111 RIM (not used)
FF 11111111 MOD 000 RIM INC EA WORD INCREMENT EA
FF 11111111 MOD 001 RIM DEC EA WORD DECREMENT EA
FF 11111111 MOD 010 RIM CALL EA INDIRECT INTRA SEGMENT CALL
FF 11111111 MOD 011 RIM CALL EA INDIRECT INTER SEGMENT CALL
FF 11111111 MOD 100 RIM JMP EA INDIRECT INTRA SEGMENT JUMP
FF 11111111 MOD 101 RIM JMP EA INDIRECT INTER SEGMENT JUMP
FF 11111111 MOD 110 RIM PUSH EA PUSH (EA) ON STACK
FF 11111111 MOD 111 RIM (not used)

E-5

Instructions In Hexadecimal Order 8086 Assembly Language

REG IS ASSIGNED ACCORDING TO THE FOLLOWING TABLE:

16-BIT (W=1) 8-BIT(W=0) SEGMENT REG

000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

EA IS COMPUTED AS FOLLOWS: (DISP8 SIGN EXTENDED TO 16 BITS)

00 000 (BX) + (SI) DS
00 001 (BX)+(DI) DS
00 010 (BP) + (SI) SS
00 011 (BP)+(DI) SS
00 100 (SI) DS
00 101 (DI) DS
00 110 DISP16 (DIRECT ADDRESS) DS
00 111 (BX) DS
01 000 (BX)+(SI)+DISP8 DS
01 001 (BX)+(DI)+DISP8 DS
01 010 (BP) + (SI) + DISP8 SS
01 011 (BP)+(DI)+DISP8 SS
01 100 (SI) + DISP8 DS
01 101 (DI) + DISP8 DS
01 110 (BP) + DISP8 SS
01 111 (BX)+DISP8 DS
10 000 (BX)+(SI)+DISP16 DS
10 001 (BX)+(DI)+DISP16 DS
10 010 (BP)+(SI)+DISP16 SS
10 011 (BP)+(DI)+DISP16 SS
10 100 (SI) + DISP16 DS
10 101 (DI) + DISP16 DS
10 110 (BP) + DISP16 SS
10 111 (BX) + DISP16 DS
11 000 REG AX / AL
11 001 REG CX / CL
11 010 REG DX / DL
11 011 REG BX / BL
11 100 REG SP / AH
11 101 REG BP / CH
11 110 REG SI/ DH
11 111 REG DI/ BH

FLAGS REGISTER CONTAINS:

X:X:X:X:(OF):(DF):(IF):(TF):(SF):(ZF):X:(AF):X:(PF):X:(CF)

E-6

8086 Assembly Language

8086 INSTRUCTION

Lo
Hi 0 1 2 3 4 5 6

0 --ADD ADD ADD ADD ADD ADD PUSH
b,t,r/m w,t,r/m b,Lr/m w,t,r/m b, ia w,la ES

1 -ADC ADC ADC ADC ADC
----- -------
ADC PUSH

b,t,r/m w,t,r/m b,t,r/m w,t,r/m b,i W,I SS ----
2 AND AND AND AND AND AND SEG

b,/.r/m w,Lr/m b,t.r/m w,t,r/m b,i W,I ES
3 XOR XOR XOR XOR XOR XOR SEG

b,Lr/m w,t,r/m b,t.r/m w,i.r/m b,i w,i SS
---- . ----- ---

4 INC INC INC INC INC INC INC
AX CX DX BX SP BP SI

5 PUSH pUSH
e--- ----- f------- ------ ---- --

PUSH PUSH PUSH PUSH PUSH
AX CX OX BX SP BP SI ---------- ---- -- ---

6

--~- --
7 JO JNO JBI JNBI JEI JNEI JBEI

JNAE JAE JZ JNZ JNA
Immed

---c-1------:-------1--------- --
8 Immed Immed Immed TEST TEST XCHG

b,r/m w,r/m b,r/m is,r/m b,r/m w,r/m b,r/m
-~ -------

9 XCHG XCHG XCHG XCHG XCHG XCHG XCHG
AX CX DX BX SP BP SI

1--'
MOV-

,---- -------~--- --------
A MOV MOV MOV MOVS MOVS CMPS rn ~ AL rn ~ AX AL -. m AX -- m

B MOV MOV MOV MOV MOV MOV MOV
i -- AL i ~ CL i ~ DL i- BL i - AH i- CH i - DH ----- ----

C RET, RET LES LDS MOV
(i+SP) b,i,r/m

0
f----

Shift Shift Shift Shift
----- -----

AAM AAD b W b,v W,v
---c:--- ---- --- -------"

E LOOPNZI LOOPZI LOOP JCXZ IN IN OUT
LOOPNE LOOPE b W b

--- -Grp-i -F LOCK REP REP HLT CMC
Z b,r/m

~-

where

modOr/m 000 001 010 0
Immed ADD OR ADC S

-------~-
Shift RDL RDR RCL R
Grp 1 TEST - NOT N
Grp 2 INC DEC CALL CA

id I.i

7 Hi
-~

POP 0
ES

1--------
POP I
SS

DAA 2

1- ---

AAA 3

INC 4
01

PUSH 5

01

6

JNBEI 7
JA

XCHG 8
w,r/m
r-~

XCHG
DI 9

CMPS A
-~

MOV B
i - BH
~-MOV C

w,i.r/m
r-----

XLAT 0

-------c:--

OUT E
W

----- --
Grp 1 F

w,r/m

Instructions In Hexadecimal Order

SET MATRIX

L 0
8 9 A

OR OR OR
b,t,r/m w,t,r/rn b,t.r/m

SBB SBB SBB

b,t,r/m w,/.r/m b,t.r/m

SUB SUB SUB
b,t,r/m w,Lr/m b,t.rim

CMP CMP CMP
b,t,r/m w,t,r/m b,t.r/m

DEC DEC DEC
AX CX DX - --

POP POP POP

~ CX OX r--- --

--r----- - f--

JS JNS JP!
JPE

- --I--
MOV MOV MOV

b,t,r/m w,Lr/m b,t.r/m
J------ _._- -

CBW CWD CALL
I.d

TEST TEST
--~---

b,l,a w,l,a STOS

MOV-

MOV MOV
i ~ AX i- CX i- DX

RET,
l.(i<SP)

ESC ESC ESC
0 1 2

CALL JMP JMP
d d I.d

CLC STC CLI

b = byte operation
d ~ direct
f = from CPU reg
i = immediate
ia = immed, to accum_
id = indirect

OR
w,t,r/m

SBB
w,t.r/m

SUB
w,t,r/m

CMP
w,t,r/m

DEC
BX

POP
BX

JNPI
JPO

MOV
w,t,r/m

WAIT

STOS

MOV
1- BX

RET
I

ESC
3

JMP
si.d

STI

is = immed, byte, sign ext.
I = long ie_ intersegment

OR OR PUSH
b,i W,I CS

SBB SBB PUSH
b,1 W,I OS

SUB SUB SEG
b,i W,I CS

CMP CMP SEG
b,1 W,I OS

DEC DEC DEC
SP BP SI

POP POP POP
SP BP SI

JLI JNLI JLEI
JNGE JGE JNG

MOV MOV
sr,f,r/m LEA sr,t,r/m

PUSHF POPF SAHF

LODS LODS SCAS

MOV MOV MOV
I . SP I • BP i • SI

INT INT
Type 3 (Any) INTO

ESC ESC ESC
4 5 6
IN IN OUT
v,b V,W v,b

CLo STO
Grp 2
b.r/m

m = memory
rIm EA is second byte
si' short intrasegment
sr = segment register
t to CPU reg
v variable
W -- word operation
z zero

POP
OS

oAS

AAS

DEC
01

POP
01

JNLEI
JG

POP
rim

LAHF

SeAS

MOV
I - 01

IRET

ESC
7

OUT
V,W

Grp 2
w.r/m

E-7

DUAL FUNCTION KEYWORD/SYMBOLS

AND NOT OR

SYMBOLS

A CLD OX
AAA CLI ES
AAD CMC ESC
AAM CMP FAC
AAS CMPS FALC
ADC CMPSB HLT
ADD CMPSW IDIV
AH CS IMUL
AL CWO IN
AX CX INC
BH DAA INT
BL DAS JB
BP DEC INTO
BX DH IRET
CALL 01 JA
CBW DIV JAE
CH DL JB
CL ES JBCZ
CLC OS JBE

NON-CONFLICTING KEYWORDS

DEBUG NOPRINT
EJECT NOSYMBOLS
ERRORPRINT NOXREF
GEN OBJECT
GENONLY PAGELENGTH
INCLUDE PAGEWIDTH
LIST PAGING
MEMORY PRINT
NODEBUG RESTORE
NOERRORPRINT SAVE
NOGEN STACK
NOLIST SYMBOLS
NOOBJECT TITLE
NOPAGING WORKFILES

HANDS-OFF KEYWORDS

ABS ENDS
ASSUME EO
AT EOU
BYTE EVEN
COMMON EXTRN
CODEMACRO FAR
DB GE
DO GROUP
DUP GT
OW HIGH
DWORD INPAGE
END LABEL
ENDM LE
ENDP LENGTH

APPENDIX F I
PREDEFINED NAME~

SHL SHR XOR

JC JNZ MOV ROR
JE JO MOVS SAHF
JE JP MOVSB SAL
JGE JPE MOVSW SAR
JL JPO MUL SBB
JLE JS NEG SCAS
JMP JZ NIL SCASB
JNA LAHF OUT SCASW
JNAE LOS POP SI
JNB LEA POPF SP
JNBE LES PUSH SS
JNC LOCK PUSHF STC
JNE LODS RCL STD
JNG LODSB RCR STI
JNGE LODSW REPE STOS
JNLE LOOP REPNE STOSB
JNO LOOPE REPNZ STOSW
JNP LOOPNZ REPZ SUB
JNS LOOPZ RET TEST

WAIT
XCHG
XLAT
XLATB
??SEG

LOW PREFX STACK
LT PROC THIS
MASK PROCLEN TYPE
MEMORY PTR WIDTH
MOD PUBLIC WORD
MODRM PURGE ?
NAME RECORD
NE RELB
NEAR RELW
NOTHING SEG
OFFSET SEGFIX
ORG SEGMENT
PAGE SHORT
PARA SIZE

F-l

APPENDIX GI
RELOCATION

Address expressions and numeric expressions may have results which cannot be
known until the program has been positioned in memory. These expressions are
relocatable. The following rules define (1) when an expression is relocatable
and (2) what kind of arithmetic is allowable with relocatable numbers and
relocatable address expressions.

NOTE

Associated with every relocatable value is a set of relocation attributes. The
assembler tells the R & L system how to calculate the final absolute value via
these attributes.

Relocatable Expressions

The following rules define when an expression is relocatable. The EQU facility of
the assembler allows a symbol to have as its value the results of a relocatable expres
sion. Therefore, any relocatable expressions may be embodied in a single symbol.

1. Segments and Groups. A segment is considered "non-relocatable" if

a. It has either PARA or PAGE alignment type and it is not a PUBLIC or
STACK segment

b. It is absolute (Le., defined via "AT exp").

A non-relocatable segment has the property that the run-time offset of any byte
in the segment is known at assembly time.

The name of a segment or group may be used in an expression. The name then
stands for the paragraph number in 8086 memory space where the segment or
group will be located. If a segment is defined via "At exp", then this number is
known at assembly time and is "absolute". Otherwise, the paragraph number
will not be known until the program has been located by LOC86 (or QRL86)
and is "base" relocatable

2. The offset of a variable or label is known at assembly time (called an
"absolute" offset) if it meets both these tests:

a. its containing segment is non-relocatable

b. it was defined by appearing as a statement label, or to the left of a DB, DW,
DD, or LABEL directive, or by an expression of the kind "THIS type"

The variable's offset is NOT known at assembly time, i.e., is "offset"
relocatable, if it fails either (a) or (b). Variables or labels defined by an EX
TRN statement always have relocatable offsets, (i.e., are "offset"
relocatable).

3. Numbers. A symbol is a number if

a. it was defined in an EXTRN statement with type ABS, or

b. it is the name of a group or segment, or

c. it is defined by EQUating it to an expression evaluating to a number.

Numbers defined by (a) are always "offset" relocatable, numbers as in (b) are
either absolute or "base" relocatable as described in 1 above. Numbers defined
via (c) receive the relocation attributes of the expression. Rules governing
relocation of expressions are discussed below.

A number whose value is known at assembly time is called an "absolute"
number.

0-1

Relocation

0-2

8086 Assembly Language

4. Expressions. Expressions evaluate to either a number or an address expression.
The rules governing expression evaluation are given in Chapter 5. The following
rules define how relocation affects expression evaluation.

a. The SHORT operator does not affect relocation.

b. The operators OR, XOR, AND, and NOT may only operate on absolute
numbers. The result of one of these operations is always an absolute
number.

c. The relational operators EQ, NE, GT, GE, LT, and LE may have operands
which are

i. both absolute numbers.

ii. both relocatable numbers. The numbers must have exactly the same
relocation attributes.

iii. Variables and/or Labels. The operands must have exactly the same
relocation attributes

The result of a relational operation is always an absolute Number.

d. The operators + and -. Two relocatable expressions may never be added.
A relocatable expression may appear to the right of "-" if a relocatable ex
pression is on the left, and the two expressions relate as in c above. In this
case, the result is always an absolute number. An absolute number may be
added to or subtracted from a relocatable expression. A relocatable number
may be added to an indexing register. The result has an offset which is iden
tical to the number.

e. The operators *, /, MOD, SHL, SHR only operate on absolute numbers
and the result is always an absolute number.

f. HIGH and LOW accept either a number or a variable or label as an
operand. If the operand is an absolute number, the result is an absolute
number. If the operand is a variable or label with an absolute offset, then
the result is an absolute number. If the variable or label has a relocatable of
fset, then the offset is treated as a relocatable number and the following
rules apply:

Let RN be a relocatable number with relocation type

i. "low", then LOW RN = RN and HIGH RN = 0

ii. "high", then LOW RN = RN and HIGH RN = 0

iii. "offset" then LOW RN = RN', which is "low" relocatable and HIGH
RN = RN', which is "high" relocatable

iv. "base" then HIGH and LOW are illegal.

g. TYPE always returns an absolute number. The operand to the OFFSET
operator must be an expression evaluating to a variable or label. If the
operand has a relocatable offset, then the result is a relocatable number
with the same relocation attributes as the offset. If the operand has an ab
solute offset, then the result is an absolute number. In either case, the value
of the result will equal the operand's offset (i.e., as described in (2) above or
PTR and ":" below).

The SEG operator operates on any legal address expression and returns the
paragraph number (or segment register) of that address expression. The resulting
number is relocatable or absolute as defined in I above.

The PTR operator can be used in two ways; the simplest just changes the type at
tribute of an address expression. No relocation attributes are affected by this action.
The other aspect of the PTR operator is to create a variable or label from its two
operands. One of the operands must be an absolute number (the type). The other
operand represents the offset of the new quantity. This operand may be absolute or
any legal relocatable number. Note that this includes "low", "high", or "base"

8086 Assembly Language

relocatable numbers, as well as "offset" relocatable numbers. The result of this
usage of PTR is a variable or label with no segment part and an offset part which is
exactly equal to the offset of the operand, including any relocatable attributes that
operand has. This result is not valid in any context except as an operand to the seg
ment override operator, the OFFSET operator, or the TYPE operator.

The SEGMENT OVERRIDE operator, ":" is interpreted as follows:

i. The left operand is restricted to be one of

1. A segment register

2. A segment name defined in this module

3. A group name

ii. The right operand must be an address expression.

iii. If the left operand is a segment register or segment name, the OFFSET
of the right operand is first determined and then a new address expres
sion is formed as the result. The segment portion of the result is the left
operand. The offset of the result is the OFFSET of the right operand,
which may be relocatable.

iv. If the left operand is a group name, then the result has the group as its
segment part. The number of bytes from the base of the group to the
right operand is the offset of the result. This offset is always
relocatable.

The following notation will allow a more exact description of the results from
using PTR and the SEGMENT OVERRIDE operator ":". "Vsada" will stand
for an address expression. The "s" is its segment part (segment name, group
name, segment register, or 0 for undefined). The "d" is its offset part, and "a"
is the type (BYTE, WORD, DWORD, NEAR, FAR).

Let d be any number (absolute or relocatable) and a be any valid type. Then

a ptr d = VOda,

an address expression whose offset is exactly equal to d and whose type is a. The
segment part is undefined, i.e., the paragraph number to which the offset must
be added to obtain a valid 8086 memory address.

Let s be a segment name, let r be a segment register and let g be a group name.
Then

s: Vs'da = Vsd'a and
r : Vs'da = Vrd'a

where d' = OFFSET(Vs'da). Morever,

g: Vs'da = Vgd'a,

where d' = OFFSET(Vs'da) + (s' - g) * 16. In this case, d must be either ab
solute or "offset" -relocatable FROM s'. Furthermore,

g: VOda = Vgda,

which represents an offset of d from the base of g.

A symbol is an absolute number if one of the following applies:

1. it represents the paragraph number of a segment defined by "At exp" .

2. it is equated to an expression involving only absolute numbers.

3. it is the OFFSET of a variable or label defined in a non-relocatable segment.

4. it is equated to the comparison or difference of two expressions.

5. it is equated to any expression whose result is always an absolute number,
regardles of the types of operands in the expression (e.g., TYPE, LENGTH,
SIZE, WIDTH, BYTE, WORD, DWORD, NEAR, FAR)

6. it is equated to the HIGH or LOW of an absolute number or a variable or label
as described in 2 above.

Relocation

0-3

Relocation

0-4

8086 Assembly Language

A symbol is a relocatable number if and only if it is a number and not absolute.

Assume that Nabs is an absolute number, Nrel is a relocatable number, Vabs is a
variable or label whose offset is absolute, Vrel is a variable or label whose offset is
relocatable, s is the name of a segment whose paragraph number is not known at
assembly time, and g is a group name. The expressions shown in the following list
are the only expressions which yield a relocatable result:

EXPRESSION VALUE

Nrel Nrel
Vrel Vrel
9 Nrel
s Nrel

Nabs + Nrel Nrel
Nabs + Vrel Vrel
Nabs + s Nrel
Nabs + 9 Nrel

Nrel + Nabs Nrel
Vrel + Nabs Vrel
s + Nabs Nrel
9 + Nabs Nrel

Nrel- Nabs Nrel
Vrel - Nabs Vrel
s - Nabs Nrel
9 - Nabs Nrel

HIGH Vrel Nrel
HIGH Nrel Nrel

LOWVrel Nrel
LOW Nrel Nrel

s : Nabs PTR Nabs' Vrel
9 : Nabs PTR Nabs' Vrel

s : Nabs PTR Nrel Vrel
9 : Nabs PTR Nrel Vrel

s: Vabs Vrel
g: Vabs Vrel

SEG Vrel Nrel
OFFSETVrel Nrel

The expressions shown in the following list are the expressions which involve
relocatable quantities, but always yield an absolute result:

where r is one of

Vrel- Vrel
Nrel- Nrel

Vrel rVrel
Nrel r Nrel

EQ
NE
GT
GE
LT
LE

The result is always Nabs.

APPENDIX H I
GETTING STARTED

The primary purpose of this appendix is to show a simple way to get started using
ASM86. The information is given in four sections, corresponding to four cases of
the size or program code and data (including stack).

Each section summarizes the required and recommended declarations to simplify
coding and references to data. Linking with PLM86 is described in the ASM86
Operator's Manual.

The four cases are:

1. total code size less than 64K bytes, total data size less than 64K bytes, total stack
size less than 64K bytes

2. total code size greater than 64K, total data and stack each less than 64K

3. total code and stack size each less than 64K, total data size greater than 64K

4. code and data greater than 64K, stack less than 64K

These numbers refer to the sizes after all modules have been linked.

Code, Data, and Stack Sizes Each Less Than 64K

Segments

For the first case, there are 3 types of segments:

1. code, which contains the instructions the program will execute,

2. data, which contains the data being manipulated and

3. stack, which will contain temporary data, procedure parameters, return
addresses, etc.

In this case, it is advisable that the final program have only one code segment, one
data segment, and one stack segment. There can, however, be many modules which
ultimately become linked into this final program.

This situation is completely handled by declaring the segments to have the PUBLIC
attribute, as shown below for each type of segment.

Code

The declaration is

CODE SEGMENT PUBLIC
o
o ; ASM86 instructions
o

CODE ENDS

The PUBLIC attribute is used to combine all segments of the same name, defined in
different modules, into a single final segment for execution.

H-l

Getting Started 8086 Assembly Language

H-2

Data

The declaration is

DATA SEGMENT PUBLIC
o
o ; data declarations
o

DATA ENDS

Again, the PUBLIC attribute is used to insure that there will be only one such seg
ment in the final program. This segment will be composed of all segments named
DATA from all modules linked together.

Stack

The declaration is

STACK

STACK

SEGMENT
DW

ENDS

STACK
N DUP (?)

N is the maximum number of stack words used by this module at anyone time, e.g.,
the maximum depth of procedure nesting plus all parameters used by these pro
cedures, plus any data stored temporarily on the stack by any such procedure in this
module. The STACK attribute automatically makes this segment public as well.

If this is the main module, then the line preceding this ENDS should read

STACK_TOP LABEL WORD

This enables this main module to initialize the SS and SP registers with the following
code:

o
o

MOV AX, STACK
MOV SS, AX
MOV SP, OFFSET STACK_TOP

o
o
o
o

This code belongs only in the main module. (LINK86 and LOC86 or QRL86 will
correctly adjust the offset of STACK_TOP.) Any other module which uses the
stack must use the declaration above, but it is not necessary to declare
STACK_TOP. Such a module should not reinitialize SS and SP.

ASSUME Directive

There need be only one ASSUME per module:

ASSUME CS:CODE, DS:DATA, ES:DATA, SS:STACK

The ES, DS, and SS registers must be explicitly loaded by your code. Therefore a
sample main module skeleton is as follows:

8086 Assembly Language Getting Started

ASSUME CS:CODE, DS:DATA, ES:DATA, SS:STACK
STACK SEGMENT STACK

OW 10 DUP (?)
STACK_TOP LABEL WORD
STACK ENDS
DATA SEGMENT PUBLIC

o
o
o

DATA ENDS

CODE
START:

SEGMENT
MOV AX,
MOV OS,
MOV ES,
MOV AX,
MOV SS,
MOV SP,

o
o
o
o

CODE ENDS

PUBLIC
DATA
AX
AX
STACK
AX
OFFSET

END START

; Paragraph 1# of Data segment to AX
; then to OS
; and ES
; Paragraph 1# of Stack segments to AX
; then to SS
STACK_TOP
; offset of the top of the stack
; to the SP

Code Greater Than 64K, Data and Stack
Each Less Than 64K
The data and stack segments are treated the same as in case 1. There are many op
timal methods to organize the code segments. One example would be for each
module to have a private code segment. This means each such code segment must
have a unique name and must omit the PUBLIC attribute on the segment directive.

Example:

(In module A)
A_CODE P1 PROC FAR

o
o
o

(In module B)
B_CODE SEGMENT

o
0

P1 PROC FAR
0

0

0

RET
P1 ENDP

0

0

0

B_CODE ENDS

H-3

Getting Started 8086 Assembly Language

H-4

This will result in all intermodule jumps and calls being "long" (Le., FAR).
Therefore if a procedure is going to be called from another module it should be
FAR.

Total Code and Stack Sizes Each Less Than 64K,
Data Size Greater Than 64K
In this case, code and stack segments are handled exactly as they were in case I. Data
segments, however, should be constructed to minimize changing the contents of the
DS and ES registers.

This is usually a problem-specific optimization. As an example, the ES register could
contain the paragraph number of a segment containing global data, which is
referenced from many modules. The ES would remain fixed throughout the pro
gram. On the other hand, the DS register could point to a segment containing data
local to a module or group of modules. As program control switches to a new
module, the DS register would change to point to the local data segment of the new
module. The following (non-main) module skeleton is an example of this:

ASSUME CS: CODE, DS: L_DATA, ES: G_DATA, SS: STACK

STACK SEGMENT STACK
DW 8 DUP (?)

; Maximum of 8 words of stack used at anyone time by this module
STACK ENDS

PUBLIC BUFFER, B_COUNT ; Global data declared in this module

G_DATA SEGMENT PUBLIC
BUFFER DB 80 DUP (' ') ;Buffer initialized to 80 blanks
B_COUNT DB?
G_DATA ENDS

L_DATA SEGMENT
o
o
o

LDATA ENDS

PUBLIC P

CODE SEGMENT .PUBLIC

P PROC NEAR
PUSH DS
MOV AX, L_DATA
MOV DS,AX

0

0

0

POP DS
RET

p ENDP

CODE ENDS
END

; Data structures local to this module

; P is a public procedure

; Save the old DS register contents
; Paragraph number of L_data to AX
; and then to DS

; restore the DS contents
; return to caller

8086 Assembly Language

The segments CODE and G_DAT A are public, they will be combined with the
other CODE and G_DAT A segments respectively from the other modules which
comprise the total program. This will also happen for the segment STACK. The seg
ment L_DA T A is not public, since the data in that segment is only referenced in
this module.

The DS register is saved when this module is entered (presumably by a call to the
public procedure P) and restored when this module is exited.

Code and Data and Stack Each Possibly Greater Than
64K Bytes
Code segments will be private as in case 2. Data segments would be handled as above
in case 3. Since it is desirable to reduce the overhead of switching segment registers
frequently," the design of programs this large should emphasize modularity.

Getting Started

. H-5

• 0 APPENDIX J
INSTRUCTION SET REFERENCE DATA n

Table J -1. Effective Address Calculation
Time

EA COMPONENTS CLOCKS·

Displacement Only 6
Base or Index Only (BX,BP,SI,DI) 5
Displacement

+ 9
Base or Index (BX,BP,SI,DI)
Base BP+DI, BX+SI 7

+
Index BP+SI, BX+DI 8
Displacement BP+ 01+ DISP

11
+ BX+SI+ DISP

Base
+ BP+SI+ DISP

12 Index BX + 01 + DISP

* Add 2 clocks for segment override

Key to Flag Codes:

1 = unconditionally set
o = unconditionally cleared
X =altered to reflect operation result

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10 010 of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructiom, however, is always
repeatable, assuming comparable external condi
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle ~uch as the
SDK-86 or the iSBC 86/12TM board.

U =undefined (mask it out)
R = replaced from memory (e.g., SAHF)
b = (blank) unaffected

ODITSZAPC AAA I AAA (no operands)
ASCII adjust for addition

Flags
U U U X U X

Operands Clocks Transfers· Bytes Coding Example
--

(no operands) 4 - 1 AAA

--
AAD IAAD (no operands)

Flags
ODITSZAPC

ASCII adjust for division U X X U X U

Operands Clocks Transfers· Bytes Coding Example
--

(no operands) 60 - 2 AAD

--

AAM I AAM (no operands) Flags
ODITSZAPC

ASCII adjust for multiply U X X U X U

Operands Clocks Transfers· Bytes Coding Example
--

(no operands) 83 - 1 AAM

--
AAS I AAS (no operands) Flags

ODITSZAPC
ASCII adjust for subtraction U U U X U X

Operands I Clocks I Transfers· I Bytes Coding Example

(no operands) I 4 I - I 1 AAS

--

ADC I ADC destination,source
Flags

0 DITSZAPC
Add with carry X X X X X X

--
Operands Clocks Transfers· Bytes Coding Example

-- -' .. -'- --- .<c_

register, register 3 - 2 ADC AX, SI
register, memory 9+ EA 1 2-4 ADC OX, BETA ISII
memory, register 16+ EA 2 2-4 ADC ALPHA IBXj [SII. 01
register, immediate 4 - 3-4 ADC BX,256
memory, immediate 17+EA 2 3-6 ADC GAMMA.30H
accumulator, immediate 4 - 2-3 ADC AL.5

'For the 8086. add four clocks for each 16-bit word transfer with an odd addressc For the 8088. add four clocks for each 16-bit word transfer

J-l

Instruction Set Reference Data 8086 Assembly Language

ADD IADD destination.source Flags
ODITSZAPC

Addition X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register. register 3 - 2 ADD CX, DX
register, memory 9+ EA 1 2-4 ADD DI, IBXI.ALPHA
memory, register 16+EA 2 2-4 ADD TEMP, CL
register, immediate 4 - 3-4 ADD CL,2
memory, immediate 17+EA 2 3-6 ADD ALPHA.2
accumulator. immediate 4 - 2-3 ADD AX, 200

AND lAND destination.source Flags
ODITSZAPC

Logical and 0 X X U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG _ WORD
memory, register 16+ EA 2 2-4 AND ASCIIIDI],AL
register, immediate 4 - 3-4 AND CXO,FOH
memory, immediate 17+EA 2 3-6 AND BETA,01H
accumulator, immediate 4 - 2-3 AND AX,01010000B

CALL ICALL target Flags
ODITSZAPC

Call a procedure

Operands Clocks Transfers· Bytes Coding Examples

near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memptr 16 21 +EA 2 2-4 CALL PROC_ TABLE lSI]
regptr 16 16 1 2 CALL AX
memptr 32 37+ EA 4 2-4 CALL IBX].TASK lSI]

CBW ICBW (no operands)
Flags

ODITSZAPC
Convert byte to word

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 CBW

CLC I CLC (no operands) Flags
ODITSZAPC

Clear carry flag 0

Operands I Clocks I Transfers· I Bytes Coding Example

(no operands) I 2 I - I 1 CLC

CLD I CLD (no operands) Flags
ODITSZA P C

Clear direction flag 0

Operands Clocks I Transfers· I Bytes Coding Example

(no operands) 2 I - I 1 CLD

CLI I CLI (no operands) Flags
ODITSZA P C

Clear interrupt flag a
Operands Clocks I Transfers· Bytes Coding Example

(no operands) 2 I - 1 CLI

CMC I CMC (no operands) Flags
ODITSZA P C

Complement carry flag X

Operands Clocks I Transfers· I Bytes Coding Example

(no operands) 2 I - I 1 CMC

. For the 8086. add four clocks for each 16-bli word transfer Witt' . ." odd address. For the 8088. add four clocks lor each 16·blt word transler

J-2

8086 Assembly Language Instruction Set Reference Data

CMP I CMP destination.source Flags
o 0 ITS ZAP C

Compare destination to source X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 CMP BX.CX
register, memory 9+ EA 1 2-4 CMP DH. ALPHA
memory, register 9+ EA 1 2-4 CMP lBP + 2]. SI
register, immediate 4 - 3-4 CMP BL.02H
memory, immediate 10+ EA 1 3-6 CMP [BXJRADAR [01]. 3420H
accumulator, immediate 4 - 2-3 CMP AL.00010000B

CMPS I CMPS dest-string.source-string
Flags

ODITSZAPC
Compare string X X X X X X

Operands Clocks Transfers· Bytes Coding Example

dest-string, source-string 22 2 1 CMPS BUFF1. BUFF2
(repeat) dest-string. source-string 9 + 22/rep 2/rep 1 REPE CMPS 10. KEY

CWD I CWD (no operands) Flags
ODITSZA P C

Convert word to doubleword
-

Operands Clocks Transfers· Bytes Coding Example

(no operands) 5 - 1 CWO

DAA I DAA (no operands) Flags
ODITSZA P C

Decimal adjust for addition X X X X X X

Operands Clocks Transfers· Bytes Coding Example
-

(no operands) 4 - 1 DAA

DAS I DAS (no operands) Flags
o 0 ITS ZAP C

Decimal adjust for subtraction U X X X X X

Operands Clocks Transfers· Bytes Coding Example

(no operands) 4 - 1 DAS

DEC I DEC destination Flags
ODITSZAPC

Decrement by 1 X X X X X

Operands Clocks Transfers· Bytes Coding Example

reg16 2 - 1 DEC AX
reg8 3 - 2 DEC AL
memory 15+ EA 2 2-4 DEC ARRAY [SI]

DIV I DIV source Flags
ODITSZAP C

Division. unsigned U U U U U U

Operands Clocks Transfers· Bytes Coding Example
--

reg8 80-90 - 2 DIV CL
reg16 144-162 - 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA

+EA
mem16 (150-168) 1 2-4 DIV TABLE lSI]

+EA

ESC I ESC external-opcode,source Flags
ODITSZA P C

Escape

Operands Clocks Transfers· Bytes Coding Example

immediate. memory 8+ EA 1 2-4 ESC 6.ARRA Y [SIJ
immediate. register 2 - 2 ESC 20.AL

HLT I HL T (no operands) Flags
ODITSZAPC

Halt

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 HLT

'For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-blt word transfer

J-3

Instruction Set Reference Data 8086 Assembly Language

IDIV IIDIV source Flags
ODITSZAPC

Integer division U U U U U U

Operands Clocks Transfers· Bytes Coding Example

reg8 101-112 - 2 IDIV BL
reg16 165-184 - 2 IDIV CX
mem8 (107-118) 1 2-4 IDIV DIVISOR BYTE [SI]

+EA
mem16 (171-190) 1 2-4 IDIV IBX].DIVISOR_WORD

+EA

IMUL IIMUL source Flags
ODITSZAPC

Integer multiplication X U U U U X

Operands Clocks Transfers· Bytes Coding Example

reg8 80-98 - 2 IMUL CL
reg16 128-154 - 2 IMUL BX
mem8 (86-104) 1 2-4 IMUL RATE_BYTE

+EA
mem16 (134-160) 1 2-4 IMUL RATE_WORD [BP] [DI]

+EA

IN liN accumulator. port Flags
ODITSZAPC

Input byte or word

Operands Clocks Transfers· Bytes Coding Example

accumulator, immed8 10 1 2 IN AL,OFFEAH
accumulator, DX 8 1 1 IN AX, DX

INC IINC destination Flags
ODITSZAPC

Increment by 1 X X X X X

Operands Clocks Transfers· Bytes Coding Example

reg16 2 - 1 INC CX
reg8 3 - 2 INC BL
memory 15+EA 2 2-4 INC ALPHA [DI] [BX]

INT liNT interrupt-type Flags
ODITSZAPC

Interrupt o 0

Operands Clocks Transfers· Bytes Coding Example

immed8 (type = 3) 52 5 1 INT 3
immed8 (type "* 3) 51 5 2 INT 67

INTR IINTR (external maskable interrupt) Flags
ODITSZAPC

Interrupt if INTR and IF=1 o 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 61 7 N/A N/A

INTO IINTO (no operands) Flags
ODITSZAPC

Interrupt if overflow o 0

Operands Clocks Transfers· Bytes Coding Example

(no operands) 53 or 4 5 1 INTO

IRET IIRET (no operands) Flags
ODITSZAPC

Interrupt Return RRRRR RR R R

Operands Clocks Transfers· Bytes Coding Example

(no operands) 24 3 1 IRET

JA/JNBE I JA/JNBE short-label Flags
ODITSZAPC

Jump if above/Jump if not below nor equal

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JA ABOVE

'For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer.

1-4

8086 Assembly Language Instruction Set Reference Data

JAE/JNB I JAE/JNB short-label Flags
ODITSZA P C

Jump if above or equal/Jump if not below

Operands 1 Clocks 1 Transfers* 1 Bytes Coding Example

short-label 116or4 1 -
1

2 JAE ABOVE_EQUAL

-----,

JB/JNAE I JB/JNAE short-label Flags
ODITSZ A P C

Jump if below/Jump if not above nor equal

Operands 1 Clocks 1 Transfers* 1 Bytes Coding Example

short-label 116 or 4 1 -
1

2 JB BELOW

JBE/JNA I JBE/JNA short-label Flags
ODITSZAPC

Jump if below or equal/Jump if not above

Operands Clocks Transfers* I Bytes Coding Example

short-label 16 or 4 - I 2 JNA NOT ABOVE

JC 1 JC short-label Flags
ODITSZA P C

Jump if carry

Operands Clocks Transfers* Bytes Coding Example

short-label 16 or 4 - 2 JC CARRY SET

JCXZ I JCXZ short-label Flags
ODITSZA P C

Jump if CX is zero

Operands Clocks 1 Transfers* 1 Bytes Coding Example

short-label 18 or 6 1 -
1

2 JCXZ COUNT DONE

JE/JZ I JE/JZ short-label Flags
ODITSZA P C

Jump if equal/Jump if zero

Operands I, Clocks Transfers* 1 Bytes Coding Example

short-label 116 or 4 -
1

2 JZ ZERO

JG/JNLE IJG/JNlE short-label Flags
ODITSZA P C

Jump if greater/Jump if not less nor equal

Operands I Clocks T Transfers * I Bytes Coding Example

short-label 116 or 4 I -
1

2 JG GREATER

JGE/JNL 1 J G EI J N l short-label Flags
ODITSZA P C

Jump if greater or equal/Jump if not less

Operands Clocks Transfers* T Bytes Coding Example

short-label 16 or 4 - I 2 JGE GREATER EQUAL

JL/JNGE I JlIJNGE short-label Flags
ODITSZA P C

Jump if less/Jump if not greater nor equal

Operands I Clocks I Transfers* I Bytes Coding Example

short-label 116 or4 T - I
--

2 JL LESS

JLE/JNG I JlE/JNG short-label Flags
ODITSZAPC

Jump if less or equal/Jump if not greater --
Clocks 1 Transfers* I Bytes Operands Coding Example

-.--
short-label 16 or 4 1 -

1
2 JNG NOT GREATER

'For the 8086, add four clocks for each 16-bit word transfer with an odd ,,(jdress. For the 8088. add four clocks for each 16-IJlI word Iransler

J-5

Instruction Set Reference Data 8086 Assembly Language

JMP I JMP target Flags
ODITSZA P C

Jump

Operands Clocks Transfers· Bytes Coding Example

short-label 15 - 2 JMP SHORT
near-label 15 - 3 JMP WITHIN SEGMENT
far-label 15 - 5 JMP FAR LABEL
memptr16 18+ EA 1 2-4 JMP IBXI.TARGET
regptr16 11 - 2 JMP CX
memptr32 24+ EA 2 2-4 JMP OTHER.SEG ISI[

JNC I JNC short-label Flags
ODITSZA P C

Jump if not carry

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNC NOT CARRY

JNE/JNZ I JNE/JNZ short-label Flags
ODITSZAPC

Jump if not equal/Jump if not zero

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JNE NOT EQUAL

JNO I JNO short-label Flags
ODITSZA P C

Jump if not overflow

Operands Clocks Transfers· I Bytes Coding Example

short-label 16 or 4 - I 2 JNO NO OVERFLOW

JNP/JPO I JNPI JPO short-label Flags
ODITSZA P C

Jump if not parity/Jump if parity odd

Operands Clocks Transfers· Bytes Coding Example

short-label 16 or 4 - 2 JPO ODD PARITY

JNS I JNS short-label Flags
ODITSZA P C

Jump if notsign

Operands I Clocks Transfers· I Bytes Coding Example

short-label 116 or 4 -
1

2 JNS POSITIVE

JO I JO short-label Flags
ODITSZAPC

Jump if overflow

Operands I Clocks Transfers· Bytes Codill9 Example

short-label 116 or 4 - 2 JO SIGNED_OVRFLW

JP/JPE I JP/JPE short-label Flags
ODITSZAPC

Jump if parity/Jump if parity even

Operands I Clocks I Transfers· I Bytes Coding Example

short-label 116 or 4 I - I 2 JPE EVEN_PARITY

JS I JS short-label Flags
ODITSZAPC

Jump if sign

Operands I Clocks I Transfers· I Bytes Coding Example

short-label 116 or 4 I - I 2 JS NEGATIVE

LAHF I LAHF (no operands) Flags
o D ITS ZAP C

Load AH from flags

Operands Clocks Transfers· Bytes Coding Example

(no operands) 4 - 1 LAHF

"For the 8086. add four clocks for eachl6-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer.

J-6

8086 Assembly Language Instruction Set Reference Data

LOS I LOS destination,source
Flags

OOITSZAPC
Load pOinter using OS

Operands Clocks Transfers Bytes Coding Example

reg16, mem32 16+EA 2 2-4 LOS SI,OATA.SEG 1011

LOCK I LOCK (no operands) Flags
OOITSZA P C

Lock bus

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 LOCK XCHG FLAG.AL

LOOS ILODS source-string Flags
OOITSZA P C

Load string

Operands Clocks Transfers' Bytes Coding Example

sou rce-stri ng 12 1 1 LOOS CUSTOMER NAME
(repeat) source-string 9+13/rep 1/rep 1 REP LOOS NAME

LOOP I LOOP short-label Flags
OOITSZA P C

Loop

Operands , Clocks Transfers'T Bytes Coding Example

short-label I 17/5 - I 2 LOOP AGAIN

LOOPE/LOOPZ I LOOPE/LOOPZ short-label Flags
ODITSZAPC

Loop if equal/Loop if zero

Operands , Clocks Transfers' Bytes Coding Example

short-label T 18or6 - 2 LOOPE AGAIN

--
LOOPNE/LOOPNZ I LOOPNE/LOOPNZ short-label Flags

OOITSZAPC
Loop If not equal 1 Loop If not zero

Operands Clocks Transfers' Bytes Coding Example

short-label 19 or 5 - 2 LOOPNE AGAIN

LEA I LEA destination,source Flags
OOITSZA P C

Load effective address

Operands I Clocks -, Transfers' T Bytes Coding Example

reg16, mem16 12+EA I - 2-4 LEA BX,IBPIIOII

LES I LES destination.source Flags
OOITSZAPC

Load pointer using ES

Operands Clocks Transfers' Bytes Coding Example

reg16, mem32 16+EA 2 2-4 LES 01, IBXI.TEXT _BUFF

NMI I NMI (external nonmaskable interrupt) Flags
OSITSZA P C

Interrupt if NMI = 1 o 0

Operands Clocks Transfers' Bytes Coding Example

(no operands) 50 5 N/A N/A

• For the 8086. add four clocks for each 16-blt word transfer with an odd address. For the 8088. add four clocks for each lb·blt worci tr,lw;fr:r

1-7

Instruction Set Reference Data 8086 Assembly Language

MOV I MOV destination,source Flags
OOITSZAPC

Move

Operands Clocks Transfers· Bytes Coding Example

memory, accumulator 10 1 3 MOV ARRAY [SI], AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESULT
register, register 2 - 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK_ TOP
memory, register 9+EA 1 2-4 MOV COUNT [01], CX
register, immediate 4 - 2-3 MOV CL,2
memory, immediate 10+EA 1 3-6 MOV MASK IBX1ISI], 2CH
seg-reg, reg16 2 - 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV OS, SEGMENT_BASE
reg16, seg-reg 2 - 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV IBXj.SEG_SAVE, CS

MOVS I MOVS dest-string,source-string Flags
OOITSZAPC

Move string

Operands Clocks Transfers· Bytes Coding Example

dest-string, source-string 18 2 1 MOVS LINE EDIT _DATA
(repeat) dest-string, source-string 9+171rep 2/rep 1 REP MOVS SCREEN, BUFFER

MOVSB/MOVSW I MOVSB/MOVSW (no operands) Flags
OOITSZAPC

Move string (byte/word)

Operands Clocks Transfers· Bytes Coding Example

(no operands) 18 2 1 MOVSB
(repeat) (no operands) 9 + 171rep 2/rep 1 REP MOVSW

MUL I MUL source Flags
OOITSZAPC

Multiplication, unsigned X U U U U X

Operands Clocks Transfers· Bytes Coding Example

reg8 70-77 - 2 MUL BL
reg16 118-133 - 2 MUL CX
mem8 (76-83) 1 2-4 MUL MONTH lSI]

+EA
mem16 (124-139) 1 2-4 MUL BAUO--RATE

+EA

NEG I NEG destination Flags
OOITSZAPC

Negate X X X X X 1*

Operands Clocks Transfers· Bytes Coding Example

register 3 - 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER

*0 if destination = 0

NOP I NOP (no operands) Flags
OOITSZAPC

No Operation

Operands Clocks I Transfers· I Bytes Coding Example

(no operands) 3 T - I 1 NOP

NOT I NOT destination Flags
OOITSZAPC

Logical not

Operands Clocks Transfers· Bytes Coding Example

register 3 - 2 NOT AX
memory 16+ EA 2 2-4 NOT CHARACTER

• For the 8086, add four clocks for each 16-bit word transfer with an odd address. ,For Ihe 8088. add four clocks for each 16-blt word Iransfer.

J-8

8086 Assembly Language Instruction Set Reference Data

OR lOR destination,source Flags
OOITSZAPC

Logical inclusive or 0 X X U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 OR AL. BL
register, memory 9+EA 1 2-4 OR OX. PORT 101011
memory, register 16+ EA 2 2-4 OR FLAG BYTE. CL
accumulator, immediate 4 - 2-3 OR AL.0110110B
register, immediate 4 - 3-4 OR CX.01 FH
memory, immediate 17+ EA 2 3-6 OR IBXI.CMO WORO.OCFH

OUT lOUT port.accumulator Flags
OOITSZA P C

Output byte or word

Operands Clocks Transfers· Bytes Coding Example

immedB, accumulator 10 1 2 OUT 44. AX
OX, accumulator B 1 1 OUT OX. AL

POP I POP destination Flags
OOITSZA P C

Pop word off stack

Operands Clocks Transfers· Bytes Coding Example
--

register B 1 1 POP OX
seg-reg (CS illegal) B 1 1 POP OS
memory 17+EA 2 2-4 POP PARAMETER

POPF I POPF (no operands) Flags
OOITSZAPC

Pop flags off stack RRRRRRRRR

Operands I Clocks Transfers· Bytes Coding Example

(no operands) I B 1 1 POPF

PUSH I PUSH source Flags
OOITSZAPC

Push word onto stack

Operands Clocks Transfers· Bytes Coding Example

register 11 1 1 PUSH SI
seg-reg (CS legal) 10 1 1 PUSH ES
memory 16+ EA 2 2-4 PUSH RETURN COOE ISII

PUSHF I PUSHF (no operands) Flags
OOITSZAPC

Push flags onto stack

Operands Clocks Transfers· Bytes Coding Example

(no operands) 10 1 1 PUSHF

RCL I RCL destination.count Flags
OOITSZAPC

Rotate left through carry X X

Operands Clocks Transfers· Bytes Coding Example

register. 1 2 - 2 RCL CX. 1
register. CL B+4/bit - 2 RCL AL. CL
memory. 1 15+EA 2 2-4 RCL ALPHA.1
memory. CL 20+ EA+ 2 2-4 RCL IBP].PARM. CL

4/bit

RCR IRCR designation,count Flags
OOITSZAPC

Rotate right through carry X X

Operands Clocks Transfers· Bytes Coding Example

register. 1 2 - 2 RCR BX.1
register, CL B+4/bit - 2 RCR BL, CL
memory, 1 15+EA 2 2-4 RCR IBX].STATUS.1
memory, CL 20+ EA+ 2 2-4 RCR ARRAY 101]. CL

4/bit

·For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer

1-9

Instruction Set Reference Data 8086 Assembly Language

REP I REP (no operands) Flags
ODIT5ZAPC

Repeat string operation

Operands Clocks Transfers' Bytes Coding Example

(no operands) 2 - 1 REP MOVS DEST. SRCE

REPE/REPZ I REPE/REPZ (no operands) Flags
ODITSZA P C

Repeat string operation while equal/while zero

Operands Clocks Transfers· I Bytes Coding Example

(no operands) 2 - I 1 REPE CMPS DATA. KEY

REPNE/REPNZ I REPNE/REPNZ (no operands) Flags
ODITSZA P C

Repeat string operation while not equal/ not zero

Operands Clocks Transfers' I Bytes Coding Example

(no operands) 2 - I 1 REPNE SCAS INPUT LINE

RET lRET optional-pop-value Flags
ODITSZA P C

Return from procedure

Operands Clocks Transfers· Bytes Coding Example

(intra-segment. no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2

ROL I ROL destination,count Flags
ODITSZA P C

Rotate left X X

Operands Clocks Transfers Bytes Coding Examples

register. 1 2 - 2 ROL BX. 1
register. CL 8+4/bit - 2 ROL 01. CL
memory. 1 15+ EA 2 2-4 ROL FLAG BYTE 1011.1
memory. CL 20+ EA+ 2 2-4 ROL ALPHA. CL

4/bit

ROR IROR destination.count Flags
ODITSZA P C

Rotate right X X

Operand Clocks Transfers' Bytes Coding Example

register. 1 2 - 2 ROR AL.1
register. CL 8+4/bit - 2 ROR BX. CL
memory. 1 15+ EA 2 2-4 ROR PORT STATUS. 1
memory. CL 20+ EA+ 2 2-4 ROR CMD WORD. CL

4/bit

SAHF ISAHF (no operands) Flags
ODITSZAPC

Store AH into flags R R R R R

Operands Clocks Transfers' Bytes Coding Example

(no operands) 4 - 1 SAHF

SAL/SHL I SAL/SHL destination.count Flags
ODITSZA P C

Shift arithmetic left/Shift logical left X X

Operands Clocks Transfers' Bytes Coding Examples

register.1 2 - 2 SAL AU
register. CL 8+4/bit - 2 SHL 01. CL
memory.1 15+ EA 2 2-4 SHL IBXI.OVERDRAW. 1
memory. CL 20+ EA+ 2 2-4 SAL STORE _COUNT. CL

4/bit

'For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer

1-10

8086 Assembly Language Instruction Set Reference Data

SAR _I SAR destination.source
Flags

ODITSZA P C
Shift arithmetic right X X X U X X

Operands Clocks Transfers· Bytes Coding Example

register. 1 2 - 2 SAR DX.1
register. CL 8+ 4/bit - 2 SAR 01. CL
memory. 1 15+ EA 2 2-4 SAR N BLOCKS. 1
memory. CL 20 + EA + 2 2-4 SAR N BLOCKS. CL

4/bit

SBB I SBB destination.source
Flags

ODITSZAPC
Subtract with borrow X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register. register 3 - 2 SBB BX. CX
register. memory 9+ EA 1 2-4 SBB 01. IBXI.PAYMENT
memory, register 16+ EA 2 2-4 SBB BALANCE. AX
accumulator, immediate 4 - 2-3 SBB AX.2
register, immediate 4 - 3-4 SBB CL.1
memory, immediate 17+ EA 2 3-6 SBB COUNT ISII. 10

SCAS J SCAS dest-string Flags
ODITSZAPC

Scan string X X X X X X

Operands Clocks Transfers· Bytes Coding Example

dest-string 15 1 1 SCAS INPUT_LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER

SHR 1 SHR destination.count Flags
ODITSZA P C

Shift logical right X X

Operands Clocks Transfers· Bytes Coding Example

register., 1 2 - 2 SHR SI.1
register, CL 8+4/bit - 2 SHR SI. CL
memory, 1 15+ EA 2 2-4 SHR 10 BYTE ISIIIBXi.1
memory, CL 20+ EA+ 2 2-4 SHR INPUT WORD. CL

4/bit

SINGLE STEP 1 SINGLE STEP (Trap flag interrupt)
Flags

ODITSZA P C
Interrupt if TF = 1 o 0

Operands Clocks Transfers· Bytes Coding Example
'-

(no operands) 50 5 N/A N/A
.. -

STC 1 STC (no operands) Flags
ODITS1A p C

Set carry flag 1

Operands I Clocks I Transfers· I Bytes Coding Example

(no operands) I 2 I - I 1 STC
--

STO 1 STO (no operands) Flags
ODITSZA P C

Set direction flag 1

Operands I Clocks I Transfers· I Bytes Coding Example

(no operands) J 2 I - 1 1 STD

STI I STI (no operands) Flags
ODITSZA P C

Set interrupt enable flag 1

Operands Clocks Transfers· Bytes Coding Example

(no operands) 2 - 1 STI

'For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer

J-l1

Instruction Set Reference Data 8086 Assembly Language

STOS I STOS dest-string Flags
ODITSZAPC

Store byte or word string

Operands Clocks Transfers· Bytes Coding Example

dest-string 11 1 1 STOS PRINT LINE
(repeat) dest-string 9+10/rep 11rep 1 REP STOS DISPLAY

SUB I SUB destination,source Flags
ODITSZAPC

Subtraction X X X X X X

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 SUB CX. BX
register. memory 9+EA 1 2-4 SUB DX. MATH_ TOTAL [SI]
memory, register 16+EA 2 2-4 SUB [BP+2J,CL
accumulator, immediate 4 - 2-3 SUB AL. 10
register. immediate 4 - 3-4 SUB SI.5280
memory, immediate 17+EA 2 3-6 SUB [BP].BALANCE.1000

TEST I TEST destination,source Flags
ODITSZAPC

Test or non-destructive logical and 0 X X U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST SI. END_COUNT
accumulator, immediate 4 - 2-3 TEST AL.00100000B
register, immediate 5 .- 3-4 TEST BX,OCC4H
memory, immediate 11 +EA - 3-6 TEST RETURN CODE.01H

WAIT IWAIT (no operands) Flags
o D ITS ZAP C

Wait while TEST pin not asserted

Operands I Clocks I Transfers· Bytes Coding Example

(no operands) I 3 + 5n I - 1 WAIT

XCHG IXCHG destination.source
Flags

ODITSZAPC
Exchange

Operands Clocks Transfers· Bytes Coding Example

accumulator, reg16 3 - 1 XCHG AX. BX
memory, register 17+EA 2 2-4 XCHG SEMAPHORE. AX
register, register 4 - 2 XCHG AL. BL

XLAT IXLAT source-table Flags
o D ITS ZAP C

Translate

Operands Clocks Transfers· Bytes Coding Example

source-table 11 1 1 XLAT ASCII_TAB

XOR I XOR destination,source Flags
ODITSZAPC

Logical exclusive or 0 X X U X 0

Operands Clocks Transfers· Bytes Coding Example

register, register 3 - 2 XOR CX. BX
register. memory 9+ EA 1 2-4 XOR CL. MASK BYTE
memory, register 16+EA 2 2-4 XOR ALPHA [SI[. DX
accumulator, immediate 4 - 2-3 XOR AL.01000010B
register, immediate 4 - 3-4 XOR SI. 00C2H
memory, immediate 17+EA 2 3-6 XOR RETURN CODE.OD2H

"For the 8086. add four clocks for each 16-bit word transfer with an odd address. For the 8088. add four clocks for each 16-bit word transfer.

J-12

APPENDIX K I
SAMPLE PROGRAM

MCS-86 MACRO ASSEMBLER SAMPLE

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE SAMPLE
OBJECT MODULE PLACED IN :Fl:SAMPLE.OBJ
ASSEMBLER INVOKED BY: ASM86 :Fl:SAMPLE.AIl6 PL(255) XREF

LaC OBJ LINE

1
2
3
4

0000 ???? 5
0002 (lOa b

????
)

7
8
9

10
11
12
13
14

0000 15
0001 16
0003 17
0005 18

19
20
21
22
23
24
25
26
27

OOCA (lOa 28
??
????
lDOO
FE
)

29
30
31

SOURCE

;
DATA2

TEMP
Faa

SEGMENT

DW
DW

?
lOa .DUP (?)

1 word, indeterminate contents
100 words, indeterminate contents

;---------------------D;~i~i~;-;-STRUCTURE--------------------------------

;-D;fi~;-;-;t;~~t~;;-t;;~i;t;-PANACHE-;ith-fi;id;-FLDA~-FLDB~-~~~~-LFDD~---
; such that their types are ordered BYTE, WORD, WORD, BYTE.

PANACHE STRUC Template def'n., no storage reserved
FLDA DB Reference to .FLDA gives a
FLDB DW Reference to .FLDB gives 1
FLOC OW Reference to .FLDC gives 3
FLDD DB Reference to .FLDD gives 5

PANACHE ENDS End of structure template definition

ELAN PANACHE lOa DUP (<7, , 5'5+11, OFEH»

Defining a RECORD

PAGE

32
33 ;-D;~i;;-;-;;~~;;:-;ER;E~-~~-~it;-i~;;-~ith-~i;i;;-~f-;-~it;:-;-;it;:-;-~its
34
35
36
37
38
39
40
III
42
113

0322 (100 1111
E5DE
)

115
46
47
118
49 +1

VERVE RECORD DIBSA:II, DIBSB:5, DIBSC:7 ; No storage reserved

;---
Now use record definition name VERVE as operator to initialize
lOa copies of 2-byte record ESPRIT = ESPRIT[O), ... , ESPRIT[198)
Initialize fields in each 2-byte copy to 13, 29, and 101 ...

ESPRIT VERVE 100 DUP «13, 29, 101» ; 200 bytes reserved

bATA2----------ENDS-----------------------------------7-E~d-;f-;;;;;~t-DATA2-
; (CONTINUED ON NEXT PAGE -- K-2)
$EJECT

K-l

Sample Program

K-2

MCS-86 MACRO ASSEMBLER

LOC OBJ

0000 (1000
????
)

07DO

0000
0000 B8----
0003 8EDO
0005 BCD007
0008 CB

0000

0000 Al0600

0003 BEOOOO
0006 B96400
0009 0384CDOO
OOOD 83C606
0010 E2F7

0012 BEOOOO
0015 BF6400
0018 8B942203
001C 81E2800F
0020 Bl07
0022 D3EA
0024 2BC2
0026 83C602
0029 4F
002A 75EC

002C 50
002D 9AOOOO----

0032 CB

SAMPLE

LINE

50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
III
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

8086 Assembly Language

PAGE

SOURCE

(CONTINUED FROM PRECEDING PAGE -- K-l)

j •••

SrACK3 SEGMENT
DW 1000 DUP (?)

STACK BTM LABEL WORD
STACK3 - ENDS

Reserve 1000 uninitialized words

Stack grows toward low memory
End of stack segment

;
STACK INIT SEGMENT

ASSUME CS:STACK INIT 16'CS + IP is current instr. addr.
INITIALIZE PROC FAR -

MOV
MOV
MOV
RET
ENDP
ENDS

AX, STACK3
SS, AX
SP, OFFSET STACK_BTM

Load AX with stack seg. base
Load SS seg-reg with seg. base
Initialize stack pointer SP

INITIALIZE
STACK_IN IT

End of procedure INITIALIZE
End of segment STACK_INIT

~
EXTHN DIDDLE:FAR

ILLUSTRATION SEGMENT
ASSUME CS:ILLUSTRATION, j 16*CS+IP=curr. instr. addr.

DS:DATA2 16'DS + Offset is data item addr.

;-~OMPUrE-i;-;-;;~~;d~;;-(~;ii;bi;-f;~;-;~;t~;;-;;~;;~t)-~~i~~-;dd;-------
the 3rd word in array FOO,
to the sum of all the FLDCs in ELAN,
then subtracts the sum of all the record-fields DIBSB in record array ESPRIT

COMPUTE PROC FAR ; FAR means callable from another seg.

;--
Put 3rd word from array FOO into AX as 1st addend

MOV AX, FOO[4] ; Load AX with 3rd word from FOO

;--
This next section adds in all the .FLDC fields from the structure array £LAN.
First we set SI=O to index the first field to be added.
Then we use the index [SI] to add each such field into AX,
and increment the index [SI] each time by the size of structure PANACHE,
which is the TYPE of the array ELAN.
Loop control for the addition Is provided by CX,
which is loaded with the length (100, the number of elements) of ELAN.

SUM:

MOV
MOV
ADD
ADD
LOOP

SI, 0
CX, LENGTH ELAN
AX,ELAN[SI).FLDC
SI, TYPE ELAN
SUM

Use SI for array index
Loop control = number elements
Add a FLDC value to AX
Update index to next FLDC
Loop to SUM if CX<>O

;--
First, the beginning of the array will be addressed by [SI] (SI=O).
Each DIBSB field will be isolated and right-justified (aligned) in DX
as follows: the operator MASK masks out the unwanted bits,
and the field-name DIB!;B gives the shift-count needed to align the field.

MOV SI, 0 Initialize SI to index first
MOV DI, LE NGTH ES PR IT Loop control for add ing

GETRECORD: MOV DX, ESPRIT[SI) Load current record into DX
AND DX, MASK DIBSB Set irrelevant bits to a
MOV CL, DIBSB Field-name is shift count
SHR DX, CL Right-justify field in DX
SUB AX, DX Subtract this field from sum
ADD SI, TYPE ESPRIT Bump SI to index next record
DEC 01 Loop control
JNZ GETRECORD Get another if DI<>O

record

;---
Push the grand total on the stack, and call DIDDLE.

PUSH AX
CALL DIDDLE ; Need EXTRN for DIDDLE

;--
When DIDDLE returns, we're done, and return to the calling routine.

COMPUTE
ILLUSTRATION

RET
ENDP
ENDS
END

End of procedure COMPUTE
End of segment ILLUSTRATION
End of assembly

2

8086 Assembly Language Sample Program

MCS-86 MACRO ASSEMBLER SAMPLE PAGE

XREF SYMBOL TABLE LISTING

NAME TYPE VALUE A TTR IBUTES, XREFS

??SEG SEGMENT SIZE=OOOOH PARA PUBLIC
COMPUTE L FAR OOOOH ILLUSTRATION 84/1 142
DATA:2 SEGMENT SIZE=03EAH PARA 311 47 76
DIBSA . R FIELD OCH VERVE WIDTH=4 3511
DIBSB . R FIELD 07H VERVE WIDTH=5 35' 122 123
DIBSG . R FIELD OOH VERVE WIDTH=7 3511
DIDDLE. L FAR 000011 EXTRN 7311 135
ELAN .. V 6 OOCAH DATA2 28/1 105 106 107
ESPRIT . V WORD 0322H DATA2 44' 120 121 126
FLDA .. V BYTE OOOOH S FIELD 1511
FLDB .. V WORD 0001H S FIELD 1611
FLDC .. V WORD 0003H S FIELD 171/ 106
FLDD .. V BYTE 0005H S FIELD 1811
FOO . V WORD 0002H DATA2 611 90
GETRECORD L NEAR 0018H ILLUSTRATION 1211/ 128
ILLUSTRA TION. SEGMENT SIZE=0033H PARA 141/ 15 143
INITIALIZE. L FAR OOOOH STACK INIT 6311 68
PANACHE . STRUC SIZE=n006H IIFIELDS=4 14 191 28
STACK BTM . V WORD 01DOH STACK3 561 66
STACK-INIT • SEGMENT SIZE=0009H PARA 61# 62 69
STACKj. SEGMENT SIZE=01DOH PARA 5411 57 64
SUM" L NEAR 0009H ILLUSTRATION 10611 108
TEMP. V WORD OOOOH DATA2 511
VERVE . RECORD SIZE=2 WIDTH=16 35# 44

ASSEMBLY COMPLETE, NO ERRORS FOUND

K-3

APPENDIX L
MACRO PROCESSOR LANGUAGE

This appendix is intended as a supplementary reference for the macro language and
as a guide to more advanced use of the macro processor. It is assumed that the
reader is already familiar with the introductory material on macros presented in
Chapter 7.

Terminology and Conventions

A percent sign will be used as the Metacharacter throughout this appendix although
the user may temporarily change the metacharacter by using the MET ACHAR
function.

The term "logical blank" refers to a blank, horizontal tab, carriage return, or
linefeed character.

Throughout the appendix the term "parameter" refers to what are sometimes
known as "dummy parameters" or "formal parameters" while the term "argu
ment" is reserved for what are sometimes known as "actual parameters". The terms
"Normal" and "Literal", names for the two fundamental modes used by the macro
processor in reading characters, will be capitalized in order to distinguish these
words from their ordinary usage.

In the syntax diagrams, non-terminal syntactic types are represented by lower case
words, sometimes containing the break character, "_". If a single production con
tains more than one instance of a syntactic type each instance may be followed by a
unique integer so that the prose description may unambiguously refer to each
occurrence. Opening and closing quotes (" and ") are used to refer to literally-coded
character sequences.

Basic Elements of the Macro Language

Identifiers

With the exception of some built-in functions, all macro processor functions begin
with an identifier, which names the function. Parameters also are represented by
identifiers. A macro processor identifier has the following syntax.

id = alphabetic I id id_continuation

The alphabetic characters include upper and lower case letters. An id __ continuation
character is an alphabetic character, a decimal digit, or the break character ("_").

Examples:

An identifier must not be split across the boundary of a macro and may not contain
Literal characters.

L-I

Macro Processor Language 8086 Assembly Language

L-2

For example,

"%%(FOO)"

is illegal. The first metacharacter is followed by the letters "Faa", but they do not
constitute an identifier since they are Literal characters.

"%ADD%SUFFIX"

where SUFFIX is defined as "UP" is a call to ADD followed by a call to SUFFIX,
rather than a call to ADDUP, because identifiers may not cross macro boundaries.

A null-string bracket or escape function ("u/oO" or "%0") will also end an iden
tifier, and since these functions have no textual value themselves, may be used as
separators.

Example:

" % TOM%OSMITH "

concatenates the value of the macro, TOM, to the string, "SMITH".

This could also be done by writing, "0,7oTOM%(SMITH)". Upper and lower case
letters are equivalent in their use in identifiers. ("CAT", "cat", and "cAt" are
equivalent.)

Text and Delimiters

"Text" is an undistinguished string of characters. It mayor may not contain items
of significance to the macro processor. In general the MPL processor simply copies
characters from its input to its output stream. This copying process continues until
an instance of the metacharacter is encountered, whereupon the macro processor
begins analyzing the text that follows.

Each macro function has a calling pattern that must match the text in an actual
macro function call. The pattern consists of text strings, which are the arguments to
the function, and a number of delimiter strings.

For example,

"JOIN(FIRST, SECOND)"

might be a pattern for a macro, JOIN, which takes two arguments. The first argu
ment will correspond to the parameter, FIRST, and the second to the parameter,
SECOND. The delimiters of this pattern are "(", ",", and ")".

A text string corresponding to a parameter in the pattern must be balanced with
respect to parentheses (see below). A delimiter which follows a parameter in the pat
tern will be used to mark the end of the arg':ment in an actual call to the macro.

An argument text string is recognized by finding the specific delimiter that the pat
tern indicates will end the string. A text string for a given argument consists of the
characters between the delimiter (or macro identifier) that precedes the text and the
delimiter which follows the text.

In the case of built-in functions, there are sometimes additional requirements on the
syntax of an argument. For example, the text of an argument might be required to
conform to the syntax for a numeric expression.

8086 Assembly Language Macro Processor Language

Balanced Text

Arguments must be balanced with respect to left and right parentheses in the usual
manner of requiring that the string contain the same number of left and right paren
theses and that at no point during a left to right scan may there have been more right
parentheses than left parentheses. (An "unbalanced" parenthesis may be quoted
with the escape function to make the text meet this requirement.)

Expressions

Balanced text strings appearing in certain places in built-in macro processor func
tions are interpreted as numeric expressions:

1. As arguments that control the execution of "IF", "WHILE", "REPEAT",
and "SUBSTR" functions.

2. As the argument to the evaluate function, "EV AL".

Operators (in order of precedence from high to low):
Parenthesized Expressions
HIGH LOW
* I MOD SHL SHR

+
EQ L T LE GT GE NE
NOT
AND
OR XOR

All arithmetic is performed in an internal format of 17-bit two's complement
integers.

The Macro Processor Scanning Algorithm

Literal or Normal Mode of Expansion

At any given time, the macro processor is reading text in one of two fundamental
modes. When processing of the primary input file begins, the mode is Normal. Nor
mal mode means that macro calls will be expanded, i.e. the metacharacter in the
input will cause the following macro function to be executed.

In the simplest possible terms, Literal mode means that characters are read Literally,
i.e. the text is not examined for function calls. The text read in this mode is similar to
the text inside a quoted character string familiar to most users of high level
languages; that is, the text is considered to be merely a sequence of characters having
no semantic weight. There are important exceptions to this very simple view of the
Literal mode. If the characters are being read from a user-defined macro with
parameters, the parameter references will be replaced with the corresponding argu
ment values regardless of the mode. The Escape function and the Comment function
will also be recognized in either mode.

The mode can change when a macro is called. For user-defined macros, the presence
or absence of the call-literally character following the metacharacter sets the mode
for the reading of the macro's value. The arguments to a user-defined macro are
evaluated in the Normal mode, but when the processor begins reading the macro's
value, the mode changes to that indicated by the call. When the processor finishes
reading the macro's definition, the mode reverts to what it was before the macro's
processing began.

L-3

Macro Processor Language 8086 Assembly Language

L-4

To illustrate, suppose the parameterless macros, CAT and TOM are defined as
follows.

CAT is: "abcd %TOM efgh", and TOM is: "xyz"

Now consider the text fragment,

" ... OJoCAT, %*CAT ... "

Assume the string is being read in the Normal mode. The first call to CAT is
recognized and called Normally. Since CAT is called Normally, the definition of
CAT is examined for macro calls as it is read. Thus the characters "%TOM" in the
definition for CAT are recognized as a macro call and so TOM is expanded
Normally. The definition for TOM is read, but it contains no macro calls. After the
definition for TOM is processed, the mode reverts back to its value in reading CAT
(Normal). After the definition of CAT is processed the mode reverts back to its
original value (Normal). At this point, immediately before processing the comma
following the first call to CAT, the value of the text fragment processed thus far is:

" ... abcd xyz efgh"

Now the processor continues reading Normally, finally encountering the second call
to CAT, this time a Literal call. The mode changes to Literal as the definition of
CAT is read. This time the characters from the definition are read Literally. When
the end of the definition of CAT is reached the mode reverts to its original value
(Normal) and processing continues. The value of the entire fragment is,

" ... abcd xyz efgh, abed OJoTOM efgh ... ".

The use of the call-literally character on calls to builtin macro functions is discussed
in the description of each function. The important thing to keep in mind when
analyzing how a piece of text is going to be expanded is the Normal or Literal Mode
of the environment in which it is read.

The Call Pattern

In general, each macro function has a distinctive name which follows the
metacharacter (and possibly the call-literally character). This name is usually an
identifier, although a few built-in functions have other symbols for names. For iden
tifier named functions, the macro processor allows the identifier to be the result of
another macro call.

For example, suppose the macro, NAME, has the value "BIGMAC" and that the
macro BIGMAC has the calling pattern, "BIGMAC X & Y;". Then the call,

" ••• "10 %NAME catsup & mustard; ... "

is a call to the macro BIGMAC with the first argument having the value, " catsup"
and the second argument having the value, " mustard".

Associated with this name is, possibly, a pattern of delimiters and parameters which
must be matched if the macro call is to be syntactically correct. The pattern for each
builtin macro function is described in the section of this appendix dealing with that
function. The pattern for a user-defined macro is defined at the time the macro is
defined.

8086 Assembly Language Macro Processor Language

At the time of a macro call, the matching of text to the pattern occurs by using the
delimiters one at a time, left to right. When a delimiter is located, the next delimiter
of the pattern becomes the new goal. The delimiters in the call are separated by
either argument text (if there was a corresponding parameter in the macro's defini
tion pattern), or by any number of logical blanks (in the case of adjacent delimiters
in the pattern). The argument text corresponding to a parameter in the definition
pattern becomes the value of the parameter for the duration of the macro's expan
sion. Null arguments are permitted.

See the section "Macro Definition and Invocation" for more information on
delimiters and their relationship to argument strings.

Evaluation of Arguments-Parameter Substitution

MPL uses "call-by-immediate-value" as the ordinary scheme for argument evalua
tion. This means that as the text is being scanned for the delimiter which marks the
end of an argument, any macro calls will be evaluated as they are encountered. In
order to be considered as a possible delimiter, characters must all be on the same
level of macro nesting as the metacharacter which began the call. In other words, the
arguments to a macro can be any mixture of plaintext and macro calls, but the
delimiters of a call must be plaintext.

For example, suppose STRG is defined as "dogs,cats" and MACI is a macro with
the calling pattern, "MACI(PI, P2)". Then in the call,

" ... OJoMACl(%STRG, mouse) ... "

the first argument will be " dogs,cats" and the second argument will be " mouse".
The comma in the middle of the first argument is not taken as the delimiter because
it is on a different level from the metacharacter which began the call to MAC 1.

When all arguments of a macro have been evaluated, the expansion of the body
begins, with characters being read either Normally or Literally as discussed under
"Literal or Normal Mode of Expansion". One should keep in mind that parameter

. substitution is a high priority function, i.e. arguments will be substituted for
parameters even if the macro has been called Literally.

The Evaluate Function

The syntax for the Evaluate function is:

evaluate_function = "EV AL" "(" expr ")"

The single argument is a text string which will be evaluated as a numeric expression,
with the result returned as a text string.

Examples:

% EVAL(7) evaluates to "07H"

%EVAL((7+3)*2) evaluates to" I4H"

If NUM has the value "OIOIB" then OJoEVAL(OJoNUM - 5) evaluates to "~OH"

L-5

Macro Processor Language 8086 Assembly Language

L-6

Numeric Functions: LEN, and String
Compare Functions

These functions take text string arguments and return some numeric information in
the form of hexidecimal integers.

length_function = "LENH "(" balanced_text ")"

string_compare_function = op_code "(" balanced_text"," balanced_text ")"

op_code = EQS I GTS I L TS I NES I GES I LES

The length numeric function returns an integer equal to the number of characters in
the text string. The string comparison functions all return the character representa
tion for minus one if the relation between the strings holds, or zero otherwise. These
relations are for string compares. These functions should not be confused with the
arithmetic compare operators that might appear in expressions. The ASCII code for
each character is considered a binary number and represents the relative value of the
character. "Dictionary" ordering is used: Strings differing first in their Nth
character are ranked according to the Nth character. A string which is a prefix of
another string is ranked lower than the longer string.

The Bracket Function

The bracket function is used to introduce literal strings into the text and to prevent
the interpretation of functions contained therein, (except the high priority functions:
comment, escape, and parameter substitution). A call-literally character is not
allowed; the function is always called Literally.

bracket_function = "(" balanced_text ")"

The value of the function is the value of the text between the matching parentheses,
evaluated Literally. The text must be balanced with respect to left and right paren
theses. (An unbalanced left or right parenthesis may be quoted with the escape func
tion.) Text inside the bracket function that would ordinarily be recognized as a func
tion call is not recognized; thus, when an argument in a macro call is put inside a
bracket function, the evaluation of the argument is delayed-it will be substituted as
it appears in the call (but without the enclosing bracket function).

The null string may be represented as (floO.

Examples:

OJo(This is a string.)
evaluates to:
"This is a string."

The Escape Function

%(OJoEVAL(OJoNUM»
evaluates to:
" OJoEVAL(OJoNUM)"

The escape function provides an easy way to quote a few characters to prevent them
from having their ordinary interpretation. Typical uses are to insert an "unbal
anced" parenthesis into a balanced text string, or to quote the metacharacter. The
syntax is:

escape_function = 1* A single digit, 0 through 9, followed by
that many characters. * 1

8086 Assembly Language Macro Processor Language

The call-literally character may not be present in the call. The escape function is a
high priority function, that is one of the functions (the others are the comment func
tions and parameter substitution) which are recognized in both Normal and Literal
mode.

Examples:

" . .. % 2 0J0 % ... " eval ua tes to " ... 0J0 0J0 ... "
" ... OJo(abOJol)cd) ... " evaluates to " ... ab)cd ... "

Macro Definition and Invocation

The macro definition function associates an identifier with a functional string. The
macro mayor may not have an associated pattern consisting of parameters and/or
delimiters. Also optionally present is a list of local symbols. The syntax for a macro
definition is:

macro_def_function =
"DEFINE" "(" macro_id define_pattern ")" ["LOCAL" id_list
"(" balanced_text ")"

The define_pattern is a balanced string which is further analyzed by the macro pro
cessor as follows:

define_pattern = [parm_id] [delimiter_specifier]

delimiter_specifier = /*String not containing non-Literal
id_continuation, logical blank, or
"@" characters. * /

The syntax for a macro invocation is as follows:

macro_call = macro_id [call_pattern]
call_pattern = /* Pattern of text and delimiters

corresponding to the definition
pattern. * /

As seen above, the macro_id optionally may be defined to have a pattern, which
consists of parameters and delimiters. The presence of this define pattern specifies
how the arguments in the macro call will be recognized. Three kinds of delimiters
may be specified in a define pattern. Literal and Identifier delimiters appear explic
itly in the define pattern, while Implied Blank delimiters are implicit where a
parameter in the define pattern is not followed by an explicit delimiter. Literal
delimiters are the most common and typically include commas, parentheses, other
punctuation marks, etc. Id delimiters are delimiters that look like and are recognized
like identifiers. The presence of an Implied Blank delimiter means that the preceding
argument is terminated by the first logical blank encountered. We will examine these
various forms of delimiter in greater detail later in this description.

Recognition of a macro name (which uniquely identifies a macro) is followed by the
matching of the call pattern to the define pattern. The two patterns must match for
the call to be well-formed. It must be remembered that arguments are balanced
strings, thus parentheses can be used to prevent an enclosed substring from being
matched with a delimiter. The strings in the call pattern corresponding to the
parameters in the define pattern become the values of those parameters.

L-7

Macro Processor Language 8086 Assembly Language

L-8

Reuse of the name for another definition at a later time will replace a previous
definition. Built-in macro processor functions (as opposed to user-defined macros)
may not be redefined. A macro may not be redefined during the evaluation of its
own body. A parameter may not be redefined within the body of its macro.

Parameters appearing in the body of a macro definition (as parameter substitution
functions) are preceded by the metacharacter. When the body is being expanded
after a call, the parameter substitution function calls will be replaced by the value of
the corresponding arguments.

The evaluation of the balanced_text that defines the body of the macro being
defined is evaluated in the mode specified by the presence or absence of the call
literally character on the call to DEFINE. If the DEFINE function is called Nor
mally, the balanced text is evaluated in the Normal mode before it is stored as the
macro's value. If the define function is called Literally, the balanced_text is
evaluated Literally before it is stored.

Literal Delimiters

A Literal delimiter which contains id_continuation characters, "@", or iogical
blanks must be quoted by a bracket function, escape function, or by being produced
by a Literal call. Other literal delimiters need not be quoted in the define pattern.

Example 1:

%*DEFINE (SAY(ANIMAL,COLOR)) (THE %ANIMAL IS %COLOR.)
%SAY(HORSE,TAN)

produces,

THE HORSE IS TAN.

Example 2:

%*DEFINE (REVERSE [P1 %(.AND.) P2]) (%P2 %P1)
%REVERSE [FIRST.AND.SECOND]

produces,

SECOND FIRST

Id Delimiters

Id delimiters are specified in the define pattern by using a delimiter_specifier
having the form, "@ id". The following example should make the distinction
between literal and identifier delimiters clear. Consider two delimiter_specifiers,
"OJo(AND)" and "@AND " (the first a Literal delimiter and the second an Id
delimiter), and the text string,

" ... GRAVEL, SAND AND CINDERS ... "

8086 Assembly Language Macro Processor Language

Using the first delimiter specifier, the first "AND", following the letter "S", would
be recognized as the end of the argument. However, using the second delimiter
specifier, only the second "AND" would match, because the second delimiter is
recognized like an identifier. Another example:

Definition:

%*DEFINE (ADD P1 @TO P2 @STORE P3.)
(MOV %P1

ADD AL,%P2
MOV %P3,AL

Macro call:

%ADD TOTAL1 TO TOTAL2 STORE GRAND.

Generates:

MOV TOTAL1
ADD AL, TOT AL2
MOV GRAND

Implied Blank Delimiters

If a parameter is not followed by an explicit Literal or Id delimiter then it is ter
minated by an Implied Blank delimiter. A logical blank is implied as the terminator
of the argument corresponding to the preceding parameter. In this case any logical
blank in the actual argument must be literalized to prevent its being recognized as
the end of the argument. In scanning for an argument having this kind of delimiter,
leading non-literal logical blanks will be discarded and the first following non-literal
logical blank will terminate the argument.

Example:

%*DEFINE (SAY ANIMAL COLOR) (THE %ANIMAL IS %COLOR.)

The call,

%SAY HORSE TAN

will evaluate to,

THE HORSE IS TAN.

In designating delimiters for a macro one should keep in mind the text strings which
are likely to appear as arguments. One might base the choice of delimiters for the
define pattern on whether the arguments will be numeric, strings of identifiers, or
may contain embedded blanks or punctuation marks.

LOCAL Macros and Symbols

The LOCAL option can be used to designate a list of identifiers (separated by
blanks) that will be used within the scope of the macro for local macros. A reference
to a LOCAL identifier of a macro occuring after the expansion of the text of the
macro has begun and before the expansion of the macro is completed will be a
reference to the definition of this local macro. Every time a macro having the
LOCAL option is called, a new incarnation of the listed symbols is created. The
local symbols thus have dynamic, inclusive scope.

L-9

Macro Processor Language 8086 Assembly Language

L-IO

At the time of the call to a macro having locals, the local symbols are initialized to a
string whose value is the symbol name concatenated with a unique number. The
number is generated by incrementing a counter each time a local declaration is
made.

Definition:

%*DEFINE (MAC1 (FIRST,SECOND,THIRD)) LOCAL LABL
(%LABL: MOV BX,%FIRST

MOV AX,[BXl

Macro call:

MOV BX,%SECOND
MOV CX,[BXl
MOV BX,%THIRD
MOV DX,[BXj)

% MAC1 (ITEM, NEXT ,ANOTH ER)

Generates: (Typically, depending on value for local, "LABL")

LABL3: MOV BX,ITEM
MOV AX,[BXj
MOV BX,NEXT
MOV CX,[BXl
MOV BX,ANOTHER
MOV DX,[BXl

The Control Functions: IF, REPEAT, and WHILE

These functions can be used to alter the flow of control in a sense analogous to that
of their similarly named counterparts in procedural languages; however, they are
different in that they may be used as value generating functions as well as control
statments.

The three functions all have a "body" which is analogous to the defined value, or
body, of a user-defined macro function. The syntax of these functions is:

if_function = "IF" "(" expr ")" "THEN" "(" body")" ["ELSE" "(" body")"] "FI"

repeat_function = "REPEAT" "(" expr ")" "(" body")"

while_function = "WHILE" "(" expr ")" "(" body")"

The expressions will evaluate to binary numbers. As in PL/M 80, two's comple
ment representation is used so that negative expressions will map into a large
positive number (e.g., "-1" maps into OFFFFH). The bodies of these functions are
balanced_text strings, and although they look exactly like arguments in the syntax
diagrams, they are processed very much like the bodies of user-defined macro func
tions; the bodies are "called" based upon some aspect of the expression in the IF,
REPEAT, or WHILE function. The effects for each control function are described
below.

8086 Assembly Language Macro Processor Language

The IF Function

The first argument is evaluated Normally and interpreted as a numeric expression.

If the value of the expression is odd (=TRUE) then the body of the THEN phrase is
evaluated and becomes the value of the function. The body of the ELSE clause is not
evaluated.

If the value of the expression is even (=FALSE) and the ELSE clause is present, then
the body of the ELSE phrase is evaluated and becomes the value of the function.
The body of the THEN clause is not evaluated. Otherwise, the value is the null
string.

In the cases in which the body is evaluated, evaluation is Normal or Literal as deter
mined by the presence or absence of the call- literally character on the IF.

Examples:

%IF (%VAL GT 0) THEN(%DEFINE(SIGN)(1)) ELSE(%DEFINE(SIGN)(O)) FI

If the value of the numeric symbol VAL is positive, then the SIGN will be defined as
"1"; otherwise, it will be defined as "0". In either case the value of the IF function
is the null string.

%DEFINE(SIGN) (%IF (%VAL GT 0) THEN(1) ELSE(O) FI)

This example has exactly the same effect as the previous one.

The REPEAT Function

The REPEAT function causes its body to be expanded a predetermined number of
times. The first argument is evaluated Normally and interpreted as a numeric expres
sion. This expression, specifying the number of repetitions, is evaluated only once,
before the expansion of the text to be repeated begins. The body is then evaluated
the indicated number of times, Normally or Literally, as determined by the presence
or absence of the call- literally character on the REPEAT and the resulting string
becomes the value of the function. A repetition number of zero yields the null string
as the value of the REPEAT function call.

Examples:

Rotate the accumulator of the 8080 right six times:

%REPEAT (6)

(RRC
)

Generate a horizontal coordinate line to be used in plotting a curve on a line printer.
The line is to be 101 characters long and is to be marked every 10 characters:

OfoREPEAT (10) (+OfoREPEAT (9) (.»+

evaluates to:

+ + + + (etc.) ... + +

L-ll

Macro Processor Language 8086 Assembly Language

L-12

The WHILE Function

The WHILE function tests a condition to determine whether the body is to be
evaluated. The first argument is evaluated Normally and interpreted as a numeric
expression. If the expression is TRUE (=odd) then the body is evaluated, and after
each evaluation, the condition is again tested. Reevaluation of the functional string
continues until the condition fails (i.e. the value of the expression is an even
number).

The body of the WHILE function is expanded Normally or Literally depending on
how the function was called.

Example:

%WHILE (%1 L T 10) (...
... %IF (%FLAG) THEN(%DEFINE(I) (20)) FI

...)

The EXIT Function

The syntax for EXIT function is:

exit_function = "EXIT"

This function causes termination of processing of the body of the most recently
called REPEAT, WHILE, or user-defined macro. The value of the text already
evaluated becomes the value of the function. The value of the exit function, itself, is
the null string.

Example:

%WHILE (%Cond) (...

%IF (%FLAG) THEN (%EXIT) FI

...)

Console Input and Output

The Macro Processor Language provides functions to allow macro time interaction
with the user.

The IN function allows the user to enter a string of characters from the console. This
string becomes the value of the function. The IN function will read one line from the
console (including the terminating carriage return line feed).

The OUT function allows a string to be output to the console output device. It has
the null string as a value. Before it is written out, the string will be evaluated Nor
mally or Literally as indicated by the mode of the call to OUT.

The syntax of these two functions is:

in_function = "IN"

out_function = "OUT" "(" balanced_text ")"

8086 Assembly Language Macro Processor Language

Examples:

%OUT (Enter the date:)
%DEFINE(DATE)(%IN)

(Note that DATE will include <CR> <LF>. Refer to MATCH in Chapter 7 for one
way to strip off <CR> <LF>. You can use SUBSTR with LOCAL for another.)

The Substring Function

The syntax of the substring function is:

substr~_Junction =
"SUBSTR" "(" balanced_text "," exprl "," expr2 ")"

The text string is evaluated Normally or Literally as indicated by the mode of the call
to SUBSTR. Assume the characters of the text string are consecutively numbered,
starting with one. If expression I is zero, or greater than the length of the text string,
then the value of this function is the null string. Otherwise, the value of this function
is the substring of the text string which begins at character number expression 1 of
the text string and continues for expression 2 number of characters or to the end of
the string (if the remaining length is less than expression 2).

Examples:

%SUBSTR (ABCDEFGH,3,4)
%SUBSTR (%(A,B,C,D,E,F,G),2,100)

The MATCH Function

The syntax of the MATCH function is:

match_function =

has the value "CDEF"
has the value ",B,C,D,E,F,G"

"MATCH" "(" idl delimiter_specifier id2 ")" "(" balanced_text ")"

The MATCH function uses a pattern that is similar to the define pattern of the
DEFINE function. It contains two identifiers, both of which are given new values as
a result of the MATCH function, and a delimiter_specifier. The
delimiter_specifier has the same syntax as that of the DEFINE function. The
balanced_text is evaluated Normally or Literally, as indicated by the call of
MATCH, and then scanned for an occurrence of the delimiter. The algorithm used
to find a match is exactly the same as that used to find the delimiter of an argument
to a user-defined macro. If a match is found, then idl will be defined as the value of
the characters of the text which precede the matched string and id2 will be defined as
the value of the characters of the text which follow the matched string. If a match is
not found, then id 1 will be defined as the value of the text string, and id2 will be
defined as the null string. The value of the MATCH function is always the null
string.

Examples:

Assume XYZ has the value" 100,200,300,400,500". Then the call,

%MATCH(NEXT,XYZ) (%XYZ)

results in NEXT having the value "100" and XYZ having the value
"200,300,400,500" .

L-13

Macro Processor Language 8086 Assembly Language

L-14

%DEFINE (LIST) (FLD1 ,3E20H,FLD3)

%WHILE (%LEN(%LlST) NE 0)
(%MATCH(PARM,LlST) (%LlST)

MOV [BX],%PARM
INC BX

The above will generate the following code:

MOV [BX),FLD1
INC BX
MOV [BX),3E20H
INC BX
MOV [BX],FLD3
INC BX

Assume that SENTENCE has the value "The Cat is Fat." and that VERB has the
value "is" , then the call,

%MATCH(FIRST %VERB LAST) (%SENTENCE)

results in FIRST having the value "The Cat" and LAST having the value" Fat." .

The Comment Function

The comment function allows the programmer to comment his macro definition
and/ or source text without having the comments stored into the macro definitions
or passed on to the host language processor. The call-literally character may not be
present in the call to the comment function. The syntax is:

comment_function = " '" text " '" I line feed

When a comment function is recognized, text is unconditionally skipped until either
another apostrophe is recognized, or until a linefeed character is encountered. All
text, including the terminating character, is discarded; i.e. the value of the function
is always the null string. The comment is always recognized except inside an escape
function. Notice that the comment function provides a way in which a programmer
can spread out a macro definition on several lines for readability: and yet not
include unwanted end of line characters in the called value of the macro.

Examples:

%' This comment fits within one line.'
%' This comment continues through the end of the line. <LF>

The Metachar Function

The metachar function allows the programmer to change the character that will be
recognized by the macro processor as the metachar. The use of this function requires
extreme care. The value of the metachar function is the null string. The syntax is:

metachar_function = "METACHAR" "(" balanced_text ")"

The first character of the balanced_text is taken to be the new value of the
metachar. The following characters cannot be specified as metacharacters: a logical
blank, left or right parenthesis, an identifier character, an asterisk, or control
characters (i.e. ASCII value < 20H).

Note: See also the instruction set index at
the end of Chapter 5.

Absolute number, 3-4
Accessing

bytes as word, 2-12, 4-12
code as data, 2-12, 4-12
code in another segment, 2-7, 2-8
data as code, 4-12
data in another segment, 2-7, 2-8
labels (NEAR vs. FAR), 3-3
stack, the, 2-6, 2-15
variables, 3-1

bytes, words, doublewords, 3-2
Records, 3-10
Structures, 3-14

words as bytes 2-12,4-12
accumulators, 8-bit, 4-3
accumulators, 16-bit, 4-3
Address

effective, 1-5, 2-4
of anonymous variable, 2-8
segment base, 2-4, 2-6
starting, 2-19

Addressing
anonymous variables, 2-8
modes, 4-1, 5-1
using base/index registers, 2-8, 2-10
variables in other segments, 2-4, 2-7

Align-type of segment, 2-2
Allocating

bytes, words, doublewords, 3-5
Records, 3-11
Structures, 3-14
the stack, K-l

Angle-brackets « »
hierarchy, 4-17
in record allocation, 3-12
in record expressions, 3-14, 4-16
in structure allocation, 3-15

Anonymous references, 2-8
Anonymous variables, 2-8
ASSUME directive, 2-4
Attributes

of code (Distance-Near, Far), 3-2
of data and code (Segment, Offset), 3-1
of data (Type-Byte, Word, Dword,

n),3-2
Attribute Override Operators, 4-12

BYTE
type, 3-2
variables

access, 2-12, 4-6, 4-9
definition (DB), 3-5

CALL operand types, 2-13, 4-6
Classname, assembly-language, 2-3
Cl.assname, PL/M-86, 2-3
Codemacros, 6-1

Combine-type for segments, 2-2
Constants, 3-3

as operands, 4-2
numbers, 3-4
RECORD constants, 3-14,4-18
rules for forming, 3-4
segment/group names, 2-6,2-11

Data definition
constants (using EQU), 4-18
labels (LABEL, : , PROC), 2-12, 3-9
RECORDs, 3-10
STRUCTUREs, 3-14
Variables

BYTEs (DB), 3-5
DWORDs (DD), 3-5
records (RECORD), 3-10
structures (STRUC), 3-14
WORDs (DW), 3-5

DUP clause, 3-9

END directive, 2-19
defining starting address, 2-19

Expressions
Address, 3-7
as EQU values, 4-18
Hierarchy of operators in, 4-17
Indexing, 2-8, 4-4, 4-9, 4-10
Precedence of operations in, 4-17
Record, 3-14,4-18
Square-brackets, 2-8, 4-1,4-4,4-6,4-9
Subscripts, 4-6

External symbols, 2-17, 2-18
EXTRN directive, definition, 2-17
EXTRN directive, placement of,

2-17, 2-18

Flags, processor. See Flag
registers

Flag registers, 4-5, C-l, 1-1

GROUP directive, 2-11
Groups

ASSUME directive for 2-11
Defining, 2-11
Definition of, 2-11
Offsets within, 2-11, 4-15
Segment prefix for, 2-11
Using OFFSET operator in, 4-15

HIGH operator, 4-14

Identifiers
assembly language, 3-1
MPL,7-1O

Immediate operands, 4-2
Indexing, 4-9, 4-10

INDEX

Index-l

Index-2

Initializing
bytes, words, doublewords, 3-5
Records, 3-10
segment register, 2-6
Structures, 3-14
words, 3-5

JMP operand types, 4-6

LABEL directive, 2-12
defining a label, 2-12,3-9
definition of label, 2-12
FAR definition, 3-2,2-12,3-9
NEAR definition, 3-2, 3-9
NEAR implicit (:) definition, 3-3, 2-12
using with code, 2-13
using with data, 2-13

Linked Lists, 4-11
Linking assembly modules. See Program

Linkage
Location Counter ($),2-19
LSB (Least Significant Byte), 3-6

Macro Processor Language (MPL), 7-1
Arguments, 7-5
Arithmetic expressions, 7-11
Call-literally character (*), 7-3
Comments as macros, 7-7
Console 110. See IN, OUT
Control functions. See IF , REPEAT,

WHILE
DEFINE function, 7-2
Delimiter, 7-16

comma, 7-16
other, 7-16

EQ arithmetic relational operator, 7-11
EQS string-compare function, 7-12
EV AL function, 7-11
GT arithmetic relational operator, 7-11
GTS string-compare function, 7-12
Identifiers, 7-10
IF ... THEN ... [ELSE ...] FI function, 7-13
IN function, 7-17
Interactive macro assembly, 7-17
LE arithmetic relational operator, 7-11
LEN function, 7-12
LES string-compare function, 7-12
Macro-time, 7-2
MATCH function, 7-16
Metacharacter (070),7-3
NE arithmetic relational operator, 7-11
NES string-compare function, 7-12
OUT function, 7-17
Parameters, 7-5
Range of values, 7-11
REPEAT function, 7-15
SET function, 7-18
SUBSTR function, 7-18
Values, range of, 7-11
WHILE function, 7-15

MASK operator, 4-16
Memory operands, 4-6
MPL. See "Macro Processor

Language
MSB (Most Significant Byte), 3-6

NAME directive, 2-16
NOTHING (in ASSUME), 2-4

OFFSET operator, 4-14
with GROUPs, 4-15

Operands
Immediate, 4-2
Memory, 4-6
Register

explicit, 4-3
implicit, 4-5

Operators
Attribute-overriding, 4-12

HIGH and LOW operators, 4-14
PTR (Pointer) operator, 4-12
Segment-override (:) operator, 4-13
SHORT operator, 4-13
THIS operator, 4-14

Record-specific
MASK,4-16
Shift-count (record field-name), 4-16
WIDTH,4-16

Value-returning
LENGTH operator, 4-16
OFFSET operator, 4-14
SEG operator, 4-14
SIZE operator, 4-15
TYPE operator, 4-15

Override
attribute, 4-12
record field, 3-10
segment, 2-7, 4-13
structure field, 3-17

PROC/ENDP directives, 2-14
Procedures

calling, 2-14
defining, 2-14
in-line execution of, 2-15
nested (lexically embedded), 2-15
recursive, 2-15
returning from, 2-16

Processor status flags. See Flag registers
Program linkage directive

END directive, 2-19
EXTRN directive, 2-17
NAME directive, 2-16
PUBLIC directive, 2-17

PTR (Pointer) operator, 4-12
PUBLIC directive, 2-17

Queues, 4-11

RECORDS
allocation using, 3-12
arrays of, 3-12
constants, 3-14,4-2
defining, 3-11
definition of, 3-10
expressions, in, 3-14,4-17
isolating fields of at run-time, 3-11, 4-16
overriding initial default values, 3-12
referencing, 3-11, 4-16
See also:

MASK operator, 4-16
Shift-count (record field-name)

operator, 4-16
WIDTH operator, 4-16

Recursive procedure, 2-15
Reentrant code, 2-15
Registers,

accumulators, 8-bit, 4-3
accumulators, 16-bit, 4-3
flag registers (l-bit), 4-6
general-purpose, 4-3, 4-5
pointer and index (BX, BP, DI, SI), 4-4
segment (CS, DS, ES, SS), 4-4
string instruction, use of-in, 2-10

SEG operator, 4-14
SEGMENT lENDS directive, 2-1
Segment 1

align-type, 2-2
calling another, 2-12, 2-14, 3-12,4-6
calling within same, 2-12, 2-14, 3-12,4-6
class name, 2-3
combine-type, 2-2
defining using SEGMENT lENDS, 2-2
definition of, 2-2
embedded (lexically), 2-3
isolating 16-bit SEG value, 4-16
jumping to another, 3-12,4-6
jumping within same, 3-12, 4-6
nested (lexically), 2-3
override, 4-13
prefix, 2-2, 2-7
register,

definition, 4-4
initializing, 2-6
loading, 2-6
use of with anonymous references, 2-8
use of in ASSUME directive, 2-4
use of in segment override, 2-7, 4-13
use of in segment prefix, 2-7, 4-13

relationship to assembly module, 2-1
Shift-count record operator

(field-name), 4-16

SIZE operator, 4-15
Square-brackets ([D, 2-8, 4-1,4-6,4-9,4-10
Status flags. See Flag registers
String Instructions

Codemacros, 6-1, A-l.
Coding with/withoui 9perands, 2-10
Default segm,ents,2-10
Loading Sl; DI for, 2-10
Operand forms, 2-10

, Overriding operand segments, 2-10
Structures

accessing fields of at run-time, 3-15, 4-10
allocating storage with, 3-15
arrays of, 3-15
defining using STRUC/ENDS, 3-14
definition of, 3-14
fields of, 3-14
initializing using default values, 3-15
overriding default values during

allocation, 3-16
simple (overridable) field, 3-16

Subscripted expressions, 4-6

Type attribute, 3-2
TYPE operator, 4-15

Variables
anonymous, 2-8,4-9
byte, 3-5,4-12
double-indexed,4-1O
doubleword, 3-5, 4-12
indexed, 4-9, 4-10
record, 3-10,4-16
simple, 4-9
structure, 3-14
word, 3-5,4-12

WIDTH operator, 4-16

Index-3

MeS-86™ Assembly Language Reference Manu,
9800640-(

REQUEST FOR READER'S COMMENTS

The Microcomputer Division Technical Publications Department attempts to provide documents that mee
the needs of all Intel product users. This form lets you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness 0
this document.

1" Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions fo
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types c
documents are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME __ ___ DATE ________________ _____

TITLE __ ~--
COMPANYNAME/DEPARTMENT ___ ~ ______ __
ADDRESS ___ __

CITY __ _ STATE ________________________ _ ZIP CODE ______ _

Please check here if you require a written reply. 0

:'0 LIKE YOUR COMMENTS ••.

is document Is one of a series describing Intel products. Your comments on the back of this form will
Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
nments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
Attn: Technical Publications MIS 6-2000
3065 Bowers Avenue
Santa Clara, CA 95051

II I NO POSTAGE
NECESSARY

IF MAILED
IN U.S.A.

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080

Printed in U.S.A.

