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INTRODUCTION

Successful microcomputer-based designs are judicious
blends of hardware and software. The User’s Manual
addresses both subjects in varying degrees of detail.
This publication is the definitive source of information
describing the iAPX 86 components. Software topics
are given moderately detailed coverage. The manual
serves as a reference source during system design and
implementation.

Intel’s Literature Guide, updated bi-monthly and avail-

able at no cost, lists all other manuals and reference

material. Of particular interest to iAPX 86,88 designers

are: AP-113, Getting Started with the Numeric Data

Processor; AP-106, Multiprogramming with iAPX

86,88 Microsystems; The Peripheral Design Handbook,
" and the iAPX 88 Book.

MANUAL ORGANIZATION

The manual contains four chapters, two appendices,
and a numerics supplement. The remainder of this
chapter describes the architecture of the iAPX 86
and 88.

Chapter 2 describes the iAPX 86 and iAPX 88 Central
Processing Units. Chapter 3 describes the 8089 Input/
Output Processor. These two chapters are identically
organized and focus on providing a functional descrip-
tion of the iAPX 86,88 and 89, plus related Intel
products.

Hardware reference information—electrical charac-
teristics, timing and physical interfacing—for the iAPX
86,88 processors is concentrated in Chapter 4.

Appendix A is a collection of iAPX 86 application
notes; these provide design and debugging examples.
Additional application notes are available through In-
tel’s Literature Department (see Literature Guide).

Appendix B contains iAPX component data sheets and
several systems data sheets. The entire Intel catalog of
data sheets is available in: 1981 Component Data Cata-
log and 1981 Systems Data Catalog.

The Numerics Supplement provides detailed informa-
tion on the 8087 numeric processor extension to the
iAPX 86/10 and 88/10 CPUs.
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MICROSYSTEM 80
NOMENCLATURE

The increase in microcomputer system and software
complexity has prompted Intel to introduce a new fam-
ily of microprocessor products to reduce application
complexity and cost. This new generation of Intel
microprocessors is powerful and flexible and includes
many processor enhancements. These include CPUs,
numeric floating point extensions, I/O processors, and
all the support chips required for a full function system.

As Intel’s product line has evolved, its component-
based product numbering system has become inappro-
priate for all the possible VLSI computer solutions
offered. While the components retain their names, Intel
has moved to a new system-based naming scheme to
accommodate these new VLSI systems.

We have adopted the following prefixes for our product
lines, all of them under the general heading of
Microsystem 80:

IAPX — Processor Series

iRMX — Operating Systems

iSBC — Single Board Computers
iSBX — MULTIMODULE Boards

Concentrating on the iAPX Series, two processor lines
are currently defined: . .

iAPX 86 — 8086 CPU-based system
iAPX 88  — 8088 CPU-based system

Configuration options within each iAPX system are
identified by adding a suffix, for example:

iAPX 86/10 — CPU Alone (8086)

iAPX 86/11 — CPU + IOP (8086 -+ 8089)

iAPX 88/20 — CPU with Math Extension
(8088, 8087)

iAPX 88/21 — CPU with Math Extension + IOP
(8088, 8087 + 8089)

This improved numbering system will enable us to pro-
vide you with a more meaningful view of the capabili-
ties of our evolving Microsystem 80.
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iAPX 86 AND iAPX 88 ARCHITECTURE —
THE FOUNDATION FOR THE FUTURE

Overview

IAPX 86,88 is an evolving family of microprocessors and
peripherals. The family partitions processing functions among
general data processors (8086 and 8088), specialized coproces-
sors like the 8087 numeric data processor, and I/O channel
processors (the 8089).

Four key architectural concepts shaped the data processor
designs. . All four reflect the family’s role as vehicles for
modular, high level language programming (in addition to
assembly language programming). The four architectural
concepts are memory segmentation, the operand addressing
structure, the operation register set, and the instruction
encoding scheme. They are distinct departures from the
minicomputer architectural styles of the 1960’s and 1970’s.

These earlier architectures (minicomputers) were designed
for assembly language programming which emphasizes reg-
ister based data and linear programs. Over the last decade,
large software development projects shifted their program-
ming to high level languages which employ modular pro-
gramming -and memory based data. The iAPX 86,88
memory segmentation scheme is intended for modular pro-
grams. It supports the static and dynamic memory require-
ments of program modules, as well as their communication
needs, The iAPX 86,88 registers are designed for fast high
level language execution. The scheme employs specialized
registers and implicit register usage. You will derive signifi-
cant performance and memory utilization improvements
directly from these architectural features,

The four concepts are discussed in the following séctions.
They are:

e Memory segmentatipn for modular programming,
evolution to memory management and protection

® Addressing structure for high level programming
languages

¢ Operation register set for computation

* Instruction set encoding for memory efficiency
and execution speed

Memory Segmentation for Modular Programming

Large programs (10-100K bytes) are not generally written in
assembly language. They are developed in individually com-
piled modules in high level languages. Modular program
development techniques, program libraries, compatible link-
ing, and project management tools are often requirements in
such an environment. A complex application program
might be composed of multiple processes, with each process
constructed from multiple modules. Procésses send mes-
sages to each other for communication, while modules gen-

1-2

erally share common data when needed. Ideally, these inter-

module communication paths are well structured and
disciplined.

The iAPX 86,88 segmentation scheme is optimized for the
reference patterns of computer programs. Four segment
registers are provided in a .segment register file. Memory
references are relative to automatically selected code seg-
ment (CS) and data segment (DS) registers. The module
shares a stack segment (SS) with all other modules of the
process (task). The module may share a global data segment
with other modules in the process; for example, to send and
receive messages between modules. This segment is accessed
explicitly with the extra segment (ES) register.

This scheme is highly efficient because constant program
references to code and data, as well as the stack, have
automatic segment selection. This results in minimized
instruction length. Only 16 bits are required to address any-
where in the full megabyte address range. Only infrequent
inter-module communications require the extra prefix bits to
explicitly override the automatic segment selection.

There are two other significant advantages to the segment
register concept. First, it separates segment base addresses
from offset addresses which are relative to the segment base.
Only offset addresses are used within object modules. This
supports position-independent, dynamically relocatable mod-
ules. You merely have to alter the CS and DS register contents
to move a module, rather than relinking the whole task and
reloading. This structure employs short addresses (16 rather
than 20-bit) for efficient use of memory.

The second advantage of iAPX 86,88 segmentation is that it
can be extended to include memory management and multi-
level protection. The contents and width of segmentation
registers are independent of the rest of the instruction set.
The architecture can be made to address additional memory
and provide access rights and limit checking. Using the
mainframe concept of memory based segment tables, this
structure can also support virtual memory. Further, since
only four registers are active in the file at a time, these
features can be accomplished on the CPU chip itself, avoid-
ing the access delays of off-chip memory management.

In sumfnary, memory segmentation has several ultimate
benefits for the end user. It provides for simplified hardware
and faster, modular software development, more easily
maintainable code, and provides an orderly way for the
architecture to grow.

Addressing Structure for High Level
Programming Languages

The iAPX 86,88 architecture employs an operand address-
ing scheme complementing the memory segmentation
scheme. There are four components in an address. They are
the segment, base, index, and displacement. The segment
component was just described. A base register is dedicated to
both the data and stack segments. These base registers may
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AX AH AL ACCUMULATOR
BX BH- ‘BL BASE

CX CH CL. . COUNT

[2).4 -DH DL DATA

SP STACK POINTER

BP BASE POINTER

S| SOURCE INDEX

DI DESTINATION INDEX

IP INSTRUCTION POINTER
FLAGSy r FLAGS_ STATUSFLAGS

CS CODE SEGMENT

DS DATA SEGMENT

SS STACK SEGMENT

ES EXTRASEGMENT

Figure 2. i1APX 86/10, 88/10 Register Model

also be used when accessing the extra (global) segment. They
are used for holding the base address of a data structure.

Two index registers are provided for use with the base
registers to dynamically select any element from a based data
structure. Eight or sixteen-bit fixed displacements may be
added to any of these address forms. The complete regis-
ter file is shown in Figure 2 and the addressing structure is
shown in Figure 3.

Referring to Figure 3, aniAPX 86,88 operand address con-
tains up to four components: a segment (S), a base (B), an
index (I), and a displacement (d). The segment component is
automatically. selected for the code, data, and stack seg-
ments. An explicit segment selection is required for data
references in the extra segment. Any combination of the
remaining three address components is permitted in virtually
all memory reference instructions, with at least one always
being present.

Block and string data are extensions to this scheme. They use
different assumptions for source and destination segments,
but the segments are still implicitly accessed. Immediate
operands are also supported.

The iAPX 86,88 is a two operand machine (source and
destination). It supports source/destination operand combi-
nations of register/ memory, memory/register, memory/
memory (string operations only), immediate/ register, and
immediate/ memory. The various address combinations of
S, B, 1, and d correspond to common data structures used in
high level language programming. Such data structures can
therefore be implemented easily in assembly language as
well.

Figure 3 shows the correspondence between the most com-
mon iAPX 86,88 address modes and various data types in
high level programming languages. The S component is

COMPONENT
[ s e seament
* BASE
N [::l . INDEX

DISPLACEMENT

-
=| S+B+I1+d

EFFECTIVE ADDRESS

DESCRIPTION
‘CODE
DATA Selects 64K Address
STACK . Range (Segment)
EXTRA
Selects Data
{DATA Structure within
STACK Segment
sounce - Seet Sl
DESTINATION
Structure
g8-BIT Fixed Offset
16-BIT Selects Sub-Elements
(20 - BIT) One Mega-Byte

Address Range

Figure 3.
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implicit; the stack base (BP) assumes the stack segment; no B
component, or use of the data base (BX), assumes the data
segment, The less commonly used address modes are not
shown.

The stack base (BP) is a concept borrowed from the family of
P-machines “developed” as ideal PASCAL vehicles. P-
machines term this register the “mark pointer”. It always
points to the base of the current local data area in the stack
segment. This permits efficient local addressing in block-
structured languages such as PASCAL and PL/M. In these
languages, procedures are invoked by pushing their parame-
ters on the stack, calling the procedure, and then allocating
their local data area on the stack. The iAPX 86,88 return
instruction then removes the parameters from the stack, as is
done in the P-machines.

Operation Register Set for Computation

The Intel iAPX 86,88 line is truly a complete family of
microprocessors. The iAPX 86/ 10 and iAPX 88/ 10 are the
general data processor members of the family, while the 8089
is the I/ O processor family member. In addition, the CPU
itself has an interface for attaching coprocessors. Coproces-
sors provide specialized operation set extensions that benefit
the application by performing special purpose logic to
increase performance.

The iAPX 86/20 Numeric Data Processor is an example of
this.concept. Using an 8086 with an 8087 coprocessor (CPU
extension) it provides a one hundred-fold performance boost
over the iAPX 86/ 10 for a wide range of numeric operations.
The full computational capability of the iAPX 86,88 family
can therefore span a much broader range than is possible with
a single microprocessor. This technique has been used success-
fully in the mainframe and minicomputer industries to provide
instruction set options for scientific, commercial, text process-
ing, or other special purpose applications. -

An 8087 extends the iAPX 86 or iAPX 88 architecture to
include additional data types, registers, and instructions, The
8086 or 8088, with an 8087 coprocessor, operates on 16, 32,

and 64-bit integers, 32, 64 and 80-bit floating point
numbers, and up to 18 digit packed BCD numbers. Data
conversions and calculations are performed in the 8087
and are transparent to the programmer.

The iAPX 86/10 and iAPX 88/10 CPUs alone can perform
arithmetic operations on signed and unsigned 8 and 16-bit
binary integers as well as packed and unpacked decimal
integers. The full complement of logical operations are pro-
vided as well. Interesting new features are the string opera-
tions. Six primitive string instructions (move, skip; search,
compare, set, and translate) are standard. When combined
with special control operators, complex string manipula-
tions are possible with two or three instructions.
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Instruction Set Encoding for Memory Efficiency
and Execution Speed

The iAPX 86 uses a byte oriented instruction stream while
operating ‘with a' 16-bit data bus. To accomplish this, the
processor is subdivided into two independent parallel pro-
cessors called the bus interface unit (BIU) and the execution
unit (EU). The iAPX 88 employs an identical execution
unit and is 100% code compatible with iAPX 86, yet it
interfaces to an 8-bit wide data bus BIU. The businterface
unit is an independent processor that prefetches instruc-
tions. Instruction fetch time is therefore mostly over-
lapped with other iAPX 86,88 processor activity. The bus
interface unit permits either instructions or data to be
placed in memory without regard to word boundaries.
(An array of five byte records in PASCAL can be refer-
enced without requiring an additional byte of padding to
word align the records.) Processor subdivision into the
BIU and EU has the additional benefit of minimizing the
effect of wait states and bus hold time on CPU efficiency.

Instruction set encoding is substantially improved when
instructions are composed in byte multiples instead of
words. Instructions in the iAPX 86,88 vary from one to six
bytes in length (not counting optional prefix bytes). The
average instruction is three bytes long. In a word aligned
machine the same information would occupy four bytes.
This and the features described above give the IAPX 86,88
roughly a'30% program space savmgs over other archi-
tectures.

PROCESSOR PARTITIONING

Beyond efficient support for high level languages, the
iAPX 86 and iAPX 88 establish the foundation for the
family to buiild on in the 1980’s. The family uses increasing
levels of integration to significantly reduce software, hard-
ware, and development investment.

The 1APX 86/10 andiAPX 88 / 10 general purpose proces-
sors employ external module integration. Specialized sys-
tem functions are distributed among optimized compo-
nents and removed from the host processor. The CPU is
freed to become the system manager and resource allocator
rather than doing “all things for all programs”. The family
also includes the 8087 Numeric Data Processor and the
8089 1/ O Channel Processor.

These processors are optimized to address the three main
functions in a computer environment: data processing and
control, arithmetic computation, and input/output. The
8087 and 8089 are described below.

The 8087 Numeric Processor Extension (NPX) adds over
50 numeric opcodes and eight 80-bit registers to the host
processor to provide more extensive data and numeric
processing capability. It performs floating point and trans-
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HOST CPU (8086 or 8088)

NUMERIC DATA PROCESSOR (8087)

BUS INTERFACE UNIT I
|

FLOATING POINT EXECUTION UNIT
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\/7

EXECUTION BUS
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\ <‘ DATA ﬁ)
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|
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t
|
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|
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AND
BUS TRACKING

Figure 4. Numeric Data Processor Block Diagram

cendental (trigonometric) functions, processes decimal
operands up to 18 digits without roundoff, and performs
exact arithmetic on integers up to 64 bits long. Another
feature of the NDP, with important benefits to you, is that
it is compatible with the proposed IEEE floating point
standards. It can be used in applications requiring high
speed computation such as numerical analysis, accounting
and financial applications, the sciences, and engineering.
Throughput increases in such applications up to 100 times
current speeds are typical (See Figure 4.)

The 8089 Input/ Output Processor (IOP)is an independent
microprocessor that optimizes input/output operations,
The objective of the IOP is to remove all I/ O details from
application software. It responds to CPU direction but
executes its own instruction stream in parallel with other
processors. I/ O transfers of either 8 or 16-bit data can be

done at rates up to 1.25 megabytes per second. The IOP
therefore combines the attributes of both a CPU and a
DMA controller to provide a powerful I/ O subsystem. An
important feature of the IOP is that it can be physically
isolated from the application CPU. The advantage to you
is that I/ O subsystem changes or upgrades can be made
without any impact to application software. (See Figure 5.)

Summarizing, there are several advantages to external

module integration:

® System tasks may be allocated to special purpose pro-
cessors designed for optimal task handling

® Simultaneous operation (parallel proceséing) provides
highest system performance

® Isolated system functions minimize the effect of modifi-
cations, local failures, or errors on the rest of the system

HOST CPU (8086 or 8088)

; N N PERIPHERALS
EXECUTION BASE
UNIT | INTERFACE 1/0 PROCESSOR (8089) CRT'S
UNIT
: C> <:> PRINTERS
! 1/0 DISKETTES
| CHANNEL 1
! El
1 a @
[} a <
g DMA g
-
&
%
PRIVATE MEMORY
PUBLIC MEMORY CHANNEL 1 PROGRAM
10
CHANNEL 2
PROGRAM CHANNEL 2 PROGRAM
DATA '\_J
a

Figure 5. 1/0 Processor Block Diagram
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o The iAPX 86,88 family of processors allows division of
the application into small, manageable tasks for parallel
development, while providing built-in hardware facili-
ties for coordinating processor interaction. With the
iAPX 86,88 approach you can implement high perfor-
mance systems far more quickly and easily than would
otherwise be possible.

DEVELOPMENT TOOLS
Development Systems

Development systems are a unique combmatlon of hardware
and software tools which increase your product development
productivity. With Intel development products, you will
shorten the development cycle and reduce your time to
market.

Development systems from Intel provide an upgradable spec-
trum of tools ranging from stand alone development systems
to future networks of specialized work stations. Intel elimi-
nates your risk of development system obsolescence by gua-
ranteeing product upgradability and compatibility. This gua-
rantee protects your capital investment.

For small to medium size projects, the Intellec™ development
system is available in many configurations at low cost. For
small projects, these systems have nominal program memory
with floppy disks as peripheral storage devices. Minimum
configurations may be upgraded to provide increased perfor-
mance, increased memory, and increased mass storage via
hard disk. These more powerful configurations support
medium sized projects.

The Intellec Series I1/85 is a good example of such a system.
It is a complete microcomputer development system inte-
grated into one compact package. The Model 225 includes a
CPU with 64K bytes of RAM, 4K bytes of ROM, a 2000
character CRT, detachable full ASCII keyboard, and a 250K
byte floppy disk drive. The powerful ISIS-II Disk Operating
System software allows you to efficiently develop and debug
iAPX 86,88 programs, Optional storage peripherals provide
over 2 million and 7.3 million bytes of storage on floppy and
hard disk, respectively.

Distributed development configurations address the range of
.medium to large sized projects. These configurations connect
multiple standalone development systems to more powerful
support resources such as mainframes and their peripherals.

In addition to the Intellec® development system, Intel offers
several products to help you debug and test your hardware and
software. In-Circuit-Emulators, such as ICE-86™ and ICE-
88™, are available to emulate your product environment. They
‘increase development productivity substantially. Another
software tool, RBF-89, helps you debug 8089 software under
ICE control. With these tools, software development time
can be reduced dramatically — lowering your total in-
vestment,

High Level Languages

Programming languages are the key to developing an applica-
tion, Intel programming languages serve three purposes in
your design. First, they are your primary design tool. Intel’s
breadth of languages and extended features give you the
maximum ability to properly design and plan your program.
Second, Intel languages are a communication vehicle between
programmers during implementation and later during modifi-
cation. Standard high level languages allow programmers to
better communicate what the programs.do. Third, Intel lan-
guages are designed in conjunction with Intel microsystems to
provide the greatest code efficiency and execution speed. Intel
languages speed implementation of your design and reduce
maintenance costs. :

" MDS-311 is a set of software development tools for IAPX 86

and 1APX 88 applications. It is a complete set of software
products that run on the Intellec Model-800 and Series-II
development systems. The software tools provided include
PL/M-86, high level programmmg language, and the ASM-
86 assembler Two utilities, LINK86 and LOC86, are supphed
to link separately complled or assembled program modules
into executable tasks. The lerary Manager, LIBS6, lets you
maintain a library of iAPX 86 or iAPX 88 object modules
These modules can then be linked in with new programs
without being recompiled. This simplifies and speeds your
development. Common code (e.g. 2 subroutme) only has to be
developed and compiled orice. Intel code converters, such as
CONVS86, are very useful tools for migrating 8080 or 8085,
Z80, and 6809 assembly language programs to the iAPX .86 or
iAPX 88. They convert assembly source-code to ASM86
source code: This will help you make a rapid transition and cut
redevelopment costs substantially. :

Intet will provide a variety of languages for both systems and
applications to facilitate development of your product. You
can choose the language (or languages) which best suits your
product needs and the expertise of your staff. ASM86, the
assembly language, and PL/M-86, the systems oriented high
level language, are both currently available. PASCAL, FOR-

.. TRAN, and BASIC will be offered in the near future and
~COBOL is planned after that.
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* Intel’s languages also run on your final product. Your pro-

duct’s function is significantly increased when packaged with

language translators. They allow your customers to tailor your

products for their environment. Intel’s languages will save
implementation time and free resources to work on the value-
added portion of your product.

SINGLE BOARD COMPUTERS
ACCELERATE YOUR '
MICROSYSTEM SUCCESS

In addition to the increased integration of functions in

VLSI components, there is a strong trend today to imple-
ment microsystem applications with single board compu-
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ters. This allows the design engineer to:

Easily configure reliable and cost-effective systems
using iSBC and iSBX standard products.

Overcome the shortage of qualified engineers and
technicians.

Get the end product to market quickly.
Focus on the application.

Offset the increasing cost of capital.

In addition, using iSBC single board computers and iSBX
expansion products in your design reduces the number of
risks that you must face in all phases of the product life
cycle. The four major risk areas that Intel iSBC and iSBX
products will help you overcome are as follows:

1.

Limited Resources

Using a fully tested board computer, which incorpo-
rates the key elements of processor, memory and 1/O,
helps overcome today’s critical shortage of engineers,
programmers and technicans. Implementing iSBC
boards and iISBX MULTIMODULES in your design
reduces increasing capital costs in production, QC, and
test. It is estimated that using iSBC boards can save up
to $200,000 per board design.

. Time to Market Dictates Success or Failure

With inflation running at its current rate, the amount of
time it takes to get a product from anidea to the market
becomes critical. A delay of a few months can collapse
your return on investment.

Experience shows that the first company that gets its
product to the marketplace usually dominates that
market. You can get your product to the market months
earlier using standard off-the-shelf iSBC, iSBX and
Real-Time Executive (iRMX) Software modules.
Intel’s large board manufacturing and distribution cap-
ability enables you to respond to your market demand
rapidly and in a cost-effective manner.

3. Solution Completeness and Project Credibility

Microprocessor based solutions for today’s problems
are commonplace and are expected to succeed. A broad
spectrum of compatible system components in the
iSBC, iSBX, and iRMX product line increase the prob-
ability of being right the first time. General purpose
iSBC board solutions are easy to customize through the
use of iISBX modules from Intel, or your own design.

4. Coping with the Technology/Complexity
Avalanche ‘

iSBCand iSBX products incorporate the latest in VLSI
shortly after their initial introduction. With increasing
system complexity Intel’s design process and testing
reduces the risk of “gremlin” bugs which multiply with
complexity and evade diagnosis. Standards used through-
out the product family such as the de facto industry
standard MULTIBUS, EIA, IEEE etc. provide a
smooth transition for your product to new and chang-
ing processor, memory and I/O technologies.

Intel’s single board computer product family is continuing
to reduce your risk and protect your investment in the
future by expanding iSBC and iSBX products in three
dimensions: processors, memory, and I/O.

ISBX™ MULTIMODULE AND
ISBX BUS

RAPID VLS1
INFUSION

iSBC™ SINGLE BOARD COMPUTER
STANDARD FORM FACTOR

MULTIMODULE™
MEMORY EXPANSION

RMX™
REAL-TIME
MULTIPROGRAMMING
EXECUTIVE
SOFTWARE

T MULTIBUS™ STANDARD ARCHITECTURE

Figure 6. Single Board Computer (iSBC 86/12™)
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SUMMARY

Intel's iIAPX 86,88 multiple’processor family is designed
for modular programming in high level as well as assembly
languages

e Its memory segmentation scheme is optimized for the

reference needs of computer programs, and is separate
from the operand addressing structure.

® The structure for addressing operands within segments
directly supports the various data types found in high
level programming languages.

o Thefamily provides an operation register set to support
general computation requirements. It also provides for
optimized operation register sets to do specialized data
processing functions with its inherent multi- and copro-
cessor support.

® The family uses optimized instruction encoding for
high performance and memory efficiency

® The farnily is well supported with development tools
and single board computer products.

This architecture provides the foundation for solving the
application needs in the 1980’s. It makes a noted departure
from architectures of the 1960’s and 1970’s — based on
Intel’s intent to minimize software and hardware product
costs for you, the end user.

1-8
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CHAPTER 2
THE 8086 AND 8088
CENTRAL PROCESSING UNITS

This chapter describes the mainstays of the 8086

microprocessor family: the 8086 and 8088 central el N/ whvee
processing units (CPUs). The material is divided apia (]2 sl apts
into ten sections and generally proceeds from aots s 2] aterse
hardware to software topics as follows: aoiz2 O] ] arrssa
1. Processor Overview ap11 [ s 35| ] Ata/ss
2. Processor Architecture anio e s3] aterss
. ) aps []7 aa["] BHE/s7
3. Memory . ADB [j 8 331 mn/x
4. Input/Output ap7 []s [ 7B
5. Multiprocessing Features wos o B8 wflwow  wa/aT)
. . ADS 30[ ] HLDA (RQ/GTT)
6. Processor Control and Monitoring - - _ _
ap4 ]2 29 :] Wi (LOCK)
7. Instruction Set apa (|3 BIMB (&
8. Addressing Modes a2 [ 14 z[ovR &)
. e ap1 []1s 26| BEN (50)
9. Programming Facilities - =N wPae s
10. Programming Guidelines and Examples w7 AW sy
X . B INTR []18 23] TEST
The chapter describes the internal operation of ok s 2] renoy
the CPUs in detail. The interaction of the pro-

. . . . . GND [{20 21[7] RESET
cessors with other devices is discussed in func-
tional terms; electrical characteristics, timing, and
other information needed to actually interface et N/ 0fIvee
other devices with the 8086 and 8088 are provided a[]2 so[Jans
in Chapter4. as[da se[] aterss

a2[]4 37 A17/84
’ an[]s 36 [] A1e/ss
2.1 Processor Overview an]s 3s[] at9/s6
o a7 3a}]ss0 (HIGH)
The 8086. and 8088 are closely related third- as]e 33| mn/iax
generation microprocessors. The 8088 is designed aor[]e a2[ 17
with an 8-bit external data path to memory and a0s [0 8088 afdwown 65T
: ; : . CPU
I/0, while the 8086 can transfer 16 bits-at.a time. aps[]1s ofdHoa  @G/ETH
.In almost every other respect the processors are ave e s o)
identical; software written for one CPU will o o @
execute on the other without alteration. The chips -

. . N . . apz[]1a - 27{]pT/R &)
are contained in standard 40-pin dual in-line o _
packages (figure 2-1) and operate from a single ao1 s R L
+5V poweér source. » ‘ #oo[Jse sHae  @so

) - ; : Nmi 17 2a[JiNTA (as1)
The 8086 and 8088 are suitable for an exception- wTR[J18 2] TEST
ally wide spectrum of microcomputer applica- , cLk e 22[:185‘\0\'
tions, and this flexibility is one of their most anp[] 20 21[ reser
outstanding characteristics. Systems can range
from uniprocessor minimal-memory designs . o
implemented with a handful of chips (figure 2-2), WAXIMUM MODE PIN FUNCTIONS (e.9., LOCK)
to multiprocessor systems with up to a megabyte
of memory (figure 2-3). Figure 2-1. 8086 and 8088 Central Processing
g Uni
' nits
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SYSTEM ROM, RAM

Figure 2-3. 8086/8088/8089 Multiprocessing System
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The large application domain of the 8086 and
8088 is made possible primarily by the processors’
dual operating modes (minimum and maximum
mode) and built-in multiprocessing - features.
Several of the 40 CPU pins have dual functions
that are selected by a strapping pin. Configured
in minimum mode, these pins transfer control
signals directly to’ memory and input/output
devices. In maximum mode these same pins take
on different functions that are helpful in medium
to large ystems, especially systems with multiple
processors. The control - functions assigned to
these pins in minimum mode are assumed by a
support chip, the 8288 Bus Controller.

The CPUs are designed to operate with the 8089
Input/Output Processor (IOP) and other pro-
cessors in multiprocessing and distributed pro-
cessing systems. When used in conjunction with
one or more 8089s, the 8086 and 8088 expand
the applicability of microprocessors into 1/0-
intensive data processing systems. Built-in coor-
dinating signals and instructions, and electrical
compatibility with Intel’s Multibus™ shared bus
architecture, simplify and reduce the cost of
developing multiple-processor designs.

Both CPUs are substantially more powerful than
any microprocessor previously offered by Intel.
Actual performance, of course, varies from
application to application, but comparisons to the
industry standard 2-MHz 8080A are instructive.

The 8088 is from four to six times more powerful.

than the 8080A; the 8086 provides seven to ten
times the 8080A’s performance (see figure 2-4).

RELATIVE PERFORMANCE

1972

1974 1977 1978 1979

YEAR INTRODUCED

Figure 2-4. Relative Performance of the
8086 and 8088

The 8086’s advantage over the 8088 is attributable
to its 16-bit external data bus. In applications that
manipulate 8-bit quantities extensively, or that
are execution-bound, the 8088 can approach to
within 10% of the 8086°s processing throughput.

The high performance of the 8086 and 8088 is
realized by combining a 16-bit internal data path
with a pipelined architecture that allows instruc-
tions to be prefetched during spare bus cycles.
Also contributing to performance is a compact
instruction format that enables more instructions
to be fetched in a given amount of time.

Software for high-performance 8086 and 8088
systems need not be written in assembly language.
The CPUs are designed to provide direct hard-
ware support for programs written in high-level
languages such as Intel’s PL/M-86. Most high-
level languages store variables in memory; the
8086/8088 symmetrical instruction set supports
direct operation on memory operands, including
operands on the stack. The hardware addressing
modes provide efficient, straightforward
implementations of based variablcs, arrays, ar-
rays of structures and other high-level language
data constructs. A powerful set of memory-to-
memory string operations is available for efficient
character data manipulation. Finally, routines
with critical performance requirements that can-
not be met with PL/M-86 may be written in
ASM-86 (the 8086/8088 assembly language) and
linked with PL/M-86 code.

While the 8086 and 8088 are totally new designs,
they make the most of users’ existing investments
in systems designed around the 8080/8085
microprocessors. Many of the standard Intel
memory, peripheral control and communication
chips are compatible with the 8086 and the 8088.
Software is developed in the familiar Intellec®
Microcomputer Development System environ-
ment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be directly con-
verted to run on the 8086 and 8088.

2.2 Processor Architecture

Microprocessors generally execute a program by
repeatedly cycling through the steps shown below
(this description is somewhat simplified):

1. Fetch the next instruction from memory.

2. Read an operand (if required by the
instruction).
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3. Execute theinstruction. o
4. Write the result (if required by the
" instruction). S

In previous CPUs, most of these steps have been
performed serially, or with only a single bus cycle
fetch overlap. The architecture of the 8086 and
8088 CPUs, while performmg the same steps,
allocates them to two separate processing units
within the CPU. The execution unit (EU) executes
instructions; the bus interface unit (BIU) fetches
instructions,.reads operands and writes results.

The two units can-operate independently. of one
another and are able, under most circumstances,
to extensively overlap instruction fetch with exe-
cution. The result is that, in most cases, the time
normally required to . fetch instructions *‘dis-
appears’’ because the EU .executes instructions
that have already been fetched by the BIU. Figure
2-5 llustrates this overlap and compares it with
traditional microprocessor operation. In. the
example, overlapping reduces. the clapsed time
required to execute three instructions, and allows
two additional instructions. to be prefetched as
well, :

ELASPED TIME—— —

[ B R i Y i v
SECOND

GENERATION

MICROPROCESSOR s B
BUS: » BUSY BUSY BUSY BUSY

N % Co .
N . 4 . : :
- 8086/8088 7
MICROPROCESSOR - b || - ||I'#%I§i?.l||

LBUS I BUSYJ I BUSY l rBUSY I I BUSY. I I BUSY | I BUSYJ

INSTRUCTION STREAM

DI
////

15t INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

2nd INSTRUCTION::
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

6th INSTRUCTION:
(UNDEFINED)

Figure 2-5. Overlapped Instruction Fetch and Exec‘utidn
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Execution Unit

The execution units of the 8086 and 8088 are iden-
tical (figure 2-6). A 16-bit arithmetic/logic unit
(ALU) in the EU maintains the CPU status and
control flags, and manipulates the general
registers and instruction operands. All registers
and data paths in the EU are 16 bits wide for fast
internal transfers.

The EU has no connection to the system bus, the
“‘outside world.”’ It obtains instructions from a
queue maintained by the BIU. Likewise, when an
instruction requires access t0 memory or to a
peripheral device, the EU requests the BIU to
obtain or store the data. All addresses
manipulated by the EU are 16 bits wide. The BIU,
however, performs an address relocation that
gives the EU access to the full megabyte of
memory space (see section 2.3).

Bus Interface Unit

The BlIUs of the 8086 and 8088 are functionally
identical, but are implemented differently to
match the structure and performance
characteristics of their respective buses.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or 170 devices upon demand from the EU. Sec-
tions 2.3 and 2.4 describe the interaction of the
BIU with memory and 1/0 devices.

In addition, during periods when the EU is busy
executing instructions, the BIU “‘looks ahead’’
and fetches more instructions from memory. The
instructions are stored in an internal RAM array
called the instruction stream queue. The 8088
instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store

EXECUTION UNIT (EV)

GENERAL
REGISTERS

BUS INTERFACE UNIT (BIV)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

ADDRESS
GENERATION

MULTIPLEXED BUS

1
[ orenmes
1

AND BUS
CONTROL

INSTRUCTION
QUEUE

FLAGS

Figure 2-6. Execution and Bus Interface Units (EU and BIU)
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up to six instruction bytes. These queue sizes
allow the BIU to keep the EU supplied with pre-
fetched instructions under most conditions
without monopolizing the system bus. The 8088
BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no
active request for bus access from the EU. The
8086 BIU operates similarly except that it does
not initiate a fetch until there are two empty bytes
in its queue. The 8086 BIU normally obtains two
instruction bytes per fetch; if a program transfer
forces fetching from an odd address, the 8086
BIU automatically reads one byte from the odd
address and then resumes fetching two-byte
words from the subsequent even addresses.

Under most circumstances the queues contain at
least one byte of the instruction stream and the
EU does not have to wait for instructions to be
fetched. The instructions in the queue are those
stored in the memory locations immediately adja-
cent to and higher than the instruction currently
being executed. That is, they are the next logical
instructions so long as execution proceeds seri-
ally. If the EU executes an instruction that
transfers control to another location, the BIU
resets the queue, fetches the instruction from the
new address, passes it immediately to the EU, and
then begins refilling the queue from the new loca-
tion. In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or
170 read or write (except that a fetch already in
progress is completed before executing the EU’s
bus request).

General Registers

Both CPUs have the same complement of eight
16-bit general registers (figure 2-7). The general
registers are subdivided into two sets of four
registers each: the data registers (sometimes called
the H & L group for ‘‘high’’ and ‘‘low’’), and the
pointer and index registers (sometimes called the
P & I group).

The data registers are unique in that their upper
(high) and lower halves are separately
addressable. This means that each data register
can be used interchangeably as a 16-bit register,
or as two B8-bit registers. The other CPU registers
always are accessed as 16-bit units only. The data
registers can be used without constraint in most
arithmetic and logic operations. In addition,

15 8:7 [
( AX
—iar — T — 55 — —]AccumuLator
1
BX BASE
DATA BH T BL
GROUP cX
— o — T i COUNT
DX
= — = — 5~ DATA
3 0
e
STACK
sP POINTER
BASE
POINJES BP POINTER
INDEX SOURCE
GROUP sl INDEX
ol DESTINATION
L INDEX

Figure 2-7. General Registers

some instructions use certain registers implicitly
(see table 2-1) thus allowing compact yet powerful
encoding.

Table 2-1. Implicit Use of General Registers

REGISTER OPERATIONS
AX Word Multiply, Word Divide,
Word /0
AL Byte Multiply, Byte Divide, Byte
1/O, Translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide
" BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide,
Indirect 1/O
SP Stack Operations
Si String Operations
DI String Operations

The pointer and index registers can also par-
ticipate in most arithmetic and logic operations.
In fact, all eight general registers fit the definition
of ““‘accumulator’® as used in first and second
generation microprocessors. The P & 1 registers
(except for BP) also are used implicitly in some
instructions as shown in table 2-1.
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Segment Registers

The megabyte of 8086 and 8088 memory space is
divided into logical segments of up to 64k bytes
each. (Memory segmentation is described in sec-
tion 2.3.) The CPU has direct access to four
segments at a time; their base addresses (starting
locations) are contained in the segment registers
(see figure 2-8), The CS register points to the cur-
rent code segment; instructions are fetched from
this segment. The SS register points to the current
stack segment; stack operations are performed on
locations in this segment. The DS register points
to the current data segment; it generally contains
program variables. The ES register points to the
current extra segment, which also is typically used
for data storage.

The segment registers are accessible to programs
and can be manipulated with several instructions.
Good programming practice and consideration of
compatibility with future Intel hardware and soft-
ware products dictate that the segment registers
be used in a disciplined fashion. Section 2.10 pro-
vides guidelines for segment register use.

15 0
¢s SEaMENT
Ds SEGuENT
ss géé?w}(sm
ES SEGMENT

Figure 2-8. Segment Registers

Instruction Pointer

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in the 8080/8085
CPUs. The instruction pointer is updated by the
BIU so that it contains the offset (distance in
bytes) of the next instruction from the beginning
of the current code segment; i.e., IP points to the
next instruction. During normal execution, IP
contains the offset of the next instruction to be
fetched by the BIU; whenever IP is saved on the
stack, however, it first is automatically adjusted
to point to the next instruction to be executed.
Programs do not have direct access to the instruc-
tion pointer, but instructions cause it to change
and to be saved on and restored from the stack.

Flags

The 8086 and 8088 have six 1-bit status flags
(figure 2-9) that the EU posts to reflect certain
properties of the result of an arithmetic or logic

STATUS

CONTROL
AG FLAGS
A

=
=

m
=) I
bl

2]
H

CARRY

PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION

TRAP

Figure 2-9. Flags

operation. A group of instructions is available
that allows a program. to alter its execution
depending on the state of these flags, that is, on
the result of a prior operation. Different instruc-
tions affect the status flags differently; in general,
however, the flags reflect the following
conditions:

1. If AF (the auxiliary carry flag) is set, there
has been a carry out of the low nibble into
the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This
flag is wused by decimal arithmetic
instructions.

2. If CF (the carry flag) is set, there has been a

carry out of, or a borrow into, the high-order
bit of the result (8- or 16-bit). The flag is used
by instructions that add and subtract
multibyte numbers. Rotate instructions can
also isolate a bit in memory -or a register by
placing it in the carry flag. ‘

3. If OF (the overflow flag) is set, an arithmetic

overflow has occurred; that is, a significant
digit has been lost because the size of the
result exceeded the capacity of its destination
location. An Interrupt On Overflow instruc-
tion is available that will generate an inter-
rupt in this situation.
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4. If SF (the sign flag) is set, the high-order bit
of the result is a 1. Since negative binary
numbers are represented in the 8086 and 8088
in standard two’s complement notation, SF
indicates the sign of the result (0 = positive,
1 = negative).

5. If PF (the parity flag) is set, the result has
even parity, an even number of 1-bits. This
flag can be used to check for data transmis-
sion errors.

6. If ZF (the zero flag) is set, the result of the
operation is 0.

Three additional control flags (figure 2-9) can be
set and cleared by programs to alter processor
operations:

1. Setting DF (the direction flag) causes string
instructions to auto-decrement; that is, to
process strings from high addresses to low
addresses, or from ‘‘right to left.”” Clearing

DF causes string instructions to auto-
increment, or to process strings from ‘‘left to
right.”’

2. Setting IF (the interrupt-enable flag) allows
the CPU to recognize external (maskable)
interrupt requests. Clearing IF disables these
interrupts. IF has no affect on either non-
maskable external or internally generated
interrupts. ‘

3. Setting TF (the trap flag) puts the processor
into single-step mode for debugging. In this
mode, the CPU automatically generates an
internal interrupt after each instruction,
allowing a program to be inspected as it exe-
cutes instruction by instruction. Section 2.10
contains an example showing the use of TF in
a single-step and breakpoint routine.

8080/8085 Registers and Flag
Correspondence

The registers, flags and program counter in the
8080/8085 CPUs all have counterparts in the 8086
and 8088 (see figure 2-10). The A register (ac-
cumulator) in the 8080/8085 corresponds to the
AL register in the 8086 and 8088. The 8080/8085
H&L, B & C, and D & E registers correspond to
registers BH, BL, CH, CL, DH and DL, respec-
tively, in the 8086 and 8088. The 8080/8085 SP
(stack pointer) and PC (program counter) have
their counterparts in the 8086/8088 SP and IP.

The AF, CF, PF, SF, and ZF flags are the same in
both CPU families. The remaining flags and
registers are unique to the 8086 and 8088. This
8080/8085 to 8086 mapping allows most existing
8080/8085 program code to be directly translated
into 8086/8088 code.

Mode Selection

Both processors have a strap pin (MN/MX) that
defines the function of eight CPU pins in the 8086
and nine pins in the 8088. Connecting MN/MX to
+5V places the CPU in minimum mode. In this
configuration, which is designed for small
systems (roughly one or two boards), the CPU
itself provides the bus control signals needed by
memory and peripherals. When MN/MX is
strapped to ground, the CPU is configured in
maximum mode. In this configuration the CPU
encodes control signals on three lines. An 8288
Bus Controller is added to decode the signals
from the CPU and to provide an expanded set of
control signals to the rest of the system: The CPU
uses the remaining free lines for a new set of
signals designed to help coordinate the activities
of other processors in the system. Sections 2.5
and 2.6 describe the functions of these signals.

2.3 Memory

The 8086 and 8088 can accommodate up to
1,048,576 bytes of memory in both minimum and
maximum mode. This section describes how
memory is functionally organized and used.
There are substantial differences in the way
memory components are actually accessed by the
two processors; these differences, which are in-
visible to programs, are covered in section 4.2,
External Memory Addressing. :

Storage Organization

From a storage point of view, the 8086 and 8088
memory spaces are organized as identical arrays
of 8-bit bytes (see figure 2-11). Instructions, byte
data and word data may be freely stored at any
byte address without regard for alignment thereby
saving memory space by allowing code to be
densely packed in memory (see figure 2-12). Odd-
addressed (unaligned) word variables, however,
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T/ Ax 77 % :
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Figure 2-10. 8080/8085 Register Subset (Shaded)

LOW MEMORY HIGH MEMORY
00000H __ 00001H 00002H FFFFEH_FFFFFH
22 ¢

7 07 07 07 0

|<—1 MEGABYTE—————>|

19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H

Figure 2-11. Storage Organization Figure 2-12. Instruction and Variable Storage
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do not take advantage of the 8086’s ability to
transfer 16-bits at a time. Instruction alignment
does not materially affect the performance of
either processor. ‘

Following Intel convention, word data always is
stored with the most-significant byte in the higher
memory location (see figure 2-13). Most of the

time this storage convention is ‘‘invisible”’ to-

anyone working with the processors; exceptions
may occur when monitoring the system bus or
when reading memory dumps.

A special class of data is stored as doublewords;
i.e., two consecutive words. These are called
pointers and are used to address data and code
that are outside the currently-addressable
segments. The lower-addressed word of a pointer
contains an offset value, and the higher-addressed
word contains a segment base address. Each word
is stored conventionally with the higher-addressed
byte containing the most-significant eight bits of
the word (see figure 2-14).

724H 7254

T

0000 , 0010 | o101 , 0101

HEX

BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 2-13. Storage of Word Variables

Segmentation

8086 and 8088 programs ‘‘view’’ the megabyte of
memory space as a group of segments that are
defined by the application. A segment is a logical
unit of memory that may be up to 64k bytes long.
Each segment is made up of contiguous memory
locations and is an independent, separately-
addressable unit. Every segment is assigned (by
software) a base address, which is its starting
location in the memory space. All segments begin
on 16-byte memory boundaries. There are no
other restrictions on segment locations; segments
may be adjacent, disjoint, partially overlapped,
or fully overlapped (see figure 2-15). A physical
memory location may be mapped into (contained
in) one or more logical segments.

The segment registers point to (contain the base
address values of) the four currently addressable
segments (see figure 2-16). Programs obtain
access to code and data in other segments by
changing the segment registers to point to the
desired segments.

Every application will define and use segments
differently. The currently addressable segments
provide a generous work space: 64k bytes for
code, a 64k byte stack and 128k bytes of data
storage. Many applications can be written to
simply initialize the segment registers and then
forget them. Larger applications should be
designed with careful consideration given to seg-
ment definition.

5H

6H

0110 0101 0000 0000

0100

3 HEX

1100 | 0011 | 1011 IBINARY

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH

OFFSET: 65H

- Figure 2-14. Storage of Pointer Variables
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FULLY
OVERLAPPED SEGMENTD

PARTLY DISJOINT

OVERLAPPED !
u SEGMENT C LOGICAL
CONTIG OUS_R | SEGMENTS

|
I SEGMENTA l SEGMENTB I : SEGMENTE
1 | 1 |
I/ PHYSICAL
MEMORY

H 0000H 20000H 0000H

Figure 2-15. Segment Locations in Physical Memory

The segmented structure. of the 8086/8088
memory space supports modular software design
by discouraging huge, monolithic programs. The
segments also can be used to advantage in many
programming situations. Take, for example, the
case of an editor for several on-line terminals. A
64k text buffer (probably an extra segment) could
be assigned to each terminal. A single program
could maintain all the buffers by simply changing

FFFFFH

=] > |

requiring service.

DATA: DS: —_—— register ES to point to the buffer of the terminal

CODE: cs:,E]— —A
e

STACK: SS:

n ||

Physical Address Generation

EXTRA: Es'E]"'I | Iﬂ_ —- It is useful to think of every memory location as

Figure 2-16. Currently Addressable Segments

| having two kinds of addresses, physical and

| logical. A physical address is the 20-bit value that

uniquely identifies each byte location in the

| megabyte memory space. Physical addresses may

| range from OH through FFFFFH. All exchanges

l_ between the CPU and memory components use
—-T this physical address.

—
i
I
\

Programs deal with logical, rather than physical
addresses and allow code to be developed without
prior knowledge of where the code is to be located
in memory and facilitate dynamic management of
memory resources. A logical address consists of a
segment base value and an offset value. For any
given memory location, the segment base value
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locates the first byte of the containing segment
and the offset value is the distance, in bytes, of
the target location from the beginning of the
segment. Segment base and offset values are
unsigned 16-bit quantities; the lowest-addressed
byte in a segment has an offset of 0. Many dif-
ferent logical addresses can map to the same
physical location as shown in figure 2-17. In

figure 2-17, physical memory location 2C3H is °

contained in two different overlapping segments,
one beginning at 2BOH and the other at 2COH.

Whenever the BIU accesses memory—to fetch an
instruction or to obtain or store a variable—it
generates a physical address from a logical
address. This is done by shifting the segment base
value four bit positions and adding the offset as
illustrated in figure 2-18. Note that this addition
process provides for modulo 64k addressing
(addresses wrap around from the end of a seg-
ment to the beginning of the same segment).

The BIU obtains the logical address of a memory
location from different sources depending on the
type of reference that is being made (see table

2-2). Instructions always are fetched from the cur-
rent code segment; IP contains the offset of the
target instruction from the beginning of the seg-
ment. Stack instructions always operate on the
current stack segment; SP contains the offset of
the top of the stack. Most variables (memory
operands) are assumed to reside in the current
data segment, although a program can instruct
the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This

calculation is based on the addressing mode

specified in the instruction; the result is called the
operand’s effective address (EA). Section 2.8
covers addressing modes and effective address
calculation in detail.

Strings are addressed differently than other
variables. The source operand of a string instruc-
tion is assumed to lie in the current data segment,
but another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of
a string instruction always resides in the current

PHYSICAL

2C4H

ADDRESS
-
SEGMENT
BASE
LOGICAL
ADDRESSES

OFFSET

> 2C3H
2C2H
2C1H
2COH
2BFH
|2BEH
| 28DH
2BCH
2BBH

OFFSET 2BAH
(13H) - J2BgH

2B8H
2B7H
2B6H
2BSH.
2B4H
2B3H
2B2H
2B1H

k'SEGMENT
BASE

2BOH

Figure 2-17. Logical and Physical Addresses
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LEFT 4BITS
SHIFT 123 4 EE\EQAENT

. T o LOGICAL
r1 2 3 410 4 ADDRESS
S 7 0022 'OFFSET
15 0
. [0 0 2 2
15 0
= I 1.2 3 6 2 I PHYSICAL ADDRESS
19 { L
TO MEMORY
Figure 2-18. Physical Address Generation
Table 2-2. Logical Address Sources
DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch Cs NONE IP
Stack Operation SS NONE SP
Variable (except following) DS CS,ES,SS Effective Address
String Source DS CS,ES,SS Sl
String Destination ES NONE DI
BP Used As Base Register SS CS,DS,ES Effective Address

extra segment; its offset is taken from DI, the
destination index register. The string instructions
automatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack; BP can be used,
however, to access data in any of the other cur-
rently addressable segments.

In most cases, the BIU’s segment assumptions are
a convenience to programmers. It is possible,
however, for a programmer to explicitly direct the
BIU to access a variable in any of the currently
addressable segments (the only exception is the
destination operand of a string instruction which
must be in the extra segment). This is done by
preceding an instruction with a segment override
prefix. This one-byte machine instruction tells the
BIU which segment register to use to access a
variable referenced in the following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086 and
8088 makes it possible to write programs that are
position-independent, or dynamically relocatable.
Dynamic relocation allows a multiprogramming
or multitasking system to make particularly effec-
tive use of available memory. Inactive programs
can be written to disk and the space they occupied
allocated to other programs. If a disk-resident
program is needed later, it can be read back into
any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program
segments can be compacted to free up a con-
tinuous space. This process is shown graphically
in figure 2-19.

In order to be dynamically relocatable, a program
must not load or alter its segment registers and
must not transfer directly to a location outside the
current code segment. In other words, all offsets
in the program must be relative to fixed values
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AFTER RELOCATION
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DFREE SPACE

Figure 2-19. Dynamic Code Relocation

contained in the segment registers. This allows the
program to be moved anywhere in memory as
long as the segment registers are updated to point
to the new base addresses. Section 2.10 contains
an example that illustrates "dynamic code
relocation.

Stack Implementation

Stacks in the 8086 and 8088 are implemented in
memory and are located by the stack segment
register (SS) and the stack pointer register (SP). A
system may have an unlimited number of stacks,
and a stack may be up to 64k bytes long, the max-
imum length of a segment. (An attempt to expand
a stack beyond 64k bytes overwrites the beginning
of the stack.) One stack is directly addressable at
a time; this is the current stack, often referred to
simply as ‘‘the’’ stack. SS contains the base
address of the current stack and SP points to the
top of the stack:(TOS). In other words, SP con-
tains the offset of the top of the stack from the

stack segment’s base address. Note, however, that
the stack’s base address (contained in SS) is not
the “‘bottom’’ of the stack.

8086 and 8088 stacks are 16 bits wide; instructions
that operate on a stack add and remove stack
items one word at a time. An item is-pushed onto
the stack (see figure 2-20) by decrementing SP by
2 and writing the item at the new TOS. An item is
popped off the stack by copying it from TOS and
then incrementing SP by 2. In other words, the
stack grows down in memory toward its base
address. Stack operations never move items on
the stack, nor do they erase them. The top of the
stack changes only as a. result of updating the
stack pointer. .

Dedicated and Reserved Memory
Locations. ,

Two areas in extreme low and high memory .are
dedicated - to specific processor -functions or-are
reserved by Intel Corporation for use by Intel
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Figure 2-20. Stack Operation

hardware and software products. As shown in.

figure 2-21, the location are: OH throgh 7FH (128
bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system
reset processing 8086 and 8088 application
systems should not use these areas for any other
purpose. Doing so may make these systems
incompatible with future Intel products.

8086/8088 Memory Access
Differences

The 8086 can access either 8 or 16 bits of memory
at a time. If an instruction refers to a word
variable and that variable is located at an even-
numbered address, the 8086 accesses the complete
word in one bus cycle. If the word is located at an
odd-numbered address, the 8086 accesses the
word one byte at a time in two consecutive bus
cycles.

To maximize throughput in 8086-based systems,
16-bit- data should be stored at even addresses
(should be word-aligned). This is.particularly true
of stacks. Unaligned stacks can slow a system’s
response to interrupts. Nevertheless, except for
the performance penalty, word alignment is

totally transparent to software. This allows max-
imum data packing where memory  space is
constrained.

The 8086 always fetches the instruction stream in
words from even addresses except that the first
fetch after a program transfer to an odd address
obtains a byte. The instruction stream is
disassembled inside the processor and instruction
alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word
operands are accessed in two bus cycles regardless
of their alignment. Instructions also are fetched
one byte at a time. Although alignment of word
operands does not affect the performance of the
8088, locating 16-bit data on even addresses will
insure maximum throughput if the system is ever
transferred to an 8086.

2.4 Input/Output

The 8086 and 8088 have a versatile set of in-
put/output facilities. Both processors provide a
large 1/0 space that is separate from. the memory
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Figure 2-21. Reserved and Dedicated Memory
and I/0 Locations '

space, and instructions that transfer data between
the CPU and devices located in the I/0O space.
170 devices also may be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output pro-
cessing. For high-speed transfers, the CPUs may
be used with traditional direct memory -access
controllers or the 8089 Input/Output Processor.

Input/Output Space

The 8086/8088 1/0 space can accommodate up to
64k 8-bit ports or up to 32k 16-bit ports. The IN
and OUT (input and output) instructions transfer
data- between the accumulator (AL for byte
transfers,  AX for word iransfers) and ports
located in the I/0 space.

The 170 space is not segmented; to access a port,
the BIU simply places the port address (0-64k) on
the lower 16 lines of the address bus. Different
forms of the I/0 instructions allow the address to
be specified as a fixed value in the instruction or
as a variable taken from register DX.

Restricted I/0 Locations

~ Locations F8H through FFH (eight of the 64k

locations) in the I/0 space are reserved by Intel
Corporation for use by future Intel hardware and
software products. Using these locations for any
other purpose may inhibit compatibility with
future Intel products.

8086/8088 1/0 Access Differences

The 8086 can transfer either 8 or 16 bits at a time
to a device located in the 1/0O space. A 16-bit
device should be located at an even address so
that the word will be transferred in a single bus
cycle. An 8-bit device may be located at either an
even or odd address; however, ' the internal
registers in a given device must be assigned all-
even or all-odd addresses.

The 8088 transfers one byte per bus cycle. If a
16-bit device is used in the 8088 1/0 space, it must
be capable of transferring words in the same
fashion, i.e., eight bits at a time in two bus cycles.
(The 8089 Input/Output Processor can provide a
straightforward interface between the 8088 and a
16-bit 1/0 device.) An 8-bit device may be located
at odd or even addresses in the 8088 1/0 space
and internal registers may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses to these registers, however,
will simplify transferring the system.to an 8086
CPU. ‘

Memory-Mapped 1/0

170 devices also may be placed in the 8086/8088
memory space. As long as the devices respond like
memory components, the CPU does not know the
difference.

Memory-mapped 1/0 provides additional pro-
gramming flexibility. Any instruction that
references memory may be used to access an 1/0
port located in the memory space. For example,
the MOV (move) instruction can transfer: data
between any 8086/8088 register and a port, or the
AND, OR and TEST instructions may be used to
manipulate bits in I/O device registers. In addi-
tion, memory-mapped 170 can take advantage of
the 8086/8088 memory addressing modes. A
group of terminals, for example, could be treated
as an array in memory with an index register

Mnemonics © Intel, 1978
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selecting a terminal in the array. Section 2.10 pro-
vides examples of using the instruction set and
addressing modes with memory-mapped 1/0.

Of course, a price must be paid for the added pro-
gramming flexibility that memory-mapped I/0
provides. Dedicating part of the memory space to
/0 devices reduces the number of addresses
available for memory, although with a megabyte
of memory space this should rarely be a con-
straint. Memory reference instructions also take
longer to execute and are somewhat less compact
than the simpler IN and OUT instructions.

Direct Memory Access

When configured in minimum mode, the 8086
and 8088 provide HOLD (hold) and HLDA (hold
acknowledge) signals that are compatible with
traditional DMA controllers such as the 8257 and
8237. A DMA controller can request use of the
bus for direct transfer of data between an I/0O
device and memory by activating HOLD. The
CPU will complete the current bus cycle, if one is
in progress, and then issue HLDA, granting the
bus to the DMA controller. The CPU will not
attempt to use the bus until HOLD goes inactive.

The 8086 addresses memory that is physically
organized.in two separate banks, one containing
even-addressed bytes and one containing odd-ad-
dressed. bytes. An 8-bit DMA controller must
alternately select these banks to access logically
adjacent bytes in memory. The 8089 provides a
simple way to interface a high-speed 8-bit device
to.an 8086-based system (see Chapter 3).

8089 Input/Output Processor (IOP)-

The 8086 and 8088 are designed.to be used with
the 8089 in high-performance 1/0 applications.
The 8089 conceptually resembles a
microprocessor with- two DMA channels and an
instruction set specifically tailored for I/0 opera-
tions. Unlike simple DMA controllers, the 8089
can service 1/0 devices directly, removing this
task-‘from the CPU. In addition, it can transfer
data on its own bus or on the system bus, can
match 8- or 16-bit peripherals to 8- or 16-bit
buses, and can transfer data from: memory to
memory and from I/0 device to 1/0 device.
Chapter 3 describes the 8089 in detail.

2.5 Multiprocessing Features

As microprocessor prices have declined,
multiprocessing (using two or more coordinated
processors in a system) has become an increas-
ingly attractive design alternative. Performance
can be substantially improved by distributing

.system tasks among separate, concurrently exe-

cuting processors. In addition, multiprocessing
encourages a modular approach to design, usually
resulting in systems that are more easily main-
tained and enhanced. For example, figure 2-22
shows a multiprocessor system in which /0
activities have been delegated to an 8089 IOP.
Should an I/O device in the system be changed
(e.g., a hard disk substituted for a floppy), the
impact of the modification is confined to the I/0O
subsystem and is transparent to the CPU and to
the application software.

The 8086 and 8088 are designed for the
multiprocessing environment. They have built-in
features that help solve the coordination prob-
lems that have discouraged multiprocessing
system development in the past.

Bus Lock

When configured in maximum mode, the 8086
and 8088 provide the LOCK (bus lock) signal.
The BIU activates LOCK when the EU executes
the one-byte LOCK prefix instruction. The
LOCK signal remains active throughout execu-
tion of the instruction that follows the LOCK
prefix. Interrupts are not affected by the LOCK
prefix. If another processor requests use of the
bus (via the request/grant lines, which are
discussed shortly), the CPU records the request,
but does not honor it until execution of the locked
instruction has been completed.

Note that the LOCK signal remains active for the
duration of a single instruction. If two con-
secutive instructions are each preceded by a
LOCK prefix, there will still be an unlocked
period between these instructions. In the case of a
locked repeated string instruction, LOCK does
remain active for the duration:of the block
operation. :

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The
LOCK prefix can be used, however, to delay the
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Figure 2-22. Multiprocessing System

generation of an HLDA response to a HOLD
request until execution of the locked instruction is
completed.

The LOCK signal provides information only. It is
the responsibility of ‘other processors on the
shared bus to not attempt to obtain the bus while
LOCK is active. If the system uses 8289 Bus
Arbiters to control access to the shared bus, the
8289’s accept LOCK as an input and do not relin-
quish the bus while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as
a buffer or a pointer. If access to the resource is
not controlled, one processor can read an
erroneous value from the resource when another
processor is updating it (see figure 2-23).

Access can be controlled (see figure 2-24) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource is a
semaphore, a software-settable flag or switch that
indicates whether the resource is ‘‘available’’
(semaphore=0) or ‘‘busy’’ (semaphore=1). Pro-
cessors that share the bus agree by convention not
to use the resource unless the semaphore indicates

that it is available. They likewise agree to set the
semaphore when they are using the resource and
to clear it when they are finished.

The XCHG instruction can obtain the current
value of the semaphore and set it to ‘“busy’’ in a
single instruction. The instruction, however,
requires two bus cycles to swap 8-bit values. It is
possible for another processor to obtain the bus
between these two cycles and to gain access to the
partially-updated semaphore. This can be
prevented by preceding the XCHG instruction
with a LOCK prefix, as illustrated in figure 2-25.
The bus lock establishes control over access to the
semaphore and thus to the shared resource.

WAIT and TEST

The 8086 and 8088 (in either maximum or
minimum mode) can be synchronized to an exter-
nal event with the WAIT (wait for TEST) instruc-
tion and the TEST input signal. When the EU
executes a WAIT instruction, the result depends
on the state of the TEST input line. If TEST is
inactive, the processor_enters an idle state and
repeatedly retests .the TEST line at five-clock
intervals. If TEST 1is active, execution continues
with the instruction:-following the WAIT.
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Figure 2-23. Uncontrolled Access to Shared

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or
a memory operand from an 8086/8088 program.
When used in conjunction with WAIT and TEST,
ESC can initiate a ‘‘subroutine’’ that executes
concurrently in another processor (see figure
2-26).

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written.
By monitoring the 8086/8088 bus and control
lines, another processor can capture the ESC
instruction when it is fetched by the BIU. The six
bits may then direct the external processor to per-
form some predefined activity.

If the 8086/8088 is configured in maximum
mode, the external processor, having determined
that an ESC has been fetched, can monitor QS0

Resource
SHARED POINTER
BUSCYCLE . SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES
0 0 (05 22|4c, 18
‘ ) “A” OBTAINS EXCLUSIVE
1 1 o5 22 [ac 18} 5
2 1 “'A” UPDATES 1 WORD
‘ ] “B” TESTS SEMAPHORE
3 1 c2,59 [4c,18 AND WATS
4 1 “A” COMPLETES UPDATE
“B” TESTS SEMAPHORE
5 1 c2,59[ 31,05 ANDWANS
6 0 C2,59.] 31,05 ] “A” RELEASES RESOURCE
B OBTAINS
7 1 [c2, 59 31,05 ] EXCLUSIVE USE
““B*’ READS
8 1 C2,59 31,05 UPDATED VALUE
3 0 “'B" RELEASES RESOURCE

Figure 2-24. Controlled Access to Shared Resource
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TEST ALAL
JNZ  WAIT

AVAILABLE(0)

SET MOV SEMAPHORE,0
SEMAPHORE '
“AVAILABLE”

Figure 2-25. Using XCHG and LOCK

and QS1 (the queue status lines, discussed in sec-
tion 2.6) and determine when the ESC instruction
is executed. If the instruction references memory
the external processor can then monitor the bus
and capture the operand’s physical address
and/or the operand itself.

Note that fetching an ESC instruction is not tan-
tamount to executing it. The ESC may be pre-
ceded by a jump that -causes the queue to be
reinitialized. This event also can be determined
from the queue status lines.

Request/Grant Lines

When the 8086 or 8088 is configured in maximum
mode, the HOLD and HLDA lines evolve into
two more_sophisticated signals called RQ/GTO0
and RQ/GTI1. These are bidirectional lines that
can be used to share a local bus between an 8086
or 8088 and two other processors via a handshake
sequence.

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor
desiring the bus pulses a request/grant line. The
CPU returns a pulse on the same line indicating
that it is entering the ‘‘hold acknowledge’’ state
and is relinquishing the bus. The BIU is logically
disconnected from the bus during this period. The

PROCESSOR
“g”

CONTINUE
UNTIL “B”’s
RESULT
IS NEEDED

PROSE§SOR

TEST

Figure 2-26. Using ESC with WAIT and TEST
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EU, however, will continue to execute instruc-
tions until an instruction requires bus access or
the queue is emptied, whichever occurs first.
When the other processor has finished with the
bus, it sends a final pulse to the 8086/8088 in-
dicating that the request has ended and that the
CPU may reclaim the bus.

RQ/GTO has higher priority than RQ/GTI1. If
requests arrive simultaneously on both lines, the
grant_goes to the processor on RQ/GTO and
RQ/GT]1 is acknowledged after the bus has been
returned to the CPU. If, however, a request
arrives on RQ/GTO while the CPU is processing a
prior request on RQ/GT1, the second request is
not honored until the processor on RQ/GTl
releases the bus.

Multibus™ Architecture

Intel has designed a general-purpose
multiprocessing bus called the Multibus. This is
the standard design used in iISBC™ single-board
microcomputer products. Many other manufac-
turers offer products that are compatible with the
Multibus architecture as well. When the 8086 and
8088 are configured in maximum mode, the 8288
Bus Controller outputs signals that are electrically
compatible with the Multibus protocol. Designers
of multiprocessing systems may want to consider
using the Multibus architecture in the design of
their products to reduce development cost and

time, and to obtain compatibility with the wide
variety of boards available in the iSBC product
line.

The Multibus architecture provides a versatile
communications channel that can be used to coor-
dinate a wide variety of computing modules (see
figure 2-27). Modules in a Multibus system are
designated as masters or slaves. Masters may
obtain use of the bus and initiate data transfers on
it, Slaves are the objects of data transfers only.
The Multibus architecture allows both 8- and 16-
bit masters to be intermixed in a system. In addi-
tion to 16 data lines, the bus design provides 20
address lines, eight multilevel interrupt lines, and
control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own
clock, independent of the clocks of the modules it
links together. This allows different speed masters
to share the bus and allows masters to operate
asynchronously with respect to each other. The
arbitration logic of the bus permit slow-speed
masters to compete equably for use of the bus.
Once a module has obtained the bus, however,
transfer speeds are dependent only on the
capabilities of the transmitting and receiving
modules. Finally, the Multibus standard defines
the form factors and physical requirements of
modules that communicate on this bus. For a
complete description of the Multibus architec-
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MEMORY SLAVE 170 SLAVE

MASTER BUS-ACCESSIBLE
MEMORY
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Figure 2-27. Multibus™-Based System
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ture, refer to the Intel Multibus Specification
(document number 9800683) and Application
Note 28A, ““‘Intel Multibus Interfacing.’’

8289 Bus Arbiter

Multiprocessor systems require a means of coor-
dinating the processors’ use of the shared bus.
The 8289 Bus Arbiter works in conjunction with
the 8288 Bus Controller to provide this control
for 8086- and 8088-based systems. It is compati-

ble with the Multibus architecture and can be used -

in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating
asynchronously with respect to each other. Each
processor on the bus is assigned a different pri-
ority When simultaneous requests for the bus
arrive, the 8289 resolves the contention and grants
the bus to the processor with the highest priority;
three different prioritizing techniques may be
used. Chapter 4 discusses the 8289 in more detail.

2.6 Processor Control and
: Monltormg

Interrupts

The 8086 and 8088 have a simple and versatile
interrupt system. Every interrupt is assigned a
type code that identifies it to the CPU. The 8086

and 8088 can handle up to 256 different interrupt
types. Interrupts may be initiated by devices
external to the CPU; in addition, they also may be
triggered by software interrupt instructions and,
under certain conditions, by the CPU itself (see
figure 2-28). Figure 2-29 illustrates the basic
response of the 8086 and 8088 to an interrupt.
The next sections elaborate on the 1nformat10n
presented in this drawing.

External Interrupts

The 8086 and 8088 have two lines that external
devices may use to signal interrupts (INTR -and
NMI). The INTR (Interrupt Request) line is
usually driven by an Intel® 8259A Programmable
Interrupt Controller (PIC), which is in turn con-
nected to the devices that need interrupt services.
The 8259A is a very flexible circuit that is con-
trolled by software commands from the 8086 or
8088 (the PIC appears as a set of 1/0 ports to the
software). Its main job is to accept interrupt
requests from the devices attached to it, deter-
mine which requesting device has the highest
priority, and then activate the 8086/8088 INTR
line if the selected device has higher priority than
the device currently being serviced (if there 1s
one).

When INTR is active, the CPU takes different
action depending on the state of the interrupt-
enable flag (IF). No action takes place, however,
until the currently-executing instruction has been

NON-MASKABLE A
INTERRUPT
REQUEST -—
NMI s
r , =
MASKABLE
I Noae ' - —INTR] s250A |~ % INTERRUPT
| : | <«—— ( REQUESTS
i ) } i —— ‘
I : i -~
| ' | ——
W INTO owipe | [SNELEL
| |mste | [ wste | Perror| | FE5 | J
| |
1 |
| S0ee/s088 cPu ]

Figure 2-28. Interrupt Sources
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[

COMPLETE
CURRENT
INSTRUCTION

ACKNOWLEDGE: |, | READTYPE
INTERRUPT CODE

PUSH FLAGS
LET TEMP=TF
EXECUTE
INSTRUCTION l

—l CLEARIF&TF

PUSHCS & IP

CALL INTERRUPT
SERVICE ROUTINE

o

EXECUTE
USER INTERRUPT
PROCEDURE

POPIP&CS

POPFLAGS

RESUME
INTERRUPTED
PROCEDVRE

|

Figure 2-29. Interrupt Processing Sequence
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completed.* Then, if IF is clear (meaning that
interrupts signaled on INTR are masked or dis-
abled), the CPU ignores the interrupt request and
processes the next instruction. The INTR signal is
not latched by the CPU, so it must be held active
until a response is received or the request is
withdrawn. If interrupts on INTR are enabled (if
IF is set), then the CPU recognizes the interrupt
request and processes it. Interrupt requests arriv-
ing on INTR can be enabled by executing an STI
(set interrupt-enable flag) instruction, and dis-
abled by executing a CLI (clear interrupt-enable
flag) instruction. They also may be selectively
masked (some types enabied, some disabled) by
writing commands to the 8259A. It should be
noted that in order to reduce the likelihood of
excessive stack buildup, the STI and IRET
instructions will reenable interrupts only after
the end of the following instruction.

The CPU acknowledges the interrupt request by
executing two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives
(via the HOLD or request/grant lines) during the
INTA cycles, it is not honored until the cycles
have been completed. In addition, if the CPU is
configured in maximum mode, it activates the
LOCK signal during these cycles to indicate to
other processors that they should not attempt to
obtain the bus. The first cycle signals the 8259A
that the request has been honored. During the
second INTA cycle, the 8259A responds by plac-
ing a byte on the data bus that contains the inter-
rupt type (0-255) associated with the device
requesting service. (The type assignment is made
when the 8259A is initialized by software in the
8086 or 8088.) The CPU reads this type code and
uses it to call the corresponding interrupt
procedure.

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable inter-
rupt). This line is edge-triggered (INTR is level-
triggered) and is generally used to signal the CPU
of a ‘“‘catastrophic’’ event, such as the imminent
loss of power, memory error detection or bus
parity error. Interrupt requests arriving on NMI
cannot be disabled, are latched by the CPU, and
have higher priority than an interrupt request on
INTR. If an interrupt request arrives on both
lines during the execution of an instruction, NMI
will be recognized first. Non-maskable interrupts
are predefined as type 2; the processor does not
need to be supplied with a type code to call the
NMI procedure, and it does not run the INTA bus
cycles in response to a request on NMI.

The time required for the CPU to recognize an
éxternal interrupt request (interrupt latency)
depends on how many clock periods remain in the
execution of the current instruction. On the
average, the longest latency occurs when a
multiplication, division or variable-bit shift or
rotate instruction is executing when the interrupt
request arrives (see section 2.7 for detailed
instruction timing data). As mentioned pre-
viously, in a few cases, worst-case latency will
span two instructions rather than one.

Internal Interrupts

An INT (interrupt) instruction generates an inter-
rupt immediately upon completion of its execu-
tion. The interrupt type coded into the instruction
supplies the CPU with the type code needed to
call the procedure to process the interrupt. Since
any type code may be specified, software inter-
rupts may be used to test interrupt procedures
written to service external devices.

*There are a few cases in which an interrupt request is not recognized until after the following instruction. Repeat, LOCK
and segment override prefixes are considered ‘‘part of’’ the instructions they prefix; no interrupt is recognized between
execution of a prefix and an instruction. A MOV (move) to segment register instruction and a POP segment register
instruction are treated similarly: no interrupt is recognized until after the following instruction. This mechanism protects
a program that is changing to a new stack (by updating SS and SP). If an interrupt were recognized after SS had been
changed, but before SP had been altered, the processor would push the flags, CS and IP into the wrong area of memory.
It follows from this that whenever a segment register and another value must be updated together, the segment register
should be changed first, followed immediately by the instruction that changes the other value. There are also two cases,
WAIT and repeated string instructions, where an interrupt request is recognized in the middle of an instruction. In these
cases, interrupts are accepted after any completed primitive operation or wait test cycle.
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If the overflow flag (OF) is set, an INTO (inter-
rupt on overflow) instruction generates a type 4
interrupt immediately upon completion of its
execution.

The CPU itself generates a type 0 interrupt
immediately following execution of a DIV or
IDIV (divide, integer divide) instruction if the
calculated quotient is larger than the specified
destination. ‘

If the trap flag (TF) is set, the CPU automatically
generates a type 1 interrupt following .every
instruction. This is called single-step execution
and is a powerful debugging tool that is discussed

in more detail shortly.

All internal interrupts (INT, INTO, divide error,
and single-step) share these characteristics:

1. The interrupt type code is either contained in

the instruction or is predefined.

2. NoINTA bus cycles are run.

3. Internal interrupts cannot be disabled, except
for single-step.

4. Any internal interrupt (except single-step)
has higher priority than any external inter-
rupt (see table 2-3). If interrupt requests
arrive on NMI and/or INTR during execu-
tion of an instruction that causes an internal
interrupt (e.g., divide error), the internal
interrupt is processed first.

Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(figure 2-30) is the link between an interrupt type
code and the procedure that has been designated
to service interrupts associated with that code.
The interrupt pointer table occupies up to the first
1k bytes of low memory. There may be up to 256
entries in the table, one for each interrupt type

3FFH
| TYPE255POINTER: _|
(AVAILABLE)
IFCH
@y E N
AVAILABLE
INTERRUPT B T
POINTERS -
f224) | TYPE33POINTER: _|
(AVAILABLE)
084H
TYPE 32 POINTER:
[ {AVAILABLE) —
\ oggH
ro H | TYPE31POINTER: _|]
(RESERVED)
RESERVED d
|NOTERRUPT : g a
POINTERS
27 n n
| TYPESPOINTER: _|
(RESERVED)
> 014H
TYPE 4 POINTER: _{
OVERFLOW
010H
| TYPE3POINTER: _|
socH| 1"BYTE INTINSTRUCTION
DEDICATED
INTERRUPT | TYPE2POINTER:
POINTERS NON-MASKABLE
(5) 008H
| TYPE 1 POINTER:
. SINGLE-STEP
004H - =
[ TYPEOPOINTER: CS BASE ADDRESS
DIVIDE ERROR
U oon o IP OFFSET

je——16BITs—— |

Figure 2-30. Interrupt Pointer Table
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that can occur in the system. Each entry in the
table is a doubleword pointer containing the
address of the procedure that is to service inter-
rupts of that type. The higher-addressed word of
the pointer contains the base address of the seg-
ment containing the procedure. The lower-ad-
dressed word contains the procedure’s offset
from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the
location of the correct entry for a given interrupt
type by simply multiplying (type*4).

Table 2-3. Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO ‘highest
NMI
INTR . R
Single-step lowest

Space at the high end of the table that would be
occupied by entries for interrupt types that cannot
occur in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086 or
8088 activates an interrupt procedure by exe-
cuting the equivalent of an intersegment indirect
CALL instruction. The target of the ““CALL”’ is
the address contained in the interrupt pointer
table element located at (type*4). The CPU saves
the address of the next instruction by pushing CS
and IP onto the stack. These are then replaced by
the second and first words of the table element,
thus transferring control to the procedure.

If multiple interrupt requests arrive simulta-
neously, the processor activates the interrupt pro-
cedures in priority order. Figure 2-31 shows how
procedures would be activated in an extreme case.
The processor is running in single-step mode with
external interrupts enabled. During execution of a
divide instruction, INTR is- activated. Further-
more the instruction generates a divide error
interrupt. Figure 2-31 shows that the interrupts

are recognized in turn, in the order of their
priorities except for INTR. INTR is not recog-
nized until after the following instruction because
recognition of the earlier interrupts cleared IF. Of
couse interrupts could be reenabled in any of the
interrupt response routines if earlier response to
INTR is desired. :

As figure 2-31 shows, all main-line code is exe-
cuted in single-step mode. Also, because of the
order of interrupt processing, the opportunity
exists in each occurrence of the single-step routine
to select whether pending interrupt routines
(divide error and INTR routines in this example)
are executed at full speed or in single-step mode.

Interrupt Procedures

When an interrupt service procedure is entered,
the flags, CS, and IP are pushed onto the stack
and TF and IF are cleared. The procedure may
reenable external interrupts with the STI (set
interrupt-enable flag) instruction, thus allowing
itself to be interrupted by a request on INTR.
(Note, however, that interrupts are not actually
enabled until the instruction following STI has
executed.) An interrupt procedure always may be
interrupted by a request arriving on NMI.
Software- - or -processor-initiated interrupts
occurring within the procedure also will interrupt
the procedure. Care must be taken in interrupt
procedures that the type of interrupt being ser-
viced by the procedure does not itself inadver-
tently occur within the procedure. For example,
an attempt to divide by 0 in the divide error (type
0) interrupt procedure may result in the procedure
being reentered endlessly. Enough stack space
must be available to accommodate the maximum
depth of interrupt nesting that can occur in the
system.

Like all procedures, interrupt procedures should

save any registers they use before updating them,
and restore them before terminating. It is good
practice for an interrupt procedure to enable
external interrupts for all but “‘critical sections”’
of code (those sections that cannot be interrupted
without risking erroneous results). If external
interrupts are disabled for too long in a pro-
cedure, interrupt requests on INTR can poten-
tially be lost.
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TF =1
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Figure 2-31. Prbcessing Simultaneous Interrupts
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All interrupt procedures should be terminated
with an IRET (interrupt return) instruction. The
IRET instruction assumes that the stack is in the
same condition as it was when the procedure was
entered. It pops the top three stack words into IP,
CS and the flags, thus returning to the instruction
that was about to be executed when the interrupt
procedure was activated.

The actual processing done by the procedure is
dependent upon the application. If the procedure
is servicing an external device, it should output a
command to the device instructing it to remove its
interrupt request. It might then read status
information from the device, determine the cause
of the interrupt and then take action accordingly.
Section 2.10 contains three typical interrupt pro-
cedure examples.

Software-initiated interrupt procedures may be

used as service routines (‘‘supervisor calls’’) for |

other programs in the system. In this case, the
interrupt procedure is activated when a program,
rather than an external device, needs attention.
(The “‘attention’’ might be to search a file for a
record, send a message to another program,
request an allocation of free memory, etc.) Soft-
ware interrupt procedures can be advantageous in
systems that dynamically relocate programs dur-
ing execution. Since the intérrupt pointer table is
at a fixed storage location, procedures may
“call”” each other through the table by issuing
software interrupt instructions. This provides a
stable communication ‘‘exchange’ that Iis
independent of procedure addresses. The inter-
rupt procedures may themselves be moved so long
as the interrupt pointer table always is updated to
provide the linkage from the ‘‘calling’’ program
via the interrupt type code.

Single-Step (Trap) Interrupt -

When TF (the trap flag) is set, the 8086 or 8088 is
said to be in single-step mode. In this mode, the
processor automatically generates a type 1 inter-
rupt after each instruction. Recall that as part of
its interrupt processing, the CPU automatically
pushes the flags onto the stack and then clears TF
and IF. Thus the processor is not in single-step
mode when the single-step interrupt procedure is
entered; it runs normally. When the single-step
procedure terminates, the old flag image is
restored from the stack, placing the CPU back
into single-step mode.

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a ‘‘win-
dow”’ into the system through which operation
can be observed instruction-by-instruction. A
single-step interrupt procedure, for example, can
print or display register contents, the value of the
instruction pointer (it.is on the stack), key
memory variables, etc., as they change after each
instruction. In this way the exact flow of a pro-
gram can be traced in detail, and the point at
which discrepancies occur can be determined.
Other possible services that could be provided by
a single-step routine include:

e Writing a message when a specified memory
location or I70 port changes value (or equals
a specified value).

® Providing diagnostics selectively (only for
certain instruction addresses for instance).

* - Letting a routine execute a number of times
before providing diagnostics.

The 8086 and 8088 do not have instructions for
setting or clearing TF directly. Rather, TF can be
changed by modifying the flag-image on the
stack. The PUSHF and POPF instructions are
available for pushing and popping the flags
directly (TF can be set by ORing the flag-image
with 0100H and cleared by ANDing it with

- FEFFH). After TF is set in this manner, the first

single-step - interrupt occurs after the first
instruction following the IRET from the single-
step procedure.

If the processor is single-stepping, it processes an
interrupt (either internal or external) as follows.
Control is passed normally (flags, CS and IP are
pushed) to the procedure designated to handle the
type of interrupt that has occurred. However,
before the first instruction of that procedure is
executed, the single-step interrupt is ‘‘recog-
nized”’ and control is passed normally (flags, CS
and IP are pushed) to the type 1 interrupt pro-
cedure. When single-step procedure terminates,
control returns to the previous interrupt pro-
cedure. Figure 2-31 illustrates this process in a
case where two interrupts occur when the pro-
cessor is in single-step mode.

Breakpbint Interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any place in a
program where normal execution is arrested so
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that some sort of special processing may be per-
formed. Breakpoints typically are inserted into
programs during debugging as a way of display-
ing registers, memory locations, etc., at crucial
points in the program.

The INT 3 (breakpoint) instruction is one byte
long. This makes it easy to ‘“‘plant’’ a breakpoint
anywhere in a program. Section 2.10 contains an
example that shows how a breakpoint may be set
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
‘“‘patch’” a program (insert new instructions)
without recompiling or reassembling it. This may
be done by saving an instruction byte, and replac-
ing it with an INT 3 (CCH) machine instruction.
The breakpoint procedure would contain the new
machine instructions, plus code to restore the
saved instruction byte and decrement IP on the
stack before returning, so that the displaced
instruction would be executed after the patch
instructions. The breakpoint example in section
2.10 illustrates these principles.

Note that patching a program requires machine-
instruction programming and should be under-
taken with considerable caution; it is easy to add
new bugs to a program in an attempt to correct
existing ones. Note also that a patch is only a tem-
porary measure to be used in exceptional condi-
tions. The affected code should be updated and
retranslated as soon as possible.

System Reset

The 8086/8088 RESET line provides an orderly
way to start or restart an executing system. When
the processor detects the positive-going edge of a
pulse on RESET, it terminates all activities until
the signal goes low, at which time it initializes the
system as shown in table 2-4.

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the pro-
cessor executes its first instruction following
system reset from absolute memory location
FFFFOH. This location normally contains an
intersegment direct JMP instruction whose target
is the actual beginning of the system program.
The LOC-86 utility supplies this JMP instruction
from information in the program that identifies
its first instruction. As external (maskable) inter-

rupts are disabled by system reset, the system
software should reenable interrupts as soon as the
system is initialized to the point where they can b
processed. :

Table 2-4. CPU State Following RESET

CPU COMPONENT CONTENT
Flags Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Instruction Queue Status

When configured in maximum mode, the 8086
and 8088 provide information about instruction
queue operations on lines QS0 and QS1. Table 2-5
interprets the four states that these lines can
represent.

The queue status lines are provided for external
processors that receive instructions and/or
operands via the 8086/8088 ESC (escape) instruc-
tion (see sections 2.5 and 2.8). Such a processor
may monitor the bus to see when an ESC instruc-
tion is fetched and then track the instruction
through the queue to determine when (and if) the
instruction is executed.

Table 2-5. Queue Status Signals
(Maximum Mode Only)

QUEUE OPERATION IN LAST

QSp| QsS4 CLK CYCLE

0 0 [No operation; default value

0 1 |First byte of an instruction was
taken from the queue

1 0 |Queue was reinitialized

1 1 |Subsequent byte of an instruction
was taken from the queue

Processor Halt

When the HLT (halt) instruction (see section 2.7)
is executed, the 8086 or 8088 enters the halt state.
This condition may be interpreted as ‘“‘stop all
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operations until an external interrupt occurs or
the system is reset.”’ No signals are floated during
the halt state, and the content of the.address and
data buses is undefined. A bus hold request
arriving on the HOLD line (minimum mode) or
either ‘request/grant line (maximum mode) is
acknowledged normally while the processor is
halted. : :

The halt state can be used when an event prevents
the system from functioning correctly. An exam-
ple might be a power-fail interrupt. After
recognizing that loss of power is imminent, the
CPU could use the remaining time to move
registers, flags and vital variables to (for example)
a battery-powered CMOS RAM area and then
halt until the return of power was signaled by an
interrupt or system reset. '

Status Lines

When configured in maximum mode, the 8086
and 8088 emit eight status signals that can be used
by external devices. Lines S0, 51 and S2 identify
the type of bus cycle that the CPU is starting to
execute (table 2-6). These lines are typically
decoded by the 8288. Bus Controller. S3 and S4
indicate which segment register was used to con-
struct the physical address being used in this bus
cycle (see table 2-7). Line S5 reflects the state of
the interrupt-enable flag. S6 is always 0. S7 is a
spare line whose content is.undefined.

Table 2-6. Bus Cycle Status Signals

S5 511So TYPES OF BUS CYCLE
017 0 0 | Interrupt Acknowledge

0] 0] 1] ReadllO

0 1 0 | Writel/O

0 1| 1| HALT

1 0 | 0 | InstructionFetch

11 0{ 1} Read Memory

1] 1] 0 | Write Memory

1 1 1 Passive; no bus cycle

Table 2-7. Segment Register Status Lines

S4 |83 SEGMENT REGISTER
0]0])ES
0| 1]SS
1 0 | CSornone (I/0 orinterrupt Vector)
111 | DS

2.7 Instruction Set

The 8086 and 8088 execute exactly the same
instructions.” This - instruction set includés
equivalents to the instructions typically found in
previous microprocessors, such as the 8080/8085.
Significant new operations include:

¢ multiplication and division of signed and
unsigned binary numbers as well as unpacked
decimal numbers,

* move, scan and compare operations for
strings up to 64k bytes in length,

e non-destructive bit testing, -
* ' byte translation from one code to another,
* software-generated interrupts, and

e a group of instructions that can hélp
- coordinate the activities of multiprocessor
systems.

These instructions treat different types - of
operands uniformly. Nearly every instruction can
operate on either byte or word data. Register,
memory. and immediate operands may be
specified interchangeably in most instructions (ex-
cept, of course, that immediate values may only
serve as ‘‘source’” and not ‘‘destination’’
operands). In particular, memory variables can be
added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and
out of registers. This saves instructions, registers,
and execution time in assembly language pro-
grams. In high-level languages, where most
variables are memory based, compilers, such as
PL/M-86, can produce faster and shorter object
programs.

The 8086/8088 instruction set can be viewed as
existing at two levels: the assembly level and the
machine level. To the assembly language pro-
grammer, the 8086 and 8088 appear to have a
repertoire of about 100 instructions. One MOV
(move) instruction,-for example, transfers a.byte
or a word from a register or a memory location.or
an’' immediate value to. either a register or a
memory location. The 8086 and 8088 CPUs,
however, recognize 28 different MOV machine
instructions (‘‘move byte register to memory,”’
“move word immediate to register,”’ etc.). The
ASM-86 assembler translates the assembly-level
instructions written by a . programmer into the
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machine-level instructions that are actually exe-
cuted by the 8086 or 8088. Compilers such as
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two
different requirements: efficiency and simplicity.
The numerous—there are about 300 in all—forms
of machine-level instructions allow these instruc-
tions to make very efficient use of storage. For
example, the machine instruction that increments
a memory operand is three or four bytes long
because the address of the operand must be
encoded in the instruction. To increment a
register, however, does not require as much
information, so the instruction can be shorter. In
fact, the 8086 and 8088 have ecight different
machine-level instructions that increment a dif-
ferent 16-bit register; these instructions are only
one byte long.

If a programmer had to write one instruction to
increment a register, another to increment a
memory variable, etc., the benefit of compact
instructions would be offset by the difficulty of
programming. The assembly-level instructions
simplify the programmer’s view of the instruction
set. The programmer writes one form of the INC
(increment) instruction and the ASM-86
assembler examines the operand to determine
which machine-level instruction to generate.

This section presents the 8086/8088 instruction
set from two perspectives. First, the assembly-
level instructions are described in functional
terms. The assembly-level instructions are then
presented in a reference table that breaks out all
permissible operand combinations with execution
times and machine instruction length, plus the
effect that the instruction has on the CPU flags.
Machine-level instruction encoding and decoding
are covered in section 4.2,

Data Transfer Instructions

The 14 data transfer instructions (table 2-8) move
single bytes and words between memory and
registers as well as between register AL or AX and
170 ports. The stack manipulation instructions
are included in this group as are instructions for
transferring flag contents and for loading seg-
ment registers. ] ,

Table 2-8. Data Transfer Instructions

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
"IN Input byte or word
ouT Output byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

General Purpose Data Transfers
MOV destination,source

MOV transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two
and then transfers a word from the source
operand to the top of stack now pointed to by SP.
PUSH often is used to place parameters on the
stack before calling a procedure; more generally,
it is the basic means of storing temporary data on
the stack.

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand,
and then increments SP by two to point to the
new top of stack. POP can be used to move tem-
porary variables from the stack to registers or
memory. :
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XCHG destination, source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors
(see section 2.5).

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-coded
translation table. Register BX is assumed to point
to the beginning of the table. The byte in AL is
used as an index into the table and is replaced by
the byte at the offset in the table corresponding to
AL’s binary value. The first byte in the table has
an offset of 0. For example, if AL contains 5H,
and the sixth element of the translation table con-
tains 33H, then AL will contain 33H following
the instruction. XLAT is useful for translating
characters from one code to another, the classic
example being ASCII to EBCDIC or the reverse.

IN accumulator,port

IN transfers a byte or a word from an input port
to the AL register or the AX register, respectively.
The port number may be specified either with an
immediate byte constant, allowing access to ports
numbered 0 through 255, or with a number
previously placed in the DX register, allowing
variable access (by changing the value in DX) to
ports numbered from 0 through 65,535.

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an out-
put port. The port number may be specified either
with an immediate byte constant, allowing access
to ports numbered O through 255, or with a
number previously placed in register DX, allow-
ing variable access (by changing the value in DX)
to ports numbered from 0 through 65,535.

Address Object Transfers

These instructions manipulate the addresses of
variables rather than the contents or values of
variables. They are most useful for list process-
ing, based variables, and string operations.

LEA destination,source

LEA (load effective address) transfers the offset
of the source operand (rather than its value) to the
destination operand. The source operand must be
a memory operand, and the destination operand
must be a 16-bit general register. LEA does not
affect any flags. The XLAT and string instruc-
tions assume that certain registers point to
operands; LEA can be used to load these registers
(e.g., loading BX with the address of the translate
table used by the XLAT instruction).

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register DS. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
DS. Specifying SI as the destination operand is a
convenient way to prepare fo process a source
string that is not in the current data segment
(string instructions assume that the source string
is located in the current data segment and that SI
contains the offset of the string).

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand, which
must be a memory operand, to the destination
operand and register ES. The offset word of the
pointer is transferred to the destination operand,
which may be any 16-bit general register. The seg-
ment word of the pointer is transferred to register
ES. Specifying DI as the destination operand is a
convenient way to prepare to process a destina-
tion string that is not in the current extra segment.
(The destination string must be located in the
extra segment, and DI must contain the offset of
the string.)

Flag Transfers

LAHF

LAHF (load register AH from flags) copies SF,
ZF, AF, PF and CF (the 8080/8085 flags) into
bits 7, 6, 4, 2 and 0, respectively, of register AH

Mnemonics © intel, 1978

2-32



8086 AND 8088 CENTRAL PROCESSING UNITS

(see figure 2-32). The content of bits 5, 3 and 1 is

undefined; the flags themselves are not affected.
LAHF is provided primarily for converting -

8080/8085 assembly language programs to run‘'on
an 8086 or 8088."

SAHF

SAHEF (store register AH into flags) transfers bits
7, 6, 4, 2 and O from register AH into SF, ZF, AF,
PF and CF, respectively, replacing whatever
values these flags previously had. OF, DF, IF and
TF are not affected. This instruction is provided
for 8080/8085 compatibility. '

PUSHF

PUSHF decrements SP (the stack pomter) by two
and then transfers all flags to the word at the top
of stack pointed to by SP (see figure 2-32). The
flags themselves are not affected.

POPF

POPF transfers specific bits from the word at the
current top of stack (pointed to by register SP)
into the 8086/8088 -flags, replacing whatever
values the flags previously contained (see figure
2-32). SP is then incremented by two to point to
the new top of stack. PUSHF and POPF allow a
procedure to save and restore a calling program’s
flags. They also allow a program to change the

LAHF,

" SAHF ISIZIUIAIUIPIUICI

|76543210|

. l~—8080/8085 FLAGS—»-1
! 1
[ L !

PUSHF, - ,
POPF IiluJilUlolDlllTISIZIUIAIUIPIU
15141312 1110 9 '8 7 6 5 4 3 2 1

o r(')

U = UNDEFINED; VALUE IS INDETERMINATE * -
O = OVERFLOW FLAG
D = DIRECTION FLAG
= INTERRUPT ENABLE FLAG
T = TRAPFLAG
S =SIGNFLAG
+ Z = ZERO FLAG
A= AUXILIARY CARRY FLAG
P = PARITY FLAG
C= CARRY FLAG

Figure 2-32. Flhg Storage Formats

setting of TF (there is no instruction for updating
this flag directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Arithmetic Instructions

Arithmetic Data Formats

8086 -and 8088 arithmetic operations (table 2-9)
may be performed on four types of numbers:
unsigned. binary, signed binary = (integers),
unsigned packed decimal and unsigned unpacked
decimal (see table 2-10). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in
bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The pro-
cessor always assumes that the operands specified
in arithmetic instructions contain data that repre-
sent valid numbers for the type of instruction
being performed. Invalid data may produce
unpredictable results..

Table 2-9. Arithmetic Instructions

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC - Increment byte or word by 1
AAA ASCI| adjust for addition
DAA Decimal adjust for addition
SUBTRACTION

. SuUB Subtract byte or word

SBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCIl adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Muitiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply
, DIVISION ’

DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD - ASCll adjust for division

. CBW Convert byte to word
CWD Convert word to doubleword
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Table 2-10. Arithmetic Interpretation of 8-Bit Numbers

o | oy | vische | soves | o | ot
07 00000111 7 +7 7 7

89 10001001 137 119 invalid 89

Cs 11000101 197 ~59 invalid invalid

Unsigned binary numbers may be either 8 or 16
bits long; all bits are considered in determining a
number’s magnitude. The value range of an 8-bit
unsigned. binary. number is-0-255; .16, bits can
represent values from 0 through 65,535. Addi-
tion, ‘subtraction,. multiplication and division
operations are available for un51gned bmary
numbers

Signed binary numbers (integers) may be either 8
or 16 bits long. The high-order (leftmost) bit ‘is
interpreted as the number’s sign: 0 = positive and
1 = negative. Negative numbers are represented
in standard two’s complement notation. Since
the high-order bit is used for a sign, the range of
an’ 8-bit ‘integer is =128 through +127; 16-bit
integers -may range. from —32,768 -through
+32,767. The value zero has a positive sign.
Multiplication and division operations are pro-
vided for signed binary numbers. Addition and
subtraction are performed with the unsigned
binary . instructions. Conditional jump instruc-
tions, as well as an ‘‘interrupt on overflow’”
instruction, can be used following an unsigned
operatlon on an integer to detect overflow ‘into
the 31gn bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit
in the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-
byte, and the range of a packed decimal number is
0-99. Addition and subtraction are performed in
two steps. First an unsigned binary instruction 1is
used to-produce an intermediate resuit in register
AL. Then an adjustment operation is performed
which changes the intermediate value in AL to a
final correct packed decimal result. Multiplica-
tion and division adjustments are not available
for packed decimal numbers.

Unpacked  decimal numbers are stored as un-
signed byte quantities. The magnitude of the
number is determined from the low-order half-
byte; hexadecimal values 0-9 are valid and are
interpreted as decimal numbers. The high-order
half-byte must be zero for multiplication and divi-
sion; it may contain any value for addition and
subtraction. Arithmetic on unpacked decimal
numbers is performed in two steps. The unsigned
binary -addition, subtraction and multiplication
operations are used to produce an intermediate
result in register AL. An adjustment instruction
then changes the value in AL to a final correct
unpacked decimal number. Division is performed
similarly, except that the adjustment is carried out
on the numerator operand in register AL first;
then a following unsigned binary division instruc-
tion produces a correct result.

Unpacked decimal numbers are similar to the
ASCII character representations of the digits 0-9.
Note, however, that the high-order half-byte of
an ASCII numeral is always 3H. Unpacked
decimal arithmetic may be performed on ASCII
numeric characters under the following
conditions:

¢ the high-order half-byte of an ASCII
numeral must be set to OH prior to
multiplication or division.

e unpacked decimal arithmetic leaves the
high-order half-byte set to OH; it must be set
to 3H to produce a valid ASCII numeral.

Arithmetic Instructions and Flags

The 8086/8088 arithmetic instructions post: cer-
tain characteristics of the result of the operation
to six flags. Most of these flags can be tested by
following the arithmetic instruction with a condi-
tional jump instruction; the INTO (interrupt on
overflow) instruction also may be used. The
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various instructions affect the flags differently, as
explained in the instruction descriptions.
However, they follow these general rules:

¢ CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the result, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF # OF. CF can be used to
detect an unsigned overflow. Two instruc-
tions, ADC (add with carry) and SBB (sub-
tract with borrow), incorporate the carry flag
in their operations and can be used to per-
form multibyte (e.g., 32-bit, 64-bit) addition
and subtraction.

e AF (auxiliary carry flag): If an addition
results in a carry out of the low-order half-
byte of the result, then AF is set; otherwise
AF is cleared. If a subtraction results in a
borrow into the low-order half-byte of the
result, then AF is set; otherwise AF is
cleared. The auxiliary carry flag is provided
for the decimal adjust instructions and
ordinarily is not used for any other purpose.

e 'SF (sign flag): Arithmetic and logical
instructions set the sign flag equal to the
high-order bit (bit 7 or 15) of the result. For
signed binary numbers, the sign flag will be 0
for positive results and 1 for negative results
(so long as overflow does not occur). A con-
ditional jump instruction can be used follow-
ing addition or subtraction to alter the flow
of the program depending on the sign of the
result. Programs performing unsigned opera-
tions typically ignore SF since the high-order
bit of the result is interpreted as a digit rather
than a sign.

e  ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of
the program if the result is or is not zero.

*  PF (parity flag): If the low-order eight bits of
an arithmetic or logical result contain an
even number of 1-bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility; it also can be used

. to.check ASCII characters for correct parity.

¢ OF (overflow flag): If the result of an
operation is too large a positive number, or
too small a negative number to fit in the
destination operand (excluding the sign bit),
then OF is set; otherwise OF is cleared. OF
thus indicates signed arithmetic overflow; it
can be tested with a conditional jump or the
INTO (interrupt on overflow) instruction.
OF may be ignored when performing
unsigned arithmetic.

Addition

ADD destination,source

The sum of the two operands, which may be bytes
or words, replaces the destination operand. Both
operands may be signed or unsigned binary
numbers (see AAA and DAA). ADD updates AF,
CF, OF, PF, SF and ZF.

ADC destination,source

ADC (Add with Carry) sums the operands, which
may be bytes or words, adds one if CF is set and
replaces the destination operand with the result.
Both operands may be signed or unsigned binary
numbers (see AAA and DAA). ADC updates AF,
CF, OF, PF, SF and ZF. Since ADC incorporates
a carry from a previous operation, it can be used
to write routines to add numbers longer than 16
bits.

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number (see
AAA and DAA). INC updates AF, OF, PF, SF
and ZF; it does not affect CF.

AAA

AAA (ASCII Adjust for Addition) changes the
contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content of
OF, PF, SF and ZF is undefined following execu-
tion of AAA.
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DAA

DAA (Decimal Adjust for Addition) corrects the
result of previously adding two valid packed
decimal operands. (the destination operand must
have been register AL). DAA changes the content
of AL to a pair of valid packed decimal digits. It
updates AF, CF, PF, SF and ZF; the content of
OF is undefined following execution of DAA.

Subtraction

SUB destination, source

The source operand is subtracted from the
destination operand, and the result replaces the
destination operand. The operands may be bytes
or words. Both operands may be -signed or
unsigned binary numbers (see- AAS ‘and DAS).
SUB updates AF, CF, OF, PF, SFand ZF.

SBB destination,source

SBB (Subtract with Borrow) subtracts the source
from the destination, subtracts one if CF is set,
and returns the result to the destination operand.
Both operands may ‘be bytes or ‘words. Both
operands may - be signed or unsigned binary
numbers (see AAS and DAS). SBB updates AF,
CF, OF, PF, SF and ZF. Since it incorporates a
borrow from a previous operation, SBB may be
used to write routines that subtract numbers
longer than 16 bits.

DEC destination

DEC (Decrement) subtracts one from the destina-
tion, which may be a byte or a word. DEC
updates AF, OF, PF, SF, and ZF; it does not
affect CF. )

NEG destination

NEG (Negate) subtracts the destination operand,
which may be a-byte or a word, from 0 and
returns the result to the destination. This forms
the two’s complement of the number, effectively
reversing the sign of an integer. If the operand is
Z€ro, its sign is not changed. Attempting to negate
a byte containing —128 or a word containing

—32,768 causes no change to the operand and sets
OF. NEG updates AF, CF, OF, PF, SF and ZF.
CF is always set except when the operand is zero,
in which case it is cleared.

CMP destination,source

CMP (Compare) subtracts the source from the
destination, which may be bytes or words, but
does not return the result. The operands are
unchanged, but the flags are updated and can be
tested by a subsequent conditional jump instruc-
tion. CMP updates AF, CF, OF, PF, SF and ZF.
The comparison reflected in the flags is that of the
destination to the source. If a CMP instruction is
followed by a JG (jump if greater) instruction, for
example, the jump is taken if the destination
operand is greater than the source opérand.

AAS

AAS (ASCII Adjust for Subtraction) corrects the
result of a previous .subtraction of two valid
unpacked - decimal operands (the destination
operand must have been specified as register AL).
AAS changes the content of AL to a valid
unpacked decimal number; the high-order half-
byte is zeroed. AAS updates AF and CF; the con-
tent of OF, PF, SF and ZF is undefined following
execution of AAS.

DAS

DAS (Decimal Adjust for Subtraction) corrects
the resuit of a previous subtraction of two valid
packed decimal operands (the destination
operand must have been specified as register AL).
DAS changes the content of AL to a pair of valid
packed decimal digits. DAS updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAS. )

Multiplication

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
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result is returned in AH and AL. If the source
operand is a word, then it is multiplied by register
AX, and the double-length result is returned in
registers DX and AX. The operands are treated as
unsigned binary numbers (see AAM). If the upper
half of the result (AH for byte source, DX for
word source) is nonzero, CF and OF are set;
otherwise they are cleared. When CF and OF are
set, they indicate that AH or DX contains signifi-
cant digits of the result. The content of AF, PF,
SF and ZF is undefined following execution of
MUL.

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-length
result is returned in AH and AL. If the sourceis a
word, then it is multiplied by register AX, and the
double-length result is returned in registers DX
and AX. If the upper half of the result (AH for
byte source, DX for word source) is not the sign
extension of the lower half of the result, CF and
OF are set; otherwise they are cleared. When CF
and OF are set, they indicate that AH or DX con-
tains significant digits of the result. The content
of AF, PF, SF and ZF is undefined following
execution of IMUL.

AAM

AAM (ASCII Adjust for Multiply) corrects the
result of a previous multiplication of two valid
unpacked decimal operands. A valid 2-digit
unpacked decimal number is derived from the
content of AH and AL and is returned to AH and
AL. The high-order half-bytes of the multiplied
operands must have been OH for AAM to pro-
duce a correct result. AAM updates PF, SF and
ZF; the content of AF, CF and OF is undefined
following execution of AAM.

Division
DIV source
DIV (divide) performs an unsigned division of the

accumulator (and its extension) by the source
operand. If the source operand is a byte, it is

divided into the double-length dividend assumed
to be in registers AL and AH. The single-length
quotient is returned in AL, and the single-length
remainder is returned in AH. If the source
operand is a word, it is divided into the double-
length dividend in registers AX and DX. The
single-length quotient is returned in AX, and the
single-length remainder is returned in DX. If the
quotient exceeds the capacity of its destination
register (FFH for byte source, FFFFFH for word
source), as when division by zero is attempted, a
type O interrupt is generated, and the quotient and
remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execu-
tion of DIV,

IDIV source

IDIV (Integer Divide) performs a signed division
of the accumulator (and its extension) by the
source operand. If the source operand is a byte, it
is divided into the double-length dividend
assumed to be in registers AL and AH; the single-
length quotient is returned in AL, and the single-
length remainder is returned in AH. For byte in-
teger division, the maximum positive quotient is
+127 (7FH) and the minimum negative quotient is
—127 (81H). If the source operand is a word, it is
divided into the double-length dividend in
registers AX and DX the single-length quotient is
returned in AX, and the single-length remainder
is returned in DX. For word integer division, the
maximum positive quotient is +32,767 (7FFFH)
and the minimum negative quotient is —32,767
(8001H). If the quotient is positive and exceeds
the maximum, or is negative and is less than the
minimum, the quotient and remainder are
undefined, and a type O interrupt is generated. In
particular, this occurs if division by 0 is
attempted. Nonintegral quotients are truncated
(toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF,
CF, OF, PF, SF and ZF is undefined following
IDIV.

AAD

AAD (ASCII Adjust for Division) modifies the
numerator in AL before dividing two valid
unpacked decimal operands so that the quotient
produced by the division will be-a valid unpacked
decimal number. AH must be zero for the subse-
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quent DIV to produce the correct result. The quo-
tient is returned in AL, and the remainder is
returned in. AH; both high-order half-bytes are
zeroed. AAD updates PF, SF and ZF; the content
of AF, CF and OF is undefined following execu-
tion of AAD.

CBwW

CBW (Convert Byte to Word) extends the sign of
the byte in register AL throughout register AH.
CBW does not affect any flags. CBW can be used
to produce a double-length (word) dividend from
a byte prior to performing byte division.

CwD

CWD (Convert Word to Doubleword) extends the
sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to per-
forming word division.

Bit Manipulation Instructions

The 8086 and 8088 provide three groups of
instructions' (table 2-11) for manipulating bits
within both bytes and words: logical, shifts and
rotates.

Table 2-11. Bit Manipulation Instructions
LOGICALS
NOT “Not’’ byte or word
AND ‘“And’’ byte or word
OR “Inclusive or’’ byte or word
XOR ‘“Exclusive or’’ byte or word
TEST “Test” byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
“ROR Rotate right byte or word
RCL Rotate through carry left byte
, or word
RCR Rotate through carry right byte
or word

Logical -

The logical instructions . include: the . boolean
operators “‘not,”’ ‘‘and,”” ‘‘inclusive:or,”” and
“‘exclusive or,”” plus a TEST -instruction that sets
the flags, but does not alter either of its‘operands.

AND, OR, XOR and. TEST affect the flags as
follows: The overflow (OF) and carry .(CF) flags
are always cleared by logical instructions, and the
content of the auxiliary carry (AF) flag is always
undefined following execution of a logical
instruction. The sign (SF), zero (ZF) and parity
(PF) flags are always posted to reflect the result of
the operation and can be tested by conditional
jump instructions. The interpretation of these
flags is the same as for arithmetic instructions. SF
is set if the result is negative (high-order bit is 1),
and is cleared if the result is positive (high-order
bit is:0). ZF is set if the result is zero, cleared
otherwise. PF is set if the result contains an even
number of 1-bits (has even parity) and is cleared if
the number of 1-bits is odd (the result has odd
parity). Note that NOT has no effect on the flags..

NOT destination

NOT inverts the bits (forms. the one’s comple-
ment) of the byte or word operand.

AND qgestination,source

AND performs the logical ‘“‘and” of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
both corresponding bits of the original operands
are set; otherwise the bit is cleared.

OR destination, source

OR performs the logical ““inclusive or’’ of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original
operands are set; otherwise the result bit is
cleared.

XOR destination,source

XOR (Exclusive Or) performs the logical ‘‘exclu-
sive or’’ of the two operands and returns the
result to the destination operand. A bit in the
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result is set if the corresponding bits of the
original operands contain opposite values (one is
set, the other is cleared); otherwise the result bit is
cleared.

TEST destination, source

TEST performs the logical ‘“and” of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand is
changed. If a TEST instruction is followed by a
JNZ (jump if not zero) instruction, the jump will
be taken if there are any corresponding 1-bits in
both operands.

Shifts

The bits in bytes and words may be shifted
arithmetically or logically. Up to 255 shifts may
be performed, according to the value of the count
operand coded in the instruction. The count may
be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied
at execution time. Arithmetic shifts may be used
to multiply and divide binary numbers by powers
of two (see note in description of SAR). Logical
shifts can be used to isolate bits in bytes or words.

Shift instructions affect the flags as follows. AF is
always undefined following a shift operation. PF,
SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the
last bit shifted out of the destination operand.
The content of OF is always undefined following
a multibit shift. In a single-bit shift, OF is set if
the value of the high-order (sign) bit was changed
by the operation; if the sign bit retains its original
value, OF is cleared. .

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation and
are physically the same instruction. The destina-
tion byte or word is shifted left by the number of
bits specified in the count operand. Zeros are
shifted in on the right. If the sign bit retains its
original value, then OF is cleared.

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right by

the number of bits specified in the count operand.
Zeros are shifted in on the left. If the sign bit
retains its original value, then OF is cleared.

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in the
destination operand (byte or word) to the right by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the
original value. Note that SAR does not produce
the same result as the dividend of an
““equivalent’’ IDIV instruction if the destination
operand is negative and 1-bits are shifted out. For
example, shifting —5 right by one bit yields -3,
while integer division of —5 by 2 yields —2. The
difference in the instructions is that IDIV trun-
cates all numbers toward zero, while SAR trun-
cates positive numbers toward zero and negative
numbers toward negative infinity. '

Rotates

Bits in bytes and words also may be rotated. Bits
rotated out of an operand are not lost as in a
shift, but are “‘circled’’ back into the other “‘end”’
of the operand. As in the shift instructions, the
number of bits to be rotated is taken from the
count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may
act as an extension of the operand in two of the
rotate instructions, allowing a bit to be isolated in
CF and then tested by 2 JC (jump if carry) or INC
(jump if not carry) instruction.

Rotates affect only the carry and overflow flags.
CF always contains the value of the last bit
rotated out. On multibit rotates, the value of OF
is always undefined. In single-bit rotates, OF is
set if the operation changes the high-order (sign)
bit of the destination operand. If the sign bit
retains its original value, OF is cleared.

ROL destination,count

ROL (Rotate Left) rotates the destination byte or
word left by the number of bits specified in the
count operand.
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ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or word
are rotated right instead of left.

RCL destination,count

RCL (Rotate through Carry Left) rotates the bits
in the byte or word destination operand to the left
by the number of bits specified in the count
operand. The carry flag (CF) is treated as ‘‘part
of”’ the destination operand; that is, its value is
rotated into the low-order bit of the destination,
and itself is replaced by the high-order bit of the
destination.

RCR destination,count

RCR (Rotate through Carry Right) operates
exactly like RCL except that the bits are rotated
right instead of left.

String Instructions

Five basic string operations, called primitives,
allow strings of bytes or words to be operated on,
one element (byte or word) at a time. Strings of
up to 64k bytes may be manipulated with these
instructions. Instructions are available. to move,
compare and scan for a value, as well as for mov-
ing string elements to and from the accumulator
(see table 2-12). These basic operations may be
preceded by a special one-byte prefix that causes
the instruction to be repeated by the hardware,
allowing long strings to be processed much faster
than would be possible with a software loop. The
repetitions can be terminated by a variety of con-
ditions, and a repeated operation may be inter-
rupted and resumed. ’

The string instructions operate quite similarly in
many respects; the common characteristics are
covered here and in table 2-13 and figure 2-33
rather than in the descriptions of the individual
instructions. A string instruction may have a
source operand, a destination operand, or both.
The hardware assumes that a source string resides
in the current data segment; a segment prefix byte
may be used to override this assumption. A
destination string must be in the current extra seg-
ment. The assembler checks the attributes of the

operands to determine if the elements of the
strings are bytes or words. The assembler does
not, however, use the operand names to address
the strings. Rather, the content of register SI
(source index) is used as an offset to address the
current element of the source string, and the con-
tent of register DI (destination index) is taken as
the offset of the current destination string ele-
ment. These registers must be initialized to point
to the source/destination strings before executing
the string instruction; the LDS, LES and LEA
instructions are useful in this regard.

Table 2-12. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MovsB/ MOVSW Mov’e byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS ' Load byte or word string

STOS Store byte or word string

Table 2-13. String Instruction Register and

Flag Use
Sl Index (offset) for source string
DI Index (offset) for destination
string
CX Repetition counter

AL/AX Scan value
Destination for LODS
Source for STOS

DF 0 = auto-increment Si, DI
1= auto-decrement S|, DI

ZF Scan/compare terminator
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The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (the direction
flag) determines whether the index registers are
auto-incremented (DF = 0) or auto-decremented
(DF = 1). If byte strings are being processed, SI
and/or DI is adjusted byl; the adjustment is 2 for
word strings.

If a Repeat prefix has been coded, then register
CX (count register) is decremented by 1 after each
repetition of the string instruction; therefore, CX
must be initialized to the number of repetitions
desired before the string instruction is executed. If
CX is 0, the string instruction i$ not executed, and
control goes to the following instruction.

Section 2.10 contains examples that illustrate the
use of all the string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal and Repeat While Not
Zero are five mnemonics for two forms of the
prefix byte that controls repetition of -a subse-
quent string instruction. The different mnemonics
are provided to improve program clarity. The
repeat prefixes do not affect the flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String) instruc-
tions and is interpreted as ‘‘repeat while not end-
of-string’’ (CX not 0). REPE and REPZ operate
identically and are physically the same prefix byte
as REP. These instructions are used with the
CMPS (Compare String) and SCAS (Scan String)
instructions and require ZF (posted by these
instructions) to be set before initiating the next
repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These
instructions function the same as REPE and
REPZ except that the zero flag must be cleared or
the repetition is terminated. Note that ZF does
not need to be initialized before executing the
repeated string instruction.

Repeated string sequences are interruptable; the
processor will recognize the interrupt before pro-
cessing the next string element. System interrupt
processing is not affected in any way. Upon
return from the interrupt, the repeated operation
is resumed from the point of interruption. Note,
however, that execution does not resume properly

if a second or third prefix (i.e., segment override
or LOCK) has been specified in addition to any of
the repeat prefixes. The processor ‘‘remembers’’
only one prefix in effect at the time of the inter-
rupt, the prefix that immediately precedes the
string instruction. After returning from the inter-
rupt, processing resumes at this point, but any
additional prefixes specified are not in effect. If
more than one prefix must be used with a string
instruction, interrupts may be disabled for the
duration of the repeated execution. However, this
will not prevent a non-maskable interrupt from
being recognized. Also, the time that the system is
unable to respond to interrupts may be unaccept-
able if long strings are being processed.

MOVS destination-string, source-string

MOVS (Move String) transfers a byte or a word
from the source string (addressed by SI) to the
destination string (addressed by DI) and updates
SI and DI to point to the next string element.
When used in conjunction with REP, MOVS per-
forms a memory-to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move
string instruction. These mnemonics are coded
without operands; they explicitly tell the
assembler that a byte string (MOVSB) or a word
string (MOVSW) is to be moved (when MOVS is
coded, the assembler determines the string type
from the attributes of the operands). These
mnemonics are useful when the assembler cannot
determine the attributes of a string, e.g., a section
of code is being moved.

CMPS destination-string,source-string

CMPS (Compare String) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and
updates AF, CF, OF, PF, SF and ZF to reflect the
relationship of the destination element to the
source element. For example, if a JG (Jump if
Greater) instruction follows CMPS, the jump is
taken if the destination element is greater than the
source element. If CMPS is prefixed with REPE
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or REPZ, the operation is interpreted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).”” If CMPS is preceded
by REPNE or REPNZ, the operation is inter-
preted as ‘‘compare while not end-of-string (CX
not zero) and strings are not equal (ZF = 0).”
Thus, CMPS can be used to find matching or dif-
fering string elements.

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX (word
string) and updates the flags, but does not alter
the destination string or the accumulator. SCAS
also updates DI to point to the next string element
and AF, CF, OF, PF, SF and ZF to reflect the
relationship of the scan value in AL/AX to the
string element. If SCAS is prefixed with REPE or
REPZ, the operation is interpreted as ‘‘scan while
not end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”” This form may be used to
scan for departure from a given value. If SCAS is
prefixed with REPNE or REPNZ, the operation
is interpreted as ‘‘scan while not end-of-string
(CX not 0) and string-element is not equal to
scan-value (ZF = 0).”’ This form may be used to
locate a value in a string.

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL or
AX, and updates SI to point to the next element
in the string. This instruction is not ordinarily
repeated. since the accumulator would be over-
written by each repetition, and only the last ele-
ment would be retained. However, LODS is very
useful in software loops as part of a more com-
plex string function built up from string
primitives and other instructions.

STOS destination-string

STOS (Store String) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location
in the string. As a repeated operation, STOS pro-
vides a convenient way to initialize a string to a
constant value (e.g., to blank out a print line).

Program Transfer Instructions

The sequence of execution of instructions in an
8086/8088 program is determined by the content
of the code segment register (CS) and the instruc-
tion pointer (IP). The, CS register contains the
base address of the current code segment, the 64k
portion of memory from which instructions are
presently being fetched. The IP is used as an off-
set from the beginning of the code segment; the
combination of CS and IP points to the memory
location from which the next instruction is to be
fetched. (Recall that under most operating condi-
tions, the next instruction to be executed has
already been fetched from memory and is waiting
in the CPU instruction queue.) The program
transfer instructions operate on the instruction
pointer and on the CS register; changing the con-
tent of these causes normal sequential execution
to be altered. When a program transfer occurs,
the queue no longer contains the correct instruc-
tion, and the BIU obtains the next instruction
from memory using the new IP and CS values,
passes the instruction directly to the EU, and then
begins refilling the queue from the new location.

Four groups of program transfers are available in
the 8086/8088 (see table 2-14): unconditional
transfers, conditional transfers, iteration control
instructions and interrupt-related instructions.
Only the interrupt-related instructions affect any
CPU flags. As will be seen, however, the execu-
tion of many of the program transfer instructions
is affected by the states of the flags.

Unconditional Transfers.

The unconditional transfer instructions may
transfer control to a target instruction within the
current code segment (intrasegment transfer) or
to a different code segment (intersegment
transfer). (The ASM-86 assembler terms an
intrasegment target NEAR and an intersegment
target FAR.) The transfer is made uncondition-
ally any time the instruction is executed.

CALL procedure-name

CALL activates an out-of-line procedure, saving
information on the stack to permit a RET (return)
instruction in the procedure to transfer control
back to the instruction following the CALL. The
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Table 2-14. Program Transfer Instructions -

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump
. CONDITIONAL TRANSFERS
JA/INBE Jump if above/not below
: : nor equal ce
JAE/INB Jump if above or
equal/not below
JB/INAE Jump if below/not above
nor equal
JBE/JNA Jump if below or
: equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less
nor-equal :
JGE/JNL Jump if greateror
equal/notless:
JL/UNGE Jump if Iess/notgreater
‘ nor equal :
~JLE/JNG Jump if less orequal/not
greater
JNC Jumpiif notcarry -
JNE/JINZ Jump if not equal/not
zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity
even
Js Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =0
INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

assembler ‘generates ‘a.different-type of CALL
instruction. depending on whether -the program-
mer has defined the procedure hame as NEAR or
FAR. For control to:return properly, the type of
CALL instruction must match the type of RET
instruction that exits from the procedure. (The
potential for.a mismatch exists if the proceduré
and the CALL are contained- in separately
assembled programs.) Different forms of the
CALL instruction allow the address of the target
procedure to be obtained from the. instruction
itself (direct CALL) or from a memory location
or register referenced by, the.instruction (indirect
CALL). In the following descriptions, bear .in
mind that the processor automatically adjusts 1P
to. point to the next instruction 1o be executed
before saving it on the stack.

For an intra,segnient,direct CALL,; SP (the stack
pointer) is decremented by two and IP is pushed
onto the stack. The relative displacement (up to
+32k). of the target procedure from the CALL
instruction is then -added to- the instruction
pointer.. This- form ‘of the CALL. instruction is
“self-relative’” and is appropriate for position- in-
dependent (dynamically .relocatable) routines in
which the CALL and its target are in the same
segment and are moved together

An mtrasegment mdlrect CALL may be made
through memory or through a register. SP is
decremented by two and IP is pushed onto the
stack. The offset of the target procedure is
obtained from the memory word or 16-bit general
register referenced in the 1nstruct10n and replaces
IP.

For an intersegment -direct CALL, 'SP‘ is
decremented by two, and CS is pushed onto the
stack. -CS is replaced by ‘the segment word con-
tained in the instruction. SP again'is decremented
by two. IP is pushed -onto the stack and is
replaced ' by the offset word contamed in the
instruction.

For an intersegment indirect CALL (which only
may be made through memory), SP is
decremented by two, and-CS is pushed onto the
stack. CS is then replaced by the content of the
second word of ‘the doubleword memory pointer
referenced -« by - ‘the ' instruction.. SP -again is
decremented by two, and IP‘is pushed onto the
stack and.is replaced by the content of the first

word of the doubleword pointer referenced by the

instruction.
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RET optional-pop-value

RET (Return) transfers control from a procedure
back to the instruction following the CALL that
activated the procedure. The assembler generates
an intrasegment RET if the programmer has
defined the procedure NEAR, or an intersegment
RET if the procedure has been defined as FAR.
RET pops the word at the top of the stack
(pointed to by register SP) into the instruction
pointer and increments SP by two. If RET is
intersegment, the word at the new top of stack is
popped into the CS register, and SP is again
incremented by two. If an optional pop value has
been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP farget

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction, JMP
does not save any information on the stack, and
no return to the instruction following the JMP is
expected. Like CALL, the address of the target
operand may be obtained from the instruction
itself (direct JMP) or from memory or a register
referenced by the instruction (indirect JIMP). -

An intrasegment direct JMP changes the instruc-
tion pointer by adding the relative displacement
of the target from the JMP instruction. If the
assembler can determine that the target is within
127 bytes of the JMP, it automatically generates a
two-byte form of this instruction called a SHORT
JMP; otherwise, it generates a NEAR JMP that
can address a target within +32k. Intrasegment
direct JMPS are self-relative and are appropriate
in position-independent (dynamically relocatable)
routines in which the JMP and its target are in the
same segment and are moved together.

An intrasegment indirect JMP may be made
either through memory or through a 16-bit
general register. In the first case, the content of
the word referenced by the instruction replaces
the instruction pointer. In the second case, the
new IP value is taken from the register named in
the instruction.

An intersegment direct JMP replaces IP and CS
with values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the
doubleword pointer referenced by the instruction
replaces IP, and the second word replaces CS.

Conditional Transfers

The conditional transfer instructions are jumps
that may or may not transfer control depending
on the state of the CPU flags at the time the
instruction is executed. These 18 instructions (see
table 2-15) each test a different combination of
flags for a condition. If the condition is ‘‘true,”
then control is transferred to the target specified
in the instruction. If the condition is ‘‘false,”
then control passes to the instruction that follows
the conditional jump. All conditional jumps are
SHORT, that is, the target must be in the current
code segment and within —128 to +127 bytes of
the first byte of the next instruction (JMP 00H
jumps to the first byte of the next instruction).
Since the jump is made by adding the relative
displacement of the target to the instruction
pointer, all conditional jumps are self-relative and
are appropriate for position-independent
routines. :

Iteration Control

The iteration control instructions can be used to
regulate the repetition of software loops. These
instructions use the CX register as a counter. Like
the conditional transfers, the iteration control
instructions are self-relative and may only
transfer to targets that are within —128 to +127
bytes of themselves, i.e., they are SHORT
transfers. i

LOOP short-label
LOOP decrements CX by 1 and transfers control

to the target operand if CX is not 0; otherwise the
instruction following LOOP is executed.

LOOPE/LOOPZ short-label
LOOPE and LOOPZ (Loop While Equal and

Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
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Table 2-15. Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED- “JUMPIF ...””
JA/JNBE (CForZF)=0 .+ above/not below.nor equal
JAE/JNB CF=0 above or-equal/not below
JB/JNAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above:
JGC GCF=1 carry . :
JEIJZ ZF=1 : equal/zero
JG/JINLE ((SF xor OF) or ZF)=0 greater/notless nor equal
JGE/JNL. (SF xor OF)=0 . -greater or equal/notless
JL/JINGE (SF xor OF)=1 tess/not.greater nor equal .
JLE/JNG . - . ((SF xor OF).or ZF)=1 - less or equal/not greater
JNC ‘ o . CF=0. .-notcarry
JNE/JNZ . ZF=0 ‘notequal/not zero
JNO. . . OF=0 not overflow
JNP/JPO . : PF=0 not parity/parity odd
JNS : SF=0 not sign
JO : OF=1 overflow
JP/JPE - PE=t parity/parity equal

“JS .SF=1 sign

Note: ‘““‘above’ and ‘‘below’’ referto the relationship of two-unsigned.values; .
‘*greater’’ and ‘‘less’’ refer to the relationship of two signed values.

REPZ repeat prefixes). CX is decremented by 1,
and control is transferred to the target operand if
CX is not 0 and if ZF is set; otherwise the instruc-
tion following LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not Equal
and Loop While Not Zero) are also synonyms for
the same instruction. CX is decremented by 1,
and control is transferred to the target operand if
CXis not 0 and if ZF is clear; otherwise the next
sequential instruction is executed.

JCXZ short-label

JCXZ (Jump If CX Zero) transfers control to the
target operand if CX is 0. This instruction is
useful at the beginning of a loop:to bypass the
loop if CX has a zero value, i.e., to execute the
loop zero times.

Interrupt Instructions

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by

external hardware devices. The effect of softwarc
interrupts is. similar to. hardware-initiated inter-
rupts. -However, the processor does not execute
an interrupt-acknowledge bus cycle if the inter-
rupt originates in software or with an NMI. The
effect. of the interrupt instructions on the flags is
covered in the description of each instruction.

INT interrupt-type .

INT (Interrupt) activates the interrupt procedure
specified by the - interrupt-type operand. INT
decrements the stack pointer by two, pushes the
flags onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step
and maskable interrupts. The flags are stored in
the format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is
pushed onto the stack. The address of the inter-
rupt pointer is calculated by multiplying
interrupt-type: by four; the second-word of the in-
terrupt - pointer replaces CS. 'SP again is
decremented by two, and IP is-pushed onto the
stack and is replaced by the first word of the inter-
rupt pointer. If interrupt-type = 3, the assembler
generates a short (1 byte) form of the instruction,
known as the breakpoint interrupt.
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Software interrupts can be used as ‘‘supervisor
calls,” i.e., requests for service from an operating
system. A different interrupt-type can be used for
each type of service that the operating system
could supply for an application program. Soft-
ware interrupts also may be used to check out
interrupt service procedures written for hardware-
initiated interrupts.

INTO

INTO (Interrupt on Overflow) generates a soft-
ware interrupt if the overflow flag (OF) is set;
otherwise control proceeds to the following
instruction without activating an interrupt pro-
cedure. INTO addresses the target interrupt pro-
cedure (its type is 4) through the interrupt pointer
at location 10H; it clears the TF and IF flags and
otherwise operates like INT. INTO may be writ-
ten following an arithmetic or logical operation to
activate an interrupt procedure if overflow
oceurs.

IRET

IRET (Interrupt Return) transfers control back to
the point of interruption by popping IP, CS and
the flags from the stack. IRET thus affects all
flags by restoring them to previously saved
values. TIRET is used to exit any interrupt
procedure, whether activated by hardware or
software.

Processor Control Instructions

These instructions (see table 2-16) allow programs
to control various CPU functions. One group of
instructions updates flags, and another group is
used primarily for synchronizing the 8086 or 8088
with external events. A final instruction causes
the CPU to do nothing. Except for the flag opera-
tions, none of the processor control instructions
affect the flags.

Flag Operations

cLC

CLC (Clear Carry flag) zeroes the carry flag (CF)
and affects no other flags. It (and CMC and STC)
+is useful in conjunction with the RCL and RCR
instructions.

Table 2-16. Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction fiag
CLD Clear direction flag
STI Setinterrupt enable flag
CL! Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next

instruction
NO OPERATION
NOP No operation
CMC

CMC (Complement Carry flag) ‘“‘toggles” CF to
its opposite state and affects no other flags.

STC

STC (Set Carry flag)‘sets CF to 1 and affects no
other flags. '

CLD

CLD (Clear Direction flag) zeroes DF causing the
string instructions to auto-increment the SI
and/or DI index registers. CLD does not affect
any other flags. ‘ '

STD

STD (Set Direction flag) sets DF to 1 causing the
string _instructions to auto-decrement the SI
and/or DI index registers. STD does not affect
any other flags. .
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CLi

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external inter-
rupt request that appears on the INTR line; in
other words maskable interrupts are disabled. A
non-maskable interrupt appearing on the NMI
line, however, is honored, as is a software inter-
rupt. CLI does not affect any other flags.

STI

STI (Set Interrupt-enable flag) sets IF to 1, en-
abling processor recognition of maskable inter-
rupt requests appearing on the INTR line. Note
however, that a pending interrupt will not actu-
ally be recognized until the instruction following
STI has executed. STI does not affect any other
flags.

External Synchronization

HLT

HLT (Halt) causes the 8086/8088 to enter the halt
state. The processor leaves the halt state upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a
maskable interrupt request on INTR. HLT does
not affect any flags. It may be used as an alter-
native to an endless software loop in situations
where a program must wait for an interrupt.

WAIT

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does not
affect any flags. This instruction is described
more completely in section 2.5.

ESC external-opcode, source

ESC (Escape) provides a means for an external
processor to obtain an opcode and possibly a
memory operand from the 8086 or 8088. The
external opcode is a 6-bit immediate constant that
the assembler encodes in the machine instruction

it builds (see table 2-26). An external processor
may monitor the system bus and capture this
opcode when the ESC is fetched. If the source
operand is a register, the processor does nothing.
If the source operand is'a memory variable, the
processor obtains the operand from memory and
discards it. An external processor may capture the
memory operand when the processor reads it
from memory.

LOCK

LOCK is a one-byte prefix that causes the
8086/8088 (configured in maximum mode) to
assert its bus LOCK signal while the following
instruction executes. LOCK does not affect any
flags. See section 2.5 for more information on
LOCK.

No Operation

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Instruction Set Reference Information

Table 2-21 provides detailed operational informa-
tion for the 8086/8088 instruction set. The
information is presented from the point of view
of utility to the assembly language programmer.
Tables 2-17, 2-18 and 2-19 explain the symbols
used in table 2-21. Machine language instruction
encoding and decoding information is given in
Chapter 4. .

Instruction timings are presented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of the instruction. If a system is running with
a 5 MHz maximum clock, the maximum clock
period is 200 ns; at 8 MHz, the clock period is 125
ns. Where memory operands are used, ‘‘+EA”
denotes a variable number of additional clock
periods needed to calculate the operand’s effec-
tive address (discussed in section 2.8). Table 2-20
lists all effective address calculation times.
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Table 2-17. Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION
~ destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data'transfer, A register, memory location or immediate value that is

source-table
target
short-labe!

accumulator

port

source-string

dest-string

count

“interrupt-type
optional-pop-value

external-opcode

arithmetic,

bit manipulation

XLAT

JMP, CALL

cond. transfer,

iteration control

IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

used in the operation, but is not altered by the instruc-
tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, or a
register or memory location whose content is the
address of the location to which control is to be transfer-
red indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the first
byte of the next instruction.

-Register AX for word transfers, AL for bytes.

An |/0 port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
Sl; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.
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Table 2-18. Key to Flag Effects

Table 2-19. Key to Operand Types

For control transfer instructions,  the timings -

given include any additional clocks: required to
reinitialize the instruction queue as well as the
time required to fetch the target instruction. For
instructions executing on an 8086, four clocks
should be added for each instruction reference to
a word operand located at an odd memory
address to reflect any additional operand bus
cycles required. Similarly for instructions exe-
cuting on an 8088, four clocks should be added to
each instruction reference to a 16-bit memory
operand; this includes all stack operations. The
required number of data references is listed in
table 2-21 for each instruction to aid in this
calculation.

Several additional factors can increase actual
cxeccution time over the figures shown in table
2-21. The time provided assumes that the instruc-
tion has already been prefetched and that it is
waiting in the instruction queue, an assumption
that is valid under most, but not all, operating
conditions. A series of fast executing (fewer than
two clocks per opcode byte) instructions can drain
the queue and increase execution time. Execution
time also is slightly impacted by the interaction of
the EU and BIU when memory operands must be
read or written. If the EU needs access to
memory, it may have to wait for up to one clock if
the BIU has already started an instruction fetch
bus cycle. (The EU can detect the need for a
memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle). Of course

the EU does not have to wait if the queue is full,
because the BIU is idle. (This discussion assumes

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
far-proc

memptri6

memptr32

regptrié

repeat

IDENTIFIER EXPLANATION IDENTIFIER EXPLANATION
(blank) not altered (no operands) | No operands are written
0 cleared to 0 register An 8- (?I' 16-bit geneltal register
1 setio 1 reg 16 A 16-bit generall register
seg-reg A segment register
X set or cleared according .
to result accumulator | Register AXor AL
. ) immediate A constant in the range
U un?lefmed—contalns no ‘ 0-FFFFH
reliable value immed8 A constant in the range 0-FFH
R restored from previously- memory An 8- or 16-bit memory
saved value locationt"
mem8 An 8-bit memory location®
mem16 A 16-bit memory location(

Name of
table

Name of string addressed by
register SI

Name of string addressed by
register DI

Register DX

A label within -128 to +127
bytes of the end of the instruc-
tion

256-byte translate

A label in current code
segment
A label in another code
segment

A procedure in current code
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred

A doubleword containing the
offset and the segment base
address of the location in
another code segment to which
control is to be transferred™)

A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string instruction
prefix

repeat

Any addressing mode—direct, register in-
direct, based, indexed, or based
indexed—may be used (see section 2.8).
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Table 2-20. Effective Address Calculation

Time

EA COMPONENTS CLOCKS*
Displacement Only 6
Base orIndex Only  (BX,BP,SI,DI) 5
Displacement

+ 9

Base or Index (BX,BP,S1,Dl)
Base BP + DI, BX+SI 7

+
Index BP + SI, BX + DI 8
Displacement BP + Dl + DISP 1

+ BX+SI+DISP
Base

+ BP + Sl + DISP 12
Index BX + DI+ DISP

*Add 2 clocks for segment override

that the BIU can obtain the bus on demand, i.e.,
that no other processors are competing for the
bus.)

With typical instruction mixes, the time actually
required to execute a sequence of instructions will
typically be within 5-10% of the sum of the
individual timings given in table 2-21. Cases can
be constructed, however, in which execution time
may be much higher than the sum of the figures
provided in the table. The execution time for a
given sequence of instructions, however, is always
repeatable, assuming comparable external condi-
tions (interrupts, coprocessor activity, etc.). If the
execution time for a given series of instructions
must be determined exactly, the instructions
should be run on an execution vehicle such as the
SDK-86 or the iSBC 86/12™ board.

Table 2-21. Instruction Set Reference Data

AAA (no operands) ODITSZAPC
AAA ASCI! adjust for addition Flags UU X U X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAA
AAD (no operands) ODIT S Z PC
AAD ASCIl adjust for division Flags U Uxu
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60 — 2 AAD
AAM (no operands) ODIT S Z PC
AAM ASCIl adjust for multiply Flags Ux U
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 83 — 1 AAM
AAS (no operands) ODITSZAPC
AAS ASCII adjust for subtraction Flags UU XU X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 AAS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 18-bit word transfer.
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- Table 2-21. Instruction Set Reference Data (Cont’d.)

ADC destination,source ODITSZAPC
ADC Add with carry Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example ‘
register, register 3 — 2 ADGC AX, Sl
register, memory 9+EA 1 2-4 ADC DX, BETA [Sl]
memory, register 16+ EA 2 2-4 ADC ALPHA [BX][SI], DI
register, immediate 4 — - 3-4 ADC. BX, 256
memory, immediate 17+ EA 2 3-6 ADC GAMMA, 30H
accumulator, immediate 4 — 2-3 ADC AL,5
ADD destination,source ODITSZAPC
ADD Addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 ADD CX, DX
register, memory 9+EA 1 2-4 ADD DI, [BX].ALPHA
memory, register 16+ EA 2 2-4 ADD TEMP, CL
register, immediate 4 — 3-4 ADD CL,2
memory, immediate 17+ EA 2 3-6 ADD ALPHA, 2
accumulator, immediate 4 — 2-3 ADD AX, 200
AND destination,source ODITSZAPC
AND , Logical and Flags XX U X0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 AND AL,BL
register, memory 9+EA 1 2-4 AND CX,FLAG_WORD
memory, register 16+ EA 2 2-4 AND ASCII [DI],AL
register, immediate 4 — 3-4 AND CX,0FO0H
memory, immediate 17+EA 2 3-6 AND BETA, 01H
accumulator, immediate 4 — 2-3 ‘AND AX, 010100008
CALL target 'ODITSZAPC
CALL Call a procedure Flags
Operands Clocks | Transfers* | Bytes ‘ Codin‘g Examples
near-proc 19 1 3 CALL NEAR_PROC
far-proc 28 2 5 CALL FAR_PROC
memptr 16 21+ EA 2 2-4 CALL PROC_TABLE [SI]
regptr 16 16 1 2 CALL AX
memptr 32 37+EA 4 2-4 CALL [BX].TASK [Si]
CBW (no operands) ODITSZAPC
CBwW Convert byte to word Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CBW

*For the 8086, add four clocks for each 16-bit word transfer with an-odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

CLC (no operands) ODITSZAPC
CLC Clear carry flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLC
CLD (no operands) ODITSZAPC
CLD Clear direction flag Flags =
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CLD
CLI (no operands) ODITSZAPC
CLi _ Clear interrupt flag Flags 0
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 CL!
cMC CMC (no operands) Flaas ODITSZAPC
Complement carry flag 9 X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 CMC
CMP destination,source ODITSZAPC
CcmP Compare destination to source Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 CMP BX, CX
register, memory 9+ EA 1 2-4 CMP DH, ALPHA
memory, register 9+EA 1 2-4 CMP [BP+2],SI
register, immediate 4 — 3-4 CMP BL, 02H
memory, immediate 10+EA 1 3-6 CMP [BX].RADAR [DI]}, 3420H
accumulator, immediate 4 — 2-3 CMP AL, 00010000B
CMPS dest-string,source-string ODITSZAPC
CMPS Compare siring Flags X XXX XX
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 22 2 1 CMPS BUFF1, BUFF2
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS ID, KEY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

CWD (no operands)

ODITSZAPC
CWD Convert word to doubleword Flags :
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 5 — 1 CwWD
DAA (no operands) ODITSZAPC
DAA Decimal adjust for addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Codi'ng Example
(no operands) 4 — 1 DAA
DAS (no operands) ODITSZAPC
DAS Decimal adjust for subtraction Flags U XX XXX
Operands Clocks | Transfers* | Bytes Coding Ei(amp|e
(no operands) 4 — 1 DAS
DEC destination ODITSZAP C‘
DEC Decrement by 1 Flags X X XXX
- Operands Clocks | Transfers* | Bytes Coding Example
reg16 2 — 1 DEC AX
reg8 - 3 -— 2 DEC AL
memory 15+EA 2 2-4 DEC ARRAY [SI]
DIV source - ODITSZAPC
DIV Division, unsigned Flags y =" "yuuuu
Operands Clocks | Transfers* | Bytes Coding Example
reg8 80-90 — 2 DIV CL
reg16 144-162 — 2 DIV BX
mem8 (86-96) 1 2-4 DIV ALPHA
+EA
mem16 (150-168) 1 2-4 DIV TABLE [S]
+EA ‘
ESC ESC external-opcode,source Flags ODITSZAPC
Escape 9
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8+EA 1 2-4 ESC 6,ARRAY [SI]
immediate, register 2 — 2 ESC 20,AL :

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

HLT HLT (no operands) Flaas ODITSZAPC
Halt 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 HLT
IDIV source ODITSZAPC
IDIV Integer division Flags U vuuuuu
Operands Clocks | Transfers* | Bytes Coding Example
regs 101-112 — 2 IDIV BL
reg16 165-184 — 2 iDIV CX
mem8 (107-118) 1 2-4 IDIV DIVISOR_BYTE [8I]
. +EA
mem16 (171-190) 1 2-4 IDIV [BX].DIVISOR_WORD
+EA :
IMUL source ODITSZAPC
IMUL Integer multiplication Flags X Uuuu X
Operands Clocks | Transfers* | Bytes Coding Example
regd 80-98 — 2 IMUL CL
reg16 128-154 — 2 IMUL BX . -
mems3 (86-104) 1 2-4 IMUL RATE__BYTE
+EA
mem16 (134-160) 1 2-4 IMUL RATE_ WORD [BP] [Di]
+EA
IN accumulator,port ODITSZAPC
IN Input byte or word Flags ’
Operands ' Clocks | Transfers* | Bytes Coding Example
accumulator, immed8 10 1 2 IN AL, OFFEAH
accumulator, DX 8 1 1 IN AX, DX
INC destination ODITSZAPC
INC Increment by 1 Flags X X X.X
Operands Clocks | Transfers* | Bytes Coding Example
regi6 2 — 1 INC CX ’
reg8 3 — 2 INC BL
memory 15+ EA 2 2-4 INC ALPHA [DI} [BX]

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

INT interrupt-type ODITSZAPC
INT Interrupt Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
immed8 (type =3) 52 5 1 INT 3
immeds (type # 3) 51 5 2 INT 67
t INTR (external maskable interrupt) ODITSZAPC
INTR Interrupt if INTR and IF=1 Flags 00
Operands ' Clocks | Transfers* | Bytes Coding Example
(no operands) 61 7 N/A N/A
INTO INTO (no operands) Flags ODITSZAPC
Interrupt if overflow 9 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 53o0r4 5 1 INTO
IRET (no operands) - ODITSZAPC
IRET Interrupt Return Flag¢ pRRRRRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 24 3 1 IRET
JA/JNBE short-labetl ODITSZAPC
JA/JN BE Jump if above/Jump if not below nor equal Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16.0r 4 - 2 JA ABOVE
JAE/JNB short-label ODITSZAPC
JAE/JN B Jump if above or equal/Jump if not below Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JAE ABOVE_EQUAL
JB/JNAE JB/JNAE short-label Flags ODITSZAPC
Jump if below/Jump if not above nor equal 9
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — C2 JB BELOW

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
tINTR is not an instruction; itis included in table 2-21 only for timing information.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

JBE/JNA short-label ODITSZAPC
JBE/JINA Jump if below or equal/Jump if not above Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JNA NOT__ABOVE
JC short-label ODITSZAPC
J C Jump if carry Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label i6or4 - 2 JC CARRY__SET
JCXZ JCXZ _shortl-label Flags ODITS Z APC
Jump if CX is zero
_ Operands Clocks | Transfers* | Bytes Coding Example
short-label 18o0r6 — 2 JCXZ COUNT_DONE
JE/JZ JE/JZ short-label Flaas ODITSZAPC
Jump if equal/Jump if zero g
. Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JZ ZERO
JG/JNLE JG/JNLE short-label . Flags ODITSZAPC
Jump if greater/Jump if not less nor equal
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JG GREATER
JGE/JNL JGE/.!NL short-label . Flags ODITSZAPC
Jump if greater or equal/Jump if not less
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 — 2 JGE GREATER_EQUAL
JL/JNGE JL/JN.GE short-labgl Flags ODITSZAPC
Jump if less/Jump if not greater nor equal
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 — 2 JL LESS

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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‘Table 2-21. Instruction Set Reference Data (Cont’d.)

JLE/JNG short-label

ODITSZAPC

JLE/JNG Jump if less or equal/Jump if not greater Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or4 — 2 JNG NOT_GREATER
JMP target ODITSZAPC
JMP Jump Flags
Operands Clocks } Transfers* | Bytes Coding Example
short-label 15 — 2 JMP SHORT
near-label 15 —_ 3 JMP WITHIN_SEGMENT
far-label 15 - 5 JMP FAR__LABEL
memptri6 18+ EA 1 24 JMP [BX].TARGET
regptr16 11 — 2 JMP CX
memptr32 24+ EA 2 2-4 JMP OTHER.SEG [S]]
JNC short-label ODITSZAPC
JN C Jump if not carry Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16o0r4 - 2 JNC NOT_CARRY
JNE/JNZ JNE/JNZ short-label Flags ODITSZAPC
Jump if not equal/Jump if not zero g
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 — 2 JNE NOT__EQUAL
| JNO.short-label ODITSZAPC
J NO Jump if not overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or 4 - 2 JNO NO__OVERFLOW
JNP/JPO short-label ODITSZAPC
JNP/JPO Jump if not parity/Jump if parity odd Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 - 2 JPO ODD__PARITY
JNS short-label ODITSZAPC
JNS Jump if not sign Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16or4 - 2 JNS POSITIVE

*For the 8086, add four clocks for each 16-bit word transfer with an-odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

JO short-label

ODITSZAPC

JO Jump if overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or 4 — 2 JO SIGNED__OVRFLW
JP/JPE short-label ODITSZAPC
J P/J PE Jump if parity/dJump if parity even Flags
Operands Clocks | Transfers™ | Bytes Coding Example
short-label 160r4 — 2 JPE EVEN__PARITY
JS short-label ODPITSZAPC
JS Jump if sign Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 160r4 - 2 JS NEGATIVE
o LAHF (no operands) ODITSZAPC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4 — 1 LAHF
LDS destination,source ODITSZAPG
LDS Load pointer using DS Flags
Operands Clocks Transfers | Bytes Coding Example
reg16, mem32 16+ EA 2 2-4 LDS SI,DATA.SEG [DI]
LEA destination,source ODITSZAPC
LEA Load effective address Flags
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mem16 2+EA - 2-4 LEA BX, [BP] [DI]
LES destination,source ODITSZAPC
LES Load pointer using ES Flags
Operands Clocks | Transfers* | Bytes Coding Example
reg16, mem32 16+EA 2 2-4 LES DI, [BX].TEXT_BUFF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

LOCK (no operands) ODITSZAPC
LOCK Lock bus Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 — 1 LOCK XCHG FLAG,AL
LODS source-string ODITSZAPC
LODS Load string Flags
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12 1 1 LODS CUSTOMER__NAME:
(repeat) source-string 9+13/rep 1/rep 1 REP LODS NAME .
LOOP short-label ODITSZAPC
LOOP Loop Flags )
Operands Clocks | Transfers* | Bytes Coding Example
short-label 1715 — 2 LOOP AGAIN
LOOPE/LOOPZ LOOPE/LOOPZ short-label Flags ODITSZAPC
Loop if equal/Loop if zero 9
Operands Clocks | Transfers* | Bytes Coding Example
.| short-label 18or6 — 2 LOOPE AGAIN
LOOPNE/LOOPNZ short-label ODITSZAPC
LOOPN E/LOO PNZ Loop if not equal/Loop if not zero Fla_gs‘
Operands Clocks | Transfers* | Bytes Coding Example
short-label 190r5 - 2 LOOPNE AGAIN
'|' NMI (external nonmaskable interrupt) OSITSZAPC
NMI Interrupt if NMi = 1 , Flags = "¢
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50° 5 N/A N/A

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
1NMI is not an instruction; it is included in table 2-21 only for timing information. )
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Table 2-21. Instruction Set Reference Data (Cont’d.)

MOV destination,source

ODITSZAPC

MOV Move Flags
Operands Clocks | Transfers* | Bytes Coding Example
memory, accumulator 10 1 3 MOV ARRAY [SlI], AL
accumulator, memory 10 1 3 MOV AX, TEMP_RESULT
register, register 2 — 2 MOV AX,CX
register, memory 8+EA 1 2-4 MOV BP, STACK_TOP
memory, register 9+EA 1 2-4 MOV COUNT [Dl], CX
register, immediate 4 — 2-3 MOV CL,2
memory, immediate 10+ EA 1 3-6 MOV MASK [BX] [S1], 2CH
seg-reg, reqié 2 — 2 MOV ES, CX
seg-reg, mem16 8+EA 1 2-4 MOV DS, SEGMENT__BASE
reg16, seg-reg 2 — 2 MOV BP, SS
memory, seg-reg 9+EA 1 2-4 MOV [BX].SEG_SAVE, CS
MOVS MOVS dest-string,source-string Flaas ODITSZAPC
Move string 9
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 18 2 1 MOVS LINE EDIT__DATA
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER
MOVSB/MOVSW MOVSB/MOVSW (no operands) Flags ODITSZAPC
Move string (byte/word) 9
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 18 2 1 MOVSB :
(repeat) (no operands) 9+17/rep 2/rep 1 REP MOVSW
MUL source ODITSZAPC
MUL Multiplication, unsigned Flags X UuduuxX
Operands Clocks | Transfers* | Bytes Coding Example
regs 70-77 — 2 MUL BL
regi6 118-133 - 2 MUL CX
mem3 (76-83) 1 2-4 MUL MONTH [SI]
+EA
mem16 (124-139) 1 2-4 MUL BAUD__RATE
+EA

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

ODITSZA

: NEG destination PC
NEG“ Negate Flags X XXX X1
Operands Clocks | Transfers* | Bytes Coding Example.
register 3 — 2 NEG AL
memory 16+ EA 2 2-4 NEG MULTIPLIER
*0if destination =0
. NOP (no operands) ODITSZA P C
NOP No Operation Flags
Operands Clocks | Transfers* | Bytes Coding Example -
(nooperands) 3 — 1 NOP
: NOT destination ODITSZAPC
NOT Logical not , Flags
Operands | Clocks | Transters* | Bytes Coding Example
register. - 3 - 2 NOT AX _
memory.. 16+ EA 2 2-4 NOT CHARACTER
OR destination,source ODITSZAPC
OR Logical inclusive or Flags 0 XXUXDO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 -4 2 OR AL,BL
register, memory 9+EA- 1 2-4 OR DX, PORT__ID [DI]
memory, register 16 +EA 2 2-4 OR FLAG_BYTE, CL
accumulator, immediate 4 — 2-3 OR AL, 01101100B
register, immediate 4 — 3-4 OR CX,01H
memory, immediate 17+EA 2, 3-6. OR [BX].CMD_WORD,0CFH
OUT port,accumulator ODITSZAPC
ouT Output byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
immed8, accumulator 10 1 2 OUT 44, AX
DX, accumulator 8 1 1 OUT DX, AL
POP destination ODITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8 1 1 POP DX
seg-reg (CS illegal) 8 1 1 POP DS
memory 17+EA 2 2-4 POP PARAMETER

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

Mnemonics © Intel, 1978

2-62




8086 AND 8088 CENTRAL PROCESSING UNITS

Table 2-21. Instruction Set Reference Data (Cont’d.)

POPF {no operands) ODITSZAPC
POPF Pop flags off stack Flags RRRRRRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8 1 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Flags '
Operands Clocks | Transfers* | Bytes Coding Example
register 11 1 1 PUSH 8I ‘
seg-reg (CS legal) -10 1 1 PUSH ES . :
memory ' 16+ EA |- 2 2-4 PUSH RETURN__CODE [SI]
PUSHF PUSHF (no operands) Flags CPITSZAPC
Push flags onto stack rlag
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 10 1 1 PUSHF
RCL destination,count ODITSZAPC
RCL Rotate left through carry’ Flags X X
Operands "I Clocks | Transfers* | Bytes . Coding Example
register, 1’ ] — 2 RCL.CX,1
register, CL 8+ 4/bit — 2 RCL AL,CL
memory, 1 15+EA 2 2-4 RCL ALPHA,1
memory, CL 20+ EA + 2 2-4 RCL [BP].PARM, CL
4/bit
RCR designation,count ODITSZAPC
RCR Rotate right through carry Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 RCR BX,1 .
register, CL 8+4/bit — 2 RCR BL,CL
memory, 1 15+ EA 2 L 244 RCR [BX].STATUS, 1
memory, CL 20+EA+ 2 2-4 RCR ARRAY [DI], CL
4/bit
REP REP (no operands) Flags ODITSZAPC
i Repeat string operation g
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) | 2 - 1 REP MOVS DEST, SRCE

*For the 8086, add four clocks for each 16-Bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

REPE/REPZ (no operands)

ODITSZAPC

’R EP E/ REPZ Repeat string operation while equal/while zero Flags
Operands Clocks | Transfers* | Bytes Coding Example.
(no operands) 2 — 1 REPE CMPS DATA, KEY

REPNE/REPNZ (no operands) ODITSZAPC
R E PN E/ REPNZ Repeat string operation while not equal/not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 REPNE SCAS INPUT__LINE
RET RET optional-pop-value Flaas ODITSZAPC
Return from procedure 9
Operands Clocks | Transfers* | Bytes Coding Example
(intra-segment, no pop) 8 1 1 RET
(intra-segment, pop) 12 1 3 RET 4
(inter-segment, no pop) 18 2 1 RET
(inter-segment, pop) 17 2 3 RET 2
ROL destination,count ODITSZAPC
ROL Rotate left Flags X X
Operands Clocks | Transfers | Bytes Coding Examples
register, 1 2 — 2 ROL BX,1
register, CL 8+4/bit — 2 ROL DI, CL
memory, 1 15+ EA 2 2-4 ROL FLAG__BYTE [D}},1
memory, CL 20+EA+ 2 2-4 ROL ALPHA ,CL
4/bit
ROR destination,count ODITSZAPC
ROR Rotate right Flags X X
Operand Clocks | Transfers* | Bytes Coding Example
register, 1 2 — 2 ROR AL, 1
register, CL 8+4/bit — 2 ROR BX, CL
memory, 1 15+EA 2 2-4 ROR PORT_STATUS, 1
memory, CL 20+ EA+ 2 2-4 ROR CMD_WORD, CL
4/bit
SAHF (no operands) ODITSZAPC
SAHF , Store AH into flags Flags RRRRR
Operands Clocks Transfers* | Bytes Coding Example
(no operands) 4 — 1 SAHF

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SAL/SHL destination,count

ODITSZAPC

(no operands)

SAL/SHL Shift arithmetic left/Shift logical left Flags X
Operands Clocks | Transfers* | Bytes Coding Examples
register,1- 2 — 2 SAL AL
register, CL 8+ 4/bit — 2 SHL DI, CL
memory,1 15+ EA 2 2-4 SHL [BX].OVERDRAW, 1
memory, CL 20+EA+ 2 2-4 SAL STORE_COUNT,CL
4/bit
SAR destination,source ODITSZAPC
SAR Shift arithmetic right Flags X X U XX
Operands Clocks | Transfers® | Bytes Coding Example
register, 1 2 — 2 SAR DX, 1
register, CL 8+4/hit — 2 SAR DI, CL
memory, 1 15+ EA 2 2-4 SAR N__BLOCKS, 1
‘| memory, CL 20+EA+ 2 2-4 SAR N_BLOCKS, CL
4/bit ‘
SBB destination,source ODITSZAPC
SBB Subtract with borrow Flags X XX XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SBB BX,CX
register, memory 9+EA 1 2-4 SBB DI, [BX].PAYMENT
memory, register 16+ EA 2 2-4 SBB BALANCE, AX
accumulator, immediate 4 — 2-3 SBB AX,2
register, immediate ) 4 — 34 SBB CL,1
memory, immediate 17+ EA 2 3-6 SBB COUNT [S!], 10
SCAS dest-string ODITSZAPC
SCAS | Scan string Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
dest-string - 15 1 1 SCAS INPUT__LINE
(repeat) dest-string 9+15/rep 1/rep 1 REPNE SCAS BUFFER
t SEGMENT override prefix ODITSZAPC
SEGMENT Override to specified segment - Flags
Operands Clocks | Transfers* | Bytes Coding Example
2 — 1 MOV SS:PARAMETER, AX

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

+ASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

2-21 only for timing information.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SHR destination,count ODITSZAPC
SHR Shift logical right Flags X
: Operands - Clocks | Transfers* | Bytes Coding Example
register, 1 2 —_ 2 SHR Si,1
| register, CL 8 +4/bit — 2 SHR S|, CL v
memory, 1 15+EA 2 2-4 SHR ID_BYTE [S!} [BX], 1
memory, CL 20+EA+ 2 2-4 SHR INPUT_WORD, CL
4/bit
‘ | '|' SINGLE STEP (Trap flag interrubt)' ODITSZAPC
|SINGLE STEP Interruptif TE=1 . Flags = "4
‘ Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A N/A
STC (no operands) ODITSZAPC
STC ) Setcarry flag ‘ Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2 - 1 STC
STD (no operands) ODITSZAPC
; STD : Setdirection flag Flags 1
Operands’ Clocks | Transfers* | Bytes Coding Example
‘| (no operands) ' 2 — 1 STD
: STl (no operands) ODITSZAPC
‘STI Set interrupt enable flag Flags 1
, Operands ~ Clocks | Transfers® | Bytes Coding Example
|(no operanqs)‘ 2 - 1 STI
STOS - STOS dest-string Flaas ODITSZAPC
Store byte or word string 9 )
Operands Clocks | Transfers* | Bytes Coding Example
dest-string : 11 1 -1 STOS PRINT_LINE
(repeat) dest-string " - 9+10/rep 1/rep 1 REP STOS DISPLAY

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four ciocks for each 16-bit word transfer.
1SINGLE STEP is not-an instruction; it is inctuded in table 2-21 only for timing information.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

SUB destination,source ODITSZAPC
SUB Subtraction Flags X XXX XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 SUB CX,BX
register, memory 9+EA 1 2-4 SUB DX, MATH__TOTAL [SI]
memory, register 16+ EA 2 2-4 SUB [BP+2],CL
accumulator, immediate 4 — 2-3 SUB AL, 10
register, immediate 4 - 3-4 SUB S, 5280
memory, immediate 17+ EA 2 3-6 SUB [BP].BALANGCE, 1000
TEST destination,source ODITSZAPC
TEST Test or non-destructive logical and Flags 0 XXUXDO0
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3 — 2 TEST SI, DI
register, memory 9+EA 1 2-4 TEST SI,END_COUNT
accumulator, immediate 4 - 2-3 TEST AL, 001000008
register, immediate 5 -— 3-4 TEST BX, 0CC4H
memory, immediate 11+EA — 3-6 TEST RETURN__CODE, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* | Bytes Cading Example
(no operands) 3+ 5n — 1 WAIT
XCHG XCHG destination,source Flaas ODITSZAPC
Exchange 9
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg16 3 — 1 XCHG AX, BX
memory, register 17+ EA 2 2-4 XCHG SEMAPHORE, AX
register, register 4 — 2 XCHG AL, BL
XLAT XLAT source-table Flags ODITSZAPC
Translate 9
Operands Clocks | Transfers* | Bytes Coding Example
source-table 11 1 1 XLAT ASCII_TAB

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.
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Table 2-21. Instruction Set Reference Data (Cont’d.)

XOR destination,source ODITSZAPC.

XOR Logical exclusive or Flags 0 XXUXO0

Operands Clocks | Transfers* | Bytes Coding Example
register, register : i 3 — 2 XOR CX, BX
register, memory 9+ EA 1 2-4 XOR CL, MASK_BYTE
memory, register 16+ EA 2 2-4 XOR ALPHA [SI], DX
accumulator, immediate -~ v 4 - 2-3 XOR AL, 01000010B
register, immediate . 4 — 3-4 XOR Sl, 00C2H )
memory, immediate 17+EA 2 3-6 XOR RETURN__CODE, 0D2H

*For the 8086, add four clocks for each 16-bit word transfer with an odd address. For the 8088, add four clocks for each 16-bit word transfer.

2.8 Addressing Modes

The 8086 and 8088 provide many different ways
10 access instruction operands. Operands may be
contained in registers, within the instruction
itseif, in memory or in I/0 ports. In addition, the
addresses of memory and 1/0 port operands can
be calculated in several different ways. These
addressing modes greatly extend the flexibility
and convenience of the instruction set. This sec-
tion briefly describes register and immediate
operands and then covers the 8086/8088 memory
and 1/0 addressing modes in detail.

‘Register and Inmediate Operands

Instructions that specify only register operands
are generally the most compact and fastest
executing of all instruction forms. This is because
the register ‘‘addresses” are encoded in instruc-
tions in just a few bits, and because these opera-
tions are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both. ‘

Immediate operands are constant data contained
in an instruction. The data may be. either 8 or 16
bits in length. Immediate  operands can be
accessed quickly because they are available
directly from the instruction queue; like a register
operand, no bus cycles need to be run to obtain an
immediate operand. The limitations of immediate
operands are that they may only serve as source
operands and that they are constant values.

Memory Addressing Modes

Whereas the EU has direct access to register and
immediate operands, memory operands must be
transferred to or from the CPU over the bus.
When the EU needs to read or write a memory
operand, it must pass an offset value to the BIU.
The BIU adds the offset to the (shifted) content of
a segment register producing a 20-bit physical
address and then executes the bus cycle(s) needed
to access the operand.

The Effective Address

The offset that the EU calculates for a memory
operand is called the operand’s effective address
or EA. It is an unsigned 16-bit number that
expresses the operand’s distance in bytes from the
beginning of the segment in which it resides. The
EU can calculate the effective address in several
different ways.. Information encoded in the
second byte of the instruction tells the EU how to
calculate the effective address of each memory

- operand. A compiler or assembler derives this

information from the statement or instruction
written by the programmer. Assembly language
programmers have access to.all addressing modes.

Figure 2-34 shows that the execution unit
calculates the EA by summing a displacement, the
content of a base register and the content of an
index register. The fact that any combination of
these three components may be present in a given
instruction gives rise to the variety of 8086/8088
memory addressing modes.
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Figure 2-34. Memory Address Computation

The displacement element is an 8- or 16-bit
number that is contained in the instruction. The
displacement generally is derived from the posi-
tion of the operand name (a variable or label) in
the program. It also is possible for a programmer
to modify this value or to specify the displace-
ment explicitly.

A programmer may specify that either BX or BP
is to serve as a base register whose content is to be
used in the EA computation. Similarly, either SI
or DI may be specified as an index register.
Whereas the displacement value is a constant, the
contents of the base and index registers may
change during execution. This makes it possible
for one instruction to access different memory
locations as determined by the current values in
the base and/or index registers.

It takes time for the EU to calculate a memory
operand’s effective address. In general, the more
elements in the calculation, the longer it takes.

Table 2-20 shows how much time is required to
compute an effective address for any combination
of displacement, base register and index register.

Direct Addressing

Direct addressing (see figure 2-35) is the simplest
memory addressing mode. No registers are in-
volved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing
typically is used to access simple variables
(scalars).

Register Indirect Addressing

The effective address of a memory operand may
be taken directly from one of the base or index
registers as shown in figure 2-36. One instruction
can operate on many different memory locations
if the value in the base or index register is updated
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appropriately. The LEA (load effective address)
and arithmetic instructions might be used to
change the register value:

Note that any 16-bit general register may be used
for register indirect addressing with the JMP or
CALL instructions.

CEMENT 1

A

I OPCODE MOD R/M l DISPLA

Figure 2-35. Direct Addressing

l OPCODE l MODR/I\LI

—= 1]

Figure 2-36. Register Indirect Addressing

Based Addressing

In based addressing (figure 2-37), the effective
address is the sum of a displacement value and the
content of register BX or register BP. Recall that
specifying BP as a base register directs the BIU to
obtain the operand from the current stack seg-

l OPCODE MOD R/M DISPLAC{EMENT =1
BX _l
OR 3
BP

Figilre 2-37. Based Addressing

ment (unless a segment override prefix is present).
This makes based addressing with BP a very con-
venient way to access stack data (see section 2.10
for examples).

Based addressing also provides a. straightforward
way to address structures which may be located at
different places in memory (see figure 2-38). A
base register can be pointed at the base of the
structure and elements of the structure addressed
by their displacements from the base. Different
copies of the same structure can be accessed by
simply changing the base register.

HIGH ADDRESS

DISPLAGEMENT DISPLACEMENT
I wap ] AGE [sTATUS | wae  }
RATE
vac_| sick
DEPT | DIV
r-laAssaselsnaﬂ [-fEHeLovee | BAsEREGISTER |

| —

| ea ]

“ |

AGE |STATUS ]

RATE |

vac_| sick [
DEPT | DIV

EMPLOYEE _|m — e — — — -

LOW ADDRESS

Figure 2-38. Accessing a Structure With Based
Addressing

Indexed Addressing

In indexed addressing, the effective address is
calculated from the sum of a displacement plus
the content of an index register (SI or DI) as
shown in figure 2-39. Indexed addressing often is

l OPCODE MODR/M DISPLAC|EMENT =
si
OR >
o ®

Figure 2-39. Indexed Addfessing
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used to access elements in an array (see figure
2-40). The displacement locates the beginning of
the array, and the value of the index register
selects one element (the first element is selected if
the index register contains 0). Since all array
elements are the same length, simple arithmetic
on the index register will select any element.

Baéed Indexed Addressing

Based indexed addressing generates an effective
address that is the sum of a base register, an
index register and a displacement (see figure
2-41). Based indexed addressing is a very flexible
mode because two address components can be
varied at execution time.

HIGH ADDRESS

&l \.‘F
ARRAY (&) | ’
r - pispLacement | ARRAY (7) | oispLacemenT } 1
ARRAY (6)
I ARRAY (5) I
: INDEX REGISTER ARRAY (4) INDEX REGISTER :
I 14 1 . ARRAY (3) | 2
I 1] ARRAY (2) [ I
I 1 EA ARRAY (1) |—— EA | !
LY/ | ARRAY()) | — — — — — — — d
1 1A

-1 WORD—»
LOW ADDRESS

Figure 2-40. Accessing an Array With Indexed
Addressing

Based indexed addressing provides a convenient
way for a procedure to address an array allocated
on a stack (see figure 2-42), Register BP can con-
tain the offset of a reference point on the stack,
typically the top of the stack after the procedure
has saved registers and allocated local storage.
The offset of the beginning of the array from the
reference point can be expressed by a displace-
ment value, and an index register can be used to
access individual array elements.

Arrays contained in structures and matrices (two-
dimension arrays) also could be accessed with
based indexed addressing.

—— —
EMENT

rOPCODE I MOD R/M DISPLAC

BX
OR G
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S|

[

DI

Figure 2-41. Based Indexed Addressing
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Figure 2-42. Accessing a Stack Array With Based Indexed Addressing -
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String Addressing

String instructions do not use the normal memory
addressing modes to access their operands.
Instead, the index registers are used implicitly as
shown in figure 2-43. When a string instruction is
executed, SI is assumed to point to the first byte
or word of the source string, and DI is assumed to
point to the first byte or word of the destination
string. In a repeated string operation, the CPUs
automatically adjust SI and DI to obtain subse-
quent bytes or words.

1/0 Port Addressing

If an 1/0 port is memory mapped, any of the
memory operand addressing modes may be used
to access the port. For example, a group of ter-
minals can be accessed as an ‘‘array.”’ String
instructions also can be used to transfer data to
memory-mapped ports with an appropriate hard-
ware interface. Section 2.10 contains examples of
addressing memory-mapped 1/0 ports.

Two different addressing modes can be used to
access ports located in the I/0 space; these are
illustrated in figure 2-44. In direct port address-
ing, the port number is an 8-bit immediate

1 sI

}—>1. sourceea |
| DI |—>|DesTINATIONEA]

Figure 2-43. String Operand Addressing

operand. This allows fixed access to ports
numbered 0-255. Indirect port addressing is
similar to register indirect addressing of memory
operands. The port number is taken from register
DX and can range from O to 65,535. By pre-
viously adjusting the content of register DX, one
instruction can access any port in the 1/0 space.
A group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX,

2.9 Programming Facilities

A comprehensive integrated set of tools supports
8086/8088 software development. These tools are
programs that run on Intellec® 800 or Series II
Microcomputer Development Systems under the
ISIS-1I operating system, the same hardware and
operating system used to develop software for the
8080 and the 8085. Since the 8086 and 8088 are
software-compatible with one another, the same
tools are used for both processors to provide
programmers with a uniform development
environment., .

IOPCODElDATAI

| PORT ADDRESSI

DIRECT PORT ADDRESSING

IOPCODEI

y

I ox  }|—>]roRrTADDRESS]

INDIRECT PORT ADDRESSING

Figure 2-44. 1/0 Port Addressing
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Software Development Overview

A program that will ultimately execute on an
8086- or 8088-based system is developed in steps
(see figure 2-45). The overall program is com-
posed of functional units called modules. For
purposes of this discussion, a module is a section
of code that is separately created, edited, and
compiled or assembled. A very small program
might consist of a single module; a large program
could be comprised of 100 or more modules. The
8086/8088 LINK-86 utility binds modules
together into a single program. (The module
structure of a program is critical to its successful
development and maintenance; see section 2.10
for guidelines.)

8086 and 8088 modules can be written in either
PL/M-86 or ASM-86 (see table 2-22). PL/M-86 is.
a high-level language suitable for most
microprocessor applications. It is easy to use,
even by programmers who have little experience
with microprocessors. Because it reduces software
development time, PL/M-86 is ideal for most of
the programming in any application, especially
applications that must get to market quickly.

ASM-86 is the 8086/8088 assembly language.
ASM-86 provides the programmer who is familiar
with the CPU architecture, access to all processor
features. For critical code segments within pro-
grams that make sophisticated use of the hard-
ware, have extremely déemanding performance or
memory constraints, ASM-86 is the best choice.

NSLATE

EDIT

1 isisn

LINK

LOCATE

LOAD

» [ SOURCE
Bite

EDITOR

LiB-86

UPDATE
LIBRARIES

OBJECT
MODULE
LIBRARIES'

AND
- EXECUTE
ELOCAT- ABSOLUTE EXECUTION
LINK-86f—m[ RBLES LOC-86 —»| OBJECT HARDWARE
MODULE MODULE

Figure 2-45. Software Development Process |
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Table 2-22. PL/M-86/ASM-86 Characteristics

PL/M-86

ASM-86

* FastDevelopment

* Less Programmer Training

¢ Detailed Hardware Knowledge Not Required

* Fastest Execution Speed

* Smallest Memory Requirements

* Access To All Processor Facilities

The languages are completely compatible, and a
judicious combination of the two often makes
good sense. Prototype software can be developed
rapidly with PL/M-86. When the system is
operating correctly, it can be analyzed to see
which sections can best profit from being written
in ASM-86. Since the logic of these sections
already has been debugged, selective rewriting can
be done quickly and with low risk.

Each PL/M-86 or ASM-86 module (called a
source moduel) is keyed into the Intellec® system
using the ISIS-II text editor and is stored as a
diskette file. This source file is then input to the
appropriate language translator (ASM-86
assembler or PL/M-86 compiler). The language
translator creates a diskette file from the source
file, which is called a relocatable object module.
The translator also lists the program and flags any
errors detected during the translation. The
relocatable object module contains the 8086/8088
machine instructions that the translator created
from the statements in the source module. The
term ‘‘relocatable’’ refers to the fact that all
references to memory locations.in the module are
relative, rather than being absolutc memory
addresses. The module generally is not executable
until the relative references are changed to the
actual memory locations where the module will
reside in the execution system’s memory. The pro-
cess of changing the relative references to
absolute memory locations is called locating.

There are very good reasons for not locating
modules when they are translated. First, the exe-
cution system’s physical memory configuration
(where RAM and ROM/PROM segments are
actually located in the megabyte memory space)
may not be known at the time the modules are
written. Second, it is desirable to be able to use a
common module (¢.g., a square root routine) in
more than one system. If absolute addresses were
assigned at translation time, the common module
would either have to occupy the same physical

addresses in every system, or separate versions
with different addresses would have to be main-
tained for each system. When locating is deferred,
a single version of a common routine can be used
by any number of systems. Finally, the locations
of modules typically change as a system is
developed, maintained and enhanced. Separating
the location process from the translation process
means that as modifications are made, unchanged
modules only need to be relocated, not
retranslated.

Relocatable object modules may be placed into
special files called libraries, using the LIB-86
library manager program. Libraries provide a
convenient means of collecting groups of related
modules so that they can be accessed automati-
cally by the LINK-86 program.

When enough relocatable object modules have
been created to test the system, or part of it, the
modules are linked and located. Linking com-
bines all the separate modules into a single pro-
gram. Locating changes the relative memory
references in the program to the actual memory
locations where the program will be loaded in the
execution system. The link and locate process also
is referred to as R & L, for relocation and linkage.

Two other programs round out the software
development tools available for the 8086 and
8088. OH-86 converts an absolute object file into
a hexadecimal format used by some PROM pro-
grammers and system loaders (for example, the
SDK-86 and iSBC 957™ Joaders). CONV-86 can
do most of the conversion work required to
translate 8080/8085 assembly language source
modules into ASM-86 source modules.

The 8086/8088 software development facilities
are covered in more detail in the remainder of this
section, However, these are only introductions to
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the use of these tools. Complete documentation is
available in the following publications available
from Intel’s Literature Department:

ISIS-II:

ISIS-II System User’s Guide, Order No. 9800306

ASM-86:

MCS-86 Assembly Language Reference Manual
Order No. 9800640

MCS-86 Assembler Operating Instructions for
ISIS-1I Users, Order No. 9800641
PL/M-86:

PL/M-86 Programming Manual,
9800466

ISIS-1I PL/M-86 Compiler Operator’s Manual,
Order No. 9800478

Order No.

LINK-86, LOC-86, LIB-86, OH-86:

MCS-86 Software Development Utilities
Operating Instructions for ISIS-II Users, Order
No. 9800639

CONV-86:

MCS-86 Assembly Language
Operating Instructions for ISIS-II
No. 9800642

Converter
Users, Order

PL/M-86

PL/M-86 is a general-purpose, high-level
language for programming the 8086 and 8088
microprocessors. It is an extension of PL/M-80,
the most widely-used, high-level programming
language for microprocessors. (PL/M-80 source
programs can be processed by the PL/M-86 com-
piler; the resulting object program is generally
reduced by 15-30% in size.) PL/M-86 is suitable
for all types of microprocessor. software from
operating systems to application programs.

PL/M-86’s purpose is simple: to reduce the time
and cost of developing and maintaining software
for the 8086 and 8088. It accomplishes this by
creating a programming environment that, for the
most part, is distinct from the architecture of the
CPUs. Registers, segments, addressing modes,
stacks, etc., are effectively ‘‘invisible’’ to the

“Furthermore,

PL/M-86 programmer. Instead, the processors
appear to respond to simple commands and
familiar algebraic expressions. The responsibility
for translating these source statements into the
machine instructions ultimately required to exe-
cute on the 8086/8088 is assumed by the PL/M-86
compiler. By ‘‘hiding’’ the deétails of the machine
architecture, PL/M-86 encourages programmers
to concentrate on solving the problem at hand.
because PL/M-86 is closer to
natural language, it is easier to ‘‘think in
PL/M-86’ than it is to ‘‘think in assembly
language.”” This speeds up the expression of a
program solution, and, equally important, makes
that solution easier for someone other than the
original programmer to understand. PL/M-86
also contains all the constructs necessary for
structured programming.

Statements and Comments

A programmer builds a PL/M-86 program by
writing statements and comments (see figure
2-46). There are several different types of
statements in PL/M-86; they always end with a
semicolon. Blanks can be used freely before,
within, and after statements to improve read-
ability. A statement also may span more than one
line.

The characters ‘‘/*’’ start a comment, and the
characters ‘‘*/”” end it; any characters may be
used in between. Comments do not affect the exe-
cution of a PL/M-86 program, but all good pro-
grams are thoughtfully commented. Comments
are notes that document and clarify the program’s
operation; they may be written virtually anywhere
ina PL/M-86 program.

Data Detfinition

Most PL/M-86 programs begin by defining the
data items (variables) with which they are going to
work. An individual PL/M-86 data element is
called a scalar. Every scalar variable has a
programmer-supplied name up. to 31 characters
long, and a type. PL/M-86 supports five types of
scalars: byte, word, integer, real, and pointer.
Table 2-23 lists the characteristics of these
PL/M-86 data types. -
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/*TRAFFIC DATA RECORDER CONTROL PROGRAM*
*VERSION 2.2, RELEASE 5, 23APR79.*
*THIS RELEASE FIXES THREE BUGS*
*DOCUMENTED IN PROBLEM REPORT #16.*/

/*"COMPUTE TOTAL PAYMENT DUE*/
TOTAL = PRINCIPAL + INTEREST

IF TERMINAL$READY

THEN CALL FILL§BUFFER,;

ELSE CALL WAIT (50);

/*WAIT 50 MS FOR RESPONSE*/ ’

Figure 2-46. PL/M-86 Statements and Comments

Table 2-23. PL/M-86 Data Types

TYPE BYTES RANGE USAGE
BYTE 1 0t 255 Unsigned Integer, Character
WORD - 2 010 65,535 Unsigned Integer
X ‘ - -32,768t0 . . ‘
INTEGER 2 +32,767 Signed Integer
‘ T 1x10"8 g . .
REAL , 4 3.37x10+% Floating Point
POINTER 2/4 | N/A Address Manipulation

Variables are defined by wrltlng a DECLARE
statement of this form:

DECLARE scalar-name type:
Options of the DECLARE statement cad be used

to specify an initial value for the scalar and to
define a series of items in a shorthand form.

Besides scalar variables, scalar constants may be
used in PL/M-86 programs (see. figure 2-47).

Constants may be written ‘‘as is’’ or may be given

names to improve program clarity.

Scalars can be aggregated into named collections.

of data such as arrays and structures. An array is
a collection of scalars of the same type (all
integer, all real, etc.). Arrays are useful for

representing data that has a repetitive nature. For’

example, monthly rainfall samples could be
represented as an array of 12 elements, one for
each month

DECLARE RAINFALL a 2) REAL;

Each element in_an array is accessible by a
number called a subscript which is the element’s
relative location in the array. In PL/M-86, the
first element in an array has a subscript of 0; it is
considered the ‘‘Oth”’ element. Thus, RAINFALL
(11) refers to December’s sample. The subscript
need not be a constant; variables and expressions
also may be used as subscripts,

Strings of character:-data are typically defined as
byte arrays. Characters can be accessed with
subscripts or with powerful string-handling func-
tions built into PL/M-86. .
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10 /*DECIMAL NUMBER*/
0AH /*HEXADECIMAL NUMBER*/
12Q /*OCTAL NUMBER*/
00001010B /*BINARY NUMBER*/
10.0 /*FLOATING POINT NUMBER*/
1.0E1 /*FLOATING POINT NUMBER*/
‘A’ [*CHARACTER*/

/*CONSTANTS MAY BE GIVEN NAMES*/
DECLARE STATUSSPORT LITERALLY ‘OFFEH’;
DECLARE THRESHOLD LITERALLY 98.6°;

Figure 2-47. PL/M-86 Constants

A structure is a collection of related data elements
that do not necessarily have the same type. The
clements are related by virtue of ‘“belonging” to
the entity represented by the structure. Here is a
simple structure declaration:

DECLARE BRIDGE STRUCTURE
(SPAN WORD,
YR$BUILT BYTE,

AVGSTRAFFIC REAL);

The year the bridge was built could be accessed by
writing BRIDGE.YRSBUILT; the structure ele-
ment name is ‘‘qualified”” by the dot and the
* structure name. This allows structures with the
same element names to be distinguished from
each other (e.g., HIGHWAY.YRSBUILT).

Arrays and structures can be combined into more
complex data aggregates:

* array elements may be structures rather than
scalars,

® structures in arrays may themselves contain
arrays.

Figure 2-48 provides sample PL/M-86 data
declarations.

Assignment Statement

Data that has been defined can be operated on
with PL/M-86 executable statements. The fun-
damental executable statement is the assignment
statement, written in this form:

" variable-name = expression;

This means ‘‘evaluate the expression and assign
(move) the result to the variable.”’

There are three basic classes of expressions in
PL/M-86; arithmetic, relational and logical (see
table 2-24 and figure 2-49). All expressions are
combinations of operands and operators,
although an expression can consist of a single
operand. Operands are variables and constants;
operators vary according to the type of expres-
sion. Evaluation of an expression always yields a
single result; different classes of expressions yield

a structure element may be an array,

different types of results.

Table 2-24, Characteristics of PL/M-86 Expressions

EXPRESSION OPERATORS RESULT
ARITHMETIC +,-,*,/,MOD NUMBER

e e “TRUE” - FFH
RELATIONAL >, <, _, >"‘, <“ “FALSE” _OH
LOGICAL AND, OR, XOR, NOT 8/16-BIT STRING
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J****SCALARS****/
DECLARE SWITCH BYTE;
DECLARE COUNT WORD, - 1*1 SCALAR*/
INDEX INTEGER; - " [*1 SCALAR"/
DECLARE (NET, GROSS, TOTAL)  REAL; I*3SCALARS"/

/****ARRAYS****I
DECLAREMONTH (12)  BYTE;
DECLARE TERMINAL__LINE(80): " -BYTE;: -

[****STRUCTURE****/ .
DECLARE EMPLOYEE STRUCTURE

(ID_NUMBER WORD,

DEPARTMENT ! BYTE -

RATE REAL);

I**** ARRAY OF STRUCTURES****/
" DECLAREINVENTORY__ITEM (100) STRUCTURE

(PART__NUMBER WORD,
ON_HAND WORD,
RE_ORDER BYTE);
/**** ARRAY WITHIN STRUCTURE****/
DECLARE COUNTY__DATA STRUGTURE
(NAME (20) BYTE,
TEN_YR_RAINFALL(10)  BYTE,

PER CAPITA__INCOME REAL);

Figure 2-48. PL/M-86 Data Declarations

/"ARITH ETIC*/
A=2,B=3;
B=B+1; [*B' CONTAINS 4/
C=(A*B)-2; /*C CONTAINS 6*/
C=((A*B)+3) MOD 3; 1*C CONTAINS 2*/
- [*RELATIONAL*/
A=2,B=3.
C=B>A; . /*C CONTAINS OFFH*/
C=B<>A; /*C CONTAINS OFFH*/
C=B=(A+1); . . /*C CONTAINS OFFH*/
[*LOGICAL*/
A =0011$0001B; /*$1S FOR READABILITY*/
B =1000$00018; ’ ' /
C=NOTB; [*C CONTAINS 0111$1110B*/
“C=AANDB; /*C CONTAINS 0000$0001B*/*
C=AORB; /*C CONTAINS 1011$0001B*/ -
C=BXORA; [*C CONTAINS 1011$0000B* /

C=(AANDB)OROFOH; /*CCONTAINS 1111$0001B*/

" Figure 2-49. Expressions in PL/ M;86' Assignment Statements
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Program Flow Statements

Simple PL/M-86 programs can be written with
just DECLARE and assignment statements. Such
programs, however, execute exactly the same
sequence of statements every time they are run
and would not prove very useful. PL/M-86 pro-
vides statements that change the flow of control
through a program. These statements allow sec-
tions of the program to be executed selectively,
repeated, skipped entirely, etc.

The IF statement (figure 2-50) selects one or the
other of two statements for execution depending
on the result of a relational expressxon The IF
statement is written:
IF relational-expression
THEN statementt;
ELSE statement2;

Statement] is executed if the expression is ‘‘true”’;

statement? is not executed in this case. If the rela- -

tion is ““false,”” statementl is skipped and state-
ment2 is executed. In determining the “‘truth’’ of
an expression, the IF statement only examines the
low-order bit of the result (1=*“true’’). Therefore,
arithmetic and logical expressions also ‘may be
used in an IF statement.

A=3;B=5;

IFA<B
THEN MINIMUM =1;
ELSE MINIMUM = 2;

I*EXECUTED™/
[*SKIPPED*/

MORE__DATA = 0FFH;

IF NOT MORE__DATA
THEN DONE =1;
ELSE DONE =0;

/*SKIPPED*/
[*EXECUTED*/

[*NESTED IF STATEMENTS*/
CLOCK__ON =1; HOUR=24; ALARM=0OFF;
IF CLOCK__ON
THEN IF HOUR =24
THEN IF ALARM = OFF
THEN HOUR =0; /*"EXECUTED*/

Figure 2-50. PL/M-86 IF Statements

A DO block begins with a DO statement and ends
with an END statement. All intervening
statements are part.of the block. A DO block can
appear anywhere in a program that an executable
statement can appear. There are four kinds of DO
statements in PL/M-86: simple DO, DO CASE,
interative DO, and DO WHILE. -

A simple DO statement (figure 2-51) causes all the
statements in the block to be treated as though
they were a single statement. Simple DOs enable a
single IF statement to cause multiple statements
to be executed (the alternative would be to repeat
the IF statement for every statement to be
executed).

[*SIMPLE DO* }

A=5; B=9;
IF(A+2)< BTHEN DO;
‘ X=X—1; /*EXECUTED*/
Y(X)=0; [*EXECUTED*/
e END;.- :
ELSE DO;
X=X+1; [*SKIPPED*/
Y (X)=1; /*SKIPPED*/
END;
/*DO CASE*/
A=2;
DO CASE (A);
X=X+, 1*SKIPPED*/
X=X+2; {*SKIPPED*/
X=X+3;: .+ [*EXECUTED*/
X =X+4; /*SKIPPED*/
END; Co
Figure 2-51. PL/M-86 Simple DO

and DO CASE

DO CASE (figure 2-51) causes one statement in
the DO block to be selected and executed depend-
ing on the result of the expression (usually
arithmetic) written immediately following DO
CASE:

DO CASE arithmetic-expression;

If the expression yields 0, the first statement in the
DO block is executed; if the expression yields 1,
the second statement is executed, etc. A statement
in the DO block may be null (consist of only a
semicolon) to cause no action for selected cases.
DO CASE provides a rapid and easily-understood
way to respond to data like ‘‘transaction codes’’
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where a different action is required for each of
many values a code might assume (an alternative
would be an IF statement for every value the code
could assume)

An ‘iterative DO block (figures 2-52 and 2-53) is
executed from O to an infinite number of times
based on the relationship of an index variable to
an expressmn that termmates execution. The
general form is:

DO index = start-expr TO stop-expr BY step-expr;

The *‘BY step-expr’” is optional, and the step is
assumed to be 1 if not supplied (the typical case).
When control first reaches the DO statement,
start-expr is evaluated and is assigned to index.
Then index is compared to stop-expr; if index
exceeds stop-expr, control goes to the statement
following the DO block, otherwise the block is
executed. At the end of the block, the result of
step-expr is added to index, and it is compared to

stop-expr again, etc.-(The iterative DO 'is quite
flexible—this is a simplified explanation.)
Iterative DOs are handy for “‘stepping through®
an array. For example, an array of 10 elements
could be zeroed by:

DOI=0TOY;
ARRAY(l) = 0;
END;

In a DO WHILE (figures 2-52 and 2-54), the
statements are executed repeatedly as long as the
expression following WHILE evaluates to
“true.”” DO WHILE often can be applied in
situations where an interative- DO will not work,
or is clumsy, such as where repetition must be
controlled by a non-integer value. ‘Like an
iterative DO, DO WHILE may be executed from
0 times to an infinite number-of times.

I*ITERATIVE DO*/

DOI=0TOS;
ARRAY (I)=1;
TOTAL =TOTAL+1,
END; ‘

1*1=6 AT THIS POINT*/

/*DO WHILE*/

MORE = 0; SPACE__OK =1;
DO WHILE (MORE AND SPACE_OK);

ITEMS =ITEMS +1;

N__TRACKS =
N_TRACKS + 10;

IF N_TRACKS >=999

END;

[*DOWHILE*/
CODE = ‘A’;

- DOWHILE (CODE = ‘A’);

TEMP = TEMP * STEP;

IF TEMP >98.6
THEN CODE =

(Bl

/*EXECUTED 6 TIMES*/
I*EXECUTED 6 TIMES*/

{*SKIPPED*/

[*SKIPPED*/
/*SKIPPED*/

THEN-SPACE__OK =0;

/*EXECUTION STOPS*/
I*AFTER TEMP*/
/*"EXCEEDS 98.6*/

N_STEPS=N_STEPS + 1;

END;

Figure 2-52. PL/M-86 Iterative DO and DO WHILE
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Figure 2-53. PL/M-86 Iterative DO Flowchart

A GOTO written in the form
GOTO target;

causes an unconditional transfer (branch) to
another statement in the program. The statement
receiving control would be written

target: statement;

where ‘‘target’”” is a label the

statement.

identifying

A CALL statement written in the form

CALL proc-name (parm-list);

EXPRESSION

EXECUTE
BLOCK

J—__

STATEMENT
. FOLLOWING
END

Figure 2-54. PL/M-86 DO WHILE Flowchart

activates a procedure defined earlier in the pro-
gram. The variables listed in “‘parm-list” are
passed to the procedure, the procedure is
executed, and then control returns to the state-
ment following the CALL. Thus, unlike a GOTO,
a CALL -brings control back to the point of
departure.

Procedures

Procedures are ‘‘subprograms’ that make it
possible to simplify the design of complex pro-
grams and to share a single copy of a routine
among programs. A procedure usually is designed
to perform one function; i.e., to solve one part of
the total problem with which the program is deal-
ing. For example, a program to calculate
paychecks could be broken down into separate
procedures for calculating gross pay, income tax,
Social Security and net pay. The organization of
the ““main’’ program then could be understood at
a glance:

CALL GROSS__PAY;

CALL INCOME__TAX;
CALL SOCIAL_SECURITY;
CALL NET__PAY;
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Furthermore, the income tax procedure could be
divided into separate procedures for calculating
state and federal taxes. Procedures, then, provide
a mechanism by which a large, complex problem
can be attacked with a ‘‘divide and conquer”’
strategy.

A procedure usually is defined early in a program,
but it is only executed when it is referred to by
name in a later PL/M-86 statement. A procedure
can accept a list of variables, called parameters,
that it will use in performing its function. These
parameters may assume different values each time
the procedure is executed.

PL/M-86 provides two classes of procedures,
typed and untyped. A typed procedure returns a
value to the statement that activates it and, in
addition, may accept parameters from that state-
ment. A typed procedure is activated whenever its
name appears in a statement; the value it returns
effectively takes the place of the procedure name
in the statement. Typed procedures can be used in
all kinds of PL/M-86 expressions. Untyped pro-
cedures may accept parameters, but do not return

a value. Untyped procedures are activated by
CALL statements. Figure 2-55 shows how simple
typed and untyped procedures may be declared
and then activated.

The statements forming the body of a procedure
need not exist within the module that activates the
procedure. The activating module can declare the
procedure EXTERNAL, and the LINK-86 utility
will connect the two modules.

PL/M-86 procedures can be written to handle
interrupts.. Procedures also may be declared
REENTRANT, making them concurrently usable
by different tasks in a multitasking system.
PL/M-86 also has about 50 procedures built into
the language, including facilities for:

® converting variables from one type to another
¢ shifting and rotating bits

* performing input and output

* manipulating strings

* activating the CPU LOCK signal.

I*DECLARATION OF ATYPED PROCEDURE THAT .
ACCEPTS TWO REAL PARAMETERS AND RETURNS A REAL VALUE*/

AVG: PROCEDURE (X,Y) REAL;
DECLARE (X,Y) REAL;
RETURN (X+Y)/2.0;

END AVG;

I*ACTIVATING A TYPED PROCEDURE*/

LOW =2.0,
HIGH = 3.0;

TOTAL = TOTAL + AVG (LOW,HIGH); /*2.51S ADDED TO TOTAL*/ ‘

/*DECLARATION OF AN UNTYPED PROCEDURE

THAT ACCEPTS ONE PARAMETER*/

TEST: PROCEDURE (X);
DECLARE X BYTE;
IFX=0HTHEN

COUNT =COUNT +1;
END TEST;

I*ACTIVATING AN UNTYPED PROCEDURE*/
CALL TEST (ALPHA); /*COUNT IS INCREMENTED

IF ALPHA =0/

Figure 2-55. PL/M-86 Procedures
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ASM-86

Programmers who are familiar with the CPU
architecture can obtain complete access to all pro-
cessor facilities with ASM-86. Since the execution
unit on both the 8086 and the 8088 is identical,
both processors use the same assembly language.
Examples of processor features not accessible
through PL/M-86 that can be utilized in ASM-86
programs include: software interrupts, the WAIT
and ESC instructions and explicit control of the
segment registers.

An ASM-86 program often can be written to
execute faster and/or to use less memory than the
same program written in PL/M-86. This is
because the compiler has a limited ‘“knowledge”’
of the entire program and must generate a
generalized set of machine instructions that will
work in all situations, but may not be optimal in a
particular situation. For example, assume that the
elements of an array are to be summed and the
result placed in a variable in memory. The
machine instructions generated by the PL/M-86
compiler would move the next array element to a
register and then add the register to the sum
variable in memory. An ASM-86 programmer,
knowing that a register will be ‘‘safe’’ while the
array is summed, could instead add all the array
elements to a register and then move the register
to the sum variable, saving one instruction execu-
tion per array element.

It is easier to write assembly language programs in
ASM-86 than it is in many assembly languages.
ASM-86 contains powerful data structuring
facilities that are usually found only in high-level

languages. ASM-86 also simplifies the program-
mer’s “‘view”’ of the 8086/8088 machine instruc-
tion set. For example, although there are 28 dif-
ferent types of MOV machine instructions, the
programmer always writes a single form of the
instruction:

MOV destination-operand, source-operand

The assembler generates the correct machine-
instruction form based on the attributes of the
source and destination operands (attributes are
covered later in this section). Finally, the ASM-86
assembler performs extensive checks on the con-
sistency of operand definition versus operand use
in instructions, catching many common types of
clerical errors.

Statements

Compared to many assemblers, ASM-86 accepts a
relaxed statement format (see figure 2-56). This
helps to reduce clerical errors and allows pro-
grammers to format their programs for better
readability. Variable and label names may be up
to 31 characters long and are not restricted to
alphabetic and numeric characters. In particular,
the underscore (__) may be used to improve the
readability of long names. Blanks may be inserted
freely between identifiers (there are no ‘‘column”
requirements), and statements also may span
multiple lines.

All ASM-86 statements are classified as instruc-
tions or directives. A clear distinction must be
made here between ASM-86 instructions and

; THIS STATEMENT CONTAINS A COMMENT ONLY

MOV  AX, [BX+3]

MOV AX, [BX +3]
MOV  AX,
& [BX + 3]

ZERO EQU 0
CUR_PROJ EQU

PROJECT [BX] [SI]

; TYPICAL ASM-86 INSTRUCTION
; BLANKS NOT SIGNIFICANT

; CONTINUED STATEMENTS

; SIMPLE ASM-86 DIRECTIVE
; MORE COMPLEX DIRECTIVE

THE_STACK__STARTS_HERE SEGMENT ; LONG IDENTIFIER

TIGHT_LOOP: JMP TIGHT__LOOP

MOV ES:DATA_STRING {Sl], AL

WAIT: LOCKXCHG AX,SEMAPHORE

; LABELLED STATEMENT
; SEGMENT OVERRIDE PREFIX
; LABEL & LOCK PREFIX

Figure 2-56. ASM-86 Statements

Mnemonics © Intel, 1978
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8086/8088 machine instructions. The assembler
generates machine instructions from ASM-86
instructions” written by a programmer. Each
ASM-86 instruction produces one machine
instruction, but the form of the generated
machine instruction will vary according to the
operands written in the ASM-86 mstruct10n For
example, writing

~ MOVBL,1
MOV,

produces a byte- 1mmed1ate to- I'CngtCl‘
while writing

MoV TER‘M|NAL‘._"NO,BX

produces a word-register-to-memory MOV, To
the programmer, though, there is simply a MOV
source-to-destination instruction.

ASM-86 instructions are written in the form:
(label:) (prefix) mnemdnic (operand(s)) (;comment)

where parentheses dernote optional fields (the
parentheses are not actually written by program-
mers). The label field names the storage location
containing the machine instruction so that it can
be referred to symbolically as the target of a JMP
instruction elsewhere in the program. Writing a
prefix causes ASM-86 to generate one of the
special prefix bytes (segment override, bus lock or
repeat) immediately preceding the machine
instruction. The mnemonic identifies the type of
instruction (MOV for move, ADD for add, etc.)
that is to be generated. Zero, one or two operands
may bewritten mext, separated by commas,
according to the requirements of the instruction.
Finally, writing a semicolon signifies that what
follows is a comment. Comments do not affect
the execution of a program, but they can greatly

improve its clarity; all good ASM-86 programs
are thoughtfully commented.

Writing a directive gives ASM-86 information to
use in generating instructions, but does not itself
produce a machine instruction. About 20 dif-
ferent directives are available in ASM-86. Direc-
tives are written like this: :

(name) mnemonic (operand(s})) (;comment)

Some directives require a name to be present,
while others prohibit a name. ASM-86 recognizes
the directive from the mnemonic keyword written
in the next field. Any operands required by the
directive are written next, separated by commas.
A comment may. be ‘written as-the last field of a
directive.

Some. of the more commonly used directives
define procedures (PROC), allocate storage for
variables (DB, DW, DD) give a descriptive name
to a number or-an expression (EQU), define the
bounds of segments (SEGMENT and ENDS),
and force instructions and data to be aligned at
word boundaries (EVEN).

Constants

Binary, decimal, octal and hexadecimal numeric
constants (see figure 2-57) may be written in
ASM-86 statements; the assembler can perform
basic arithmetic operations on these as well. All
numbers must, however, be integers and must be
representable in 16 bits including a sign bit.
Negative numbers - are assembled in standard
two’s complement notation.

Character constants are enclosed in single quotes
and may be up to 255 characters long when used

MoV - STRING[SI}, ‘A’ ; CHARACTER

MOV STRING [SI], 41H ; EQUIVALENT IN HEX

ADD ' AX,0C4H = ; HEXCONSTANT MUST START WITH NUMERAL
OCTAL__8 EQU 100 - ; OCTAL

OCTAL_9 EQU - 10Q: ; OCTAL ALTERNATE

ALL__ONES EQU 11111111B ; BINARY

MINUS_5: EQU -5 : ; DECIMAL

MINUS_6 EQU -6D ; DECIMAL ALTERNATE

Figure 2-57. ASM-86 Constants
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to initialize storage. When used as immediate
operands, character constants may be one or two
bytes long to match the length of the destination
operand.

Defining Data

Most ASM-86 programs begin by defining the
variables with which they will work. Three direc-
tives, DB, DW and DD, are used to allocate and
name data storage locations in ASM-86 (see
figure 2-58). The directives are used to define
storage in three different units: DB means
‘“‘define byte,”” DW means ‘‘define word,”” and
DD means ‘‘define doubleword.’’ The operands
of these directives tell the assembler how many
storage units to allocate and what initial values, if
any, with which to fill the locations.

A_SEG  SEGMENT
ALPHA' DB ? ; NOT INITIALIZED
BETA oW 2 :NOT INITIALIZED
GAMMA DD  ? :NOT INITIALIZED
DELTA pB 7 {NOT INITIALIZED
EPSILON DW 5 ; CONTAINS 05H
_SEG  ENDS
B_SEG  SEGMENT AT 55H ; SPECIFYING BASE ADDRESS
I0TA DB ‘HELLO’ ' ;CONTAINS48454C4C4FH
KAPPA  DW ‘AP’ i CONTAINS 4241 H
LAMBDA DD  B_SEG ;CONTAINS 00005500 H
] DB 100DUPO ; CONTAINS (100 X) 00H
B_SEG ENDS
ATTRIBUTES OPERATORS

VARIABLE | SEGMENT | OFFSET | TYPE| LENGTH | SIiZE
ALPHA A_SEG 0 1 1 1
BETA __SEG b 2 1 2
GAMMA A_SEG 3 4 1 4
DELTA A_SEG 7 1 1 1
EPSILON A_SEG 8 2 1 2
I0TA B__SEG 0 1 5 5
KAPPA B_SEG 5 2 1 2
LAMBDA B_SEG 7 4 1 4

B_SEG 1 1 100 100

Figure 2-58. ASM-86 Data Definitions

For every variable in an ASM-86 program, the
assembler keeps track of three attributes: seg-
ment, offset and type. Segment identifies the seg-
ment that contains the variable (segment control
is covered shortly). Offset is the distance in bytes
of the variable from the beginning of its contain-

ing segment. Type identifies the variable’s alloca-
tion unit (1 = byte, 2 = word, 4 = doubleword).
When a variable is referenced in an instruction,
ASM-86 uses these attributes to determine what
form of the instruction to generate. If the
variable’s attributes conflict with its usage in an
instruction, ASM-86 produces an error message.
For example, attempting to add a variable defined
as a word to a byte register is an error. There are
cases where the assembler must be explicitly told
an operand’s type. For example, writing MOVE
[BX],5 will produce an error message because the
assembler does not know if [BX] refers to a byte,
a word or a doubleword. The following operators
can be used to provide this information: BYTE
PTR, WORD PTR and DWORD PTR. In the
previous example, a word could be moved to the
location referenced by [BX] by writing MOVE
WORD PTR [BX],5.

ASM-86 also provides two built-in operators,
LENGTH and SIZE, that can be written in
ASM-86 instructions along with attribute
information. LENGTH causes the assembler to
return the number of storage units (bytes, words
or doublewords) occupied by an array. SIZE
causes ASM-86 to return the total number of
bytes occupied by a variable or an array. These
operators and attributes make it possible to write
generalized instruction sequences that need not be
changed (only reassembled) if the attributes of the
variables change (e.g., a byte array is changed to a
word array). See figure 2-59 for an example of
using the attributes and attribute operators.

Records

ASM-86 provides a means of symbolically defin-
ing individual bits and strings of bits within a byte
or a word. Such a definition is called a record,
and each named bit string (which may consist of a
single bit) in a record is called a field. Records
promote efficient use of storage while at the same
time improving the readability of the program
and reducing the likelihood of clerical errors.
Defining a record does not allocate storage;
rather, a record is a template that tells the
assembler the name and location of each bit field
within the byte or word. When a field name is
written later in an instruction, ASM-86 uses the
record to generate an immediate mask for instruc-
tions like TEST, AND, OR, etc., or an immediate
count for shifts and rotates. See figure 2-60 for an
example of using a record.
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; SUM THE CONTENTS OF TABLE INTO AX

TABLE = DW 50 DUP(?)
- NOTE SAME INSTRUCTIONS WOULD WORK FOR
-TABLE = DB 25 DUP(?)
: TABLE DW 118 DUP(?), ETC.
- sUB AX,AX : CLEAR SUM

MoV CX, LENGTH TABLE ; LOOP TERMINATOR
MOV S, SIZE TABLE ;POINT SUBSCRIPT

; TOEND OF TABLE
ADD__NEXT: SUB SI, TYPE TABLE ; BACK UP ONE ELEMENT
ADD ,AX, TABLE [S] ; ADD ELEMENT
LOOP ADD__NEXT ; UNTILCX =0

. ; AXCONTAINS SUM

Figure 2-59. Using ASM-86 Attributes and Attribute Operators

EMP_BYTE DB ? ;1 BYTE, UNINITIALIZED
; BIT DEFINITIONS: '
;o 7-2  :YEARS EMPLOYED

1 1 SEX (1 =FEMALE)

0. :STATUS (1 = EXEMPT)

EMP__BITSRECORD ;RECORD DEFINED HERE
& YRS_EMP :8,

& SEX 1,

& - STATUS 1

v , SELECT NONEXEMPT FEMALES EMPLOYED 10 + YEARS

MOV AL, EMP_BYTE ; KEEP ORIGINAL INTACT
TEST AL, MASK SEX ; FEMALE?
Jz REJECT ; NO, QUITE
TEST AL, MASK STATUS ; NONEXEMPT?
. JNZ .. REJECT iNO, QUIT
SHR - -~ AL,CL - ; ISOLATE YEARS
CMP.. AL, 1 . ; >=10 YEARS?
JL REJECT.  NO, QUIT

; PROCESS SELECTED EMPLOYEE
REJECT: ; PROCESS REJECTED EMPLOYEE

. ‘ ; RECORD USED HERE
MOV . CL,YRS_EMP ; GET SHIFT COUNT

Figure 2-60. Using an ASM-86 RECORD Definition
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Structures

An ASM-86 structure is a map, or template, that
gives names and attributes (length, type, etc.) to a
collection of fields. Each field in a structure is
defined using DB, DW and DD directives;
however, no storage is allocated to the structure.
Instead, the structure becomes associated with a
particular area of memory when a field name is
referenced in an instruction along with a base
value. The base value ‘“‘locates’’ the structure; it
may be a variable name or a base register (BX or
BP). The structure may be associated with
another area of memory by specifying a different
base value. Figure 2-61 shows how a simple struc-
ture may be defined and used. Note that a struc-
ture field may itself be a structure, allowing much
more complex organizations to be laid out.

Structures are particularly useful in situations
where the same storage format is at multiple loca-
tions, where the location of a collection of
variables is not known at assembly-time, and
where the location of a collection of variables
changes during execution. Applications include
multiple buffers for a single file, list processing
and stack addressing.

Addressing Modes

Figure 2-62 provides sample ASM-86 coding for
each of the 8086/8088 addressing modes. The
assembler interprets a bracketed reference to BX,
BP, Sl or DI as a base or index register to be used
to construct the effective address of a memory
operand. An unbracketed reference means the
register itself is the operand.

The following cases illustrate typical ASM-86
coding for accessing arrays and structures, and
show which addressing mode- the assembler
specifies in the machine instruction it generates:

o If ALPHA is an array, then ALPHA [SI] is
the element indexed by SI, and ALPHA
[SI+ 1] is the following byte (indexed).

o If ALPHA is the base address of a structure
and BETA is a field in the structure, then
ALPHA.BETA selects the BETA .field
(direct).

o If register BX contains the base address of a
structure and BETA is a field in the struc-
ture, then [BX].BETA refers to the BETA
field (based). '

EMPLOYEE STRUC
SSN DB 9
RATE DB 1
DEPT DW 1
YR__HIRED DB 1
EMPLOYEE ENDS

MASTER DB 12

TXN DB 12

DUP(?)
DUP(?)
DUP(?)
DUP(?)

DUP(?)
DUP(?)

; CHANGE RATE IN MASTER TO VALUE IN TXN.
AL, TXN.RATE
MASTER:RATE, AL

MOV
MOV

; ASSUME BX POINTS TO AN AREA CONTAINING
; DATAIN THE SAME FORMAT AS THE EMPLOYEE
; STRUCTURE. ZERO THE SECOND DIGIT

; OF SSN
‘ MOV
- MOV

SI, 1

; INDEXVALUE OF 2ND DIGIT

[BX].SSN[SI],0

Figure 2-61. Using an ASM-86 Structure
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ADD  AX, BX
ADD  AL,5
ADD  CX, ALPHA
ADD  ALPHA,6
ADD  ALPHA, DX.
ADD  BL, [BX]
ADD ' [Sl], BH
ADD = [PP).ALPHA, AH
ADD  CX,ALPHA[SI]
ADD  ALPHA [DI4+2], 10
ADD  [BX].ALPHA [SI], AL
ADD  SI, [BP+4][DI]
N AL, 30
OUT DX, AX

; REGISTER < REGISTER
; REGISTER
; REGISTER <~ MEMORY (DIRECT)
; MEMORY (DIRECT) < IMMEDIATE
; MEMORY (DIRECT) < REGISTER
; REGISTER < MEMORY (REGISTER INDIRECT)
; MEMORY (REGISTER INDIRECT) < IMMEDIATE
; MEMORY (BASED) — REGISTER
; REGISTER < MEMORY (INDEXED)
; MEMORY (INDEXED) < IMMEDIATE
; MEMORY (BASED INDEXED) + REGISTER
; REGISTER < MEMORY(BASEDINDEXED)
; DIRECT PORT .
; INDIRECT PORT

< IMMEDIATE

Figure 2-62. ASM-86 Addressing Mode Examples

e If register BX contains the address of an
array, then [BX] [SI] refers to the element
indexed by SI (based indexed).

e If register BX points to a structure whose
ALPHA field is an array, then [BX]
.ALPHA [SI] selects the element indexed by
SI (based indexed).

¢ If register BX points to a structure whose
ALPHA field is itself a structure, then
[BX].ALPHA.BETA refers to the BETA
field of the ALPHA substructure (based).

*  If register BX points to a structure and the
ALPHA field of the structure is an array and
each element of ALPHA is a structure, then
[BX].ALPHA[SI + 3].BETA refers to the
field BETA in the element of ALPHA
indexed by [SI + 3] (based indexed).

Note that DI may be used in place of SI in these
cases and that BP may be substituted for BX.
Without a segment override prefix, expressions
containing BP refer to the current stack segment,
and expressions containing BX refer to the cur-
rent data segment.

Segment Control

An ASM-86 program is organized into a series of
named segments. These are ‘‘logical’’ segments;
they are eventually mapped into 8086/8088
memory segments, but this usually is not done
until the program is located. A SEGMENT direc-
tive starts a segment, and an ENDS directive ends
the segment (see figure 2-63). All data and

instructions written between SEGMENT and
ENDS are part of the named segment. In small
programs, variables often are defined in one or
two segment(s), stack space is allocated in another
segment, and instructions are written in a third or
fourth segment. It is perfectly possible, however,
to write a complete program in one segment; if
this is done, all the segment registers will contain
the same base address; that is, the memory
segments will completely overlap. Large pro-
grams may be divided into dozens of segments.

The first instructions in a program usually
establish the correspondence between segment
names and segment registers, and then load each
segment register with the base address of its cor-
responding segment. The ASSUME directive teils
the assembler what addresses will be in the seg-
ment registers at execution time. The assembler
checks each memory instruction operand, deter-
mines which segment it is in and which segment
register contains the address of that segment. If
the assumed register is the register expected by the
hardware for that instruction type, then the
assembler generates the machine instruction nor-
mally. If, however, the hardware expects one seg-
ment register to be used, and the operand is not in
the segment pointed to by that register, then the
assembler automatically precedes the machine
instruction with a segment override prefix byte.
(If the segment cannot be overridden, the
assembler produces an error message.) An exam-
ple may clarify this. If register BP is used in an
instruction, the 8086 and 8088 CPUs expect, as a
default, that the memory operand will be located
in the segment pointed to by SS—in the current
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DATA__SEG SEGMENT
; DATA DEFINITIONS GO HERE
DATA_SEG ENDS

STACK_SEG SEGMENT
; ALLOCATE 100 WORDS FOR A STACK AND
; LABEL THE INITIAL TOS FOR LOADING SP.
DW 100 DUP(?) '
STACK TOP LABEL WORD
STACK_SEG ENDS

CODE__SEG SEGMENT
; GIVE ASSEMBLER INITIAL REGISTER-TO-SEGMENT
;  CORRESPONDENCE. NOTE THAT IN THIS
; PROGRAM THE EXTRA SEGMENT INITIALLY
;  OVERLAPS THE DATA SEGMENT ENTIRELY.
ASSUME CS: CODE__SEG,

& DS: DATA_SEG,
& ES: DATA__SEG,
& §S: STACK_SEG

START: ;THISIS THE BEGINNING OF THE PROGRAM. )
: ; LOC-86 WILL PLAGE A JMP TO THIS
; LOCATION AT ADDRESS FFFFOH.

LOAD THE SEGMENT REGISTERS. CS DOES NOT
i HAVETO BE LOADED BECAUSE SYSTEM
; .RESETSETSITTOFFFFH, AND THE
; LONG JMPINSTRUCTION AT THAT ADDRESS
;  UPDATES.IT TO THE ADDRESS OF CODE__SEG.
;  SEGMENT REGISTERS ARE LOADED FROM AX
; BECAUSE THERE IS NO IMMEDIATE-TO-
; SEGMENT__REGISTER FORM OF THE MOV

INSTRUCTION.
MOV AX, DATA__SEG
MOV DS, AX
MOV ES, AX
MOV  AX,STACK__ SEG
MOV SS, AX

SET STACK POINTER TO INITIAL TOS.
MOV SP,OFFSET STACK__TOP

; SEGMENTS ARE NOW ADDRESSABLE.
; MAIN PROGRAM CODE GOES HERE.
CODE_SEG ENDS

; NEXT STATEMENT ENDS ASSEMBLY AND TELLS
;  LOC-86 THE PROGRAMS STARTING ADDRESS.

END START

Figure 2-63. Setting Up ASM-86 Segments
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stack segment. A programmer may, however,
choose to use BP to address a variable in the cur-
rent data segment—the segment pointed to by
DS. The ASSUME directive enables the assembler
to detect this situation and to automatically
generate the needed override prefix.

It also is possible for a programmer to explicitly

code segment override prefixes rather than relying

on the assembler. This may result in a somewhat
better-documented program since attention is
called to the override. The disadvantage of
explicit segment overrides is that the assembler
does not check whether the operand ‘is in fact
addressable through the overriding segment
register.

ASM-86, in conjunction with the relocation and
linkage facilities, provides much more
sophisticated segment handling capabilities than
have been described in this introduction. For
example, different logical segments may be com-

bined into the same physical segment, and’

segments may be assigned the same physical loca-
tions (allowing a ‘“‘common’’ area to be accessed
by different programs using different variable
and label names).

Procedures

Procedures may be written in ASM-86 as well as
in PL/M-86. In fact, procedures written in one
language are callable from the other, provided
that a few simple conventions are observed in the
ASM-86 program. The purpose of ASM-86 pro-
cedures is the same as in PL/M-86: to simplify the
design of complex programs and to make a single
copy of a commonly-used routine accessible from
-anywhere in the program.

An ASM-86 program activates a procedure with a
CALL instruction. The procedure terminates with
a RET instruction, which transfers control to the
instruction following the CALL. Parameters may
be passed in registers or pushed onto the stack
before calling the procedure. The RET instruction
can discard stack parameters before returning to
the caller. ' .

Unlike PL/M-86 procedures, ASM-86 procedures
are executable where they are coded, as well as by
a CALL instruction. Therefore, ASM-86 pro-
cedures often are defined following the main pro-
gram logic, rather than preceding it as in

PL/M-86. Figure 2-64 shows how procedures
may be defined and called in ASM-86. Section
2-10 contains examples of procedures that accept
parameters on the stack.

LINK-86

Fundamentally, LINK-86 combines separate
relocatable object modules into a single program.
This process consists primarily of combining
(logical) segments of the same name into single
segments, adjusting relative addresses when
segments are combined, and resolving external
references,

A programmer can use a procedure that is actual-
ly contained in another module by naming the
procedure in an ASM-86 EXTRN directive, or
declaring the procedure to be EXTERNAL in
PL/M-86. The procedure is defined or declared
PUBLIC in the module where it actually resides,
meaning that it can be used by other modules.
When LINK-86 encounters such an external
reference, it searches through the other modules
in its input, trying to find the matching PUBLIC
declaration. If it finds the referenced object, it
links it to the reference, ‘‘satisfying’’ the external
reference. If it cannot satisfy the reference,
LINK-86 prints a diagnostic message. LINK-86
also checks PL/M-86 procedure calls and func-
tion references to insure that the parameters
passed to a procedure are the type expected by the
procedure.

LINK-86 gives the programmer, particularly the
ASM-86 programmer, great control over
segments (segments may be combined end to end,
renamed, assigned the same locations, etc.).
LINK-86 also produces a map that summarizes
the link process and lists any unusual conditions
encountered. While the output of LINK-86 is
generally input to LOC-86, it also may again be
input to. LINK-86 to permit modules to be linked
in incremental groups.

LOC-86

LOC-86 accepts the single relocatable object
module produced by LINK-86 and binds the
memory references in the module to actual
memory addresses. Its output is an absolute
object module ready for loading into the memory
of an execution vehicle. LOC-86 also inserts a
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FREQUENCY DB 256 DUP (0)
USART_DATA  EQU OFFOH : DATA PORT ADDRESS
USART_STAT EQU  OFF2H : STATUS PORT ADDRESS
NEXT: CALL CHAR_IN

CALL COUNT_IT

JMP  NEXT
CHAR_IN PROC

; THIS PROCEDURE DOES NOT TAKE PARAMETERS.
;  ITSAMPLES THE USART STATUS PORT

; UNTILACHARACTER IS READY, AND

;  THEN READS THE CHARACTER INTO AL

MOV DX, USART_STAT
AGAIN: IN AL, DX ; READ STATUS

AND  AL,2 ; CHARACTER PRESENT?
Jz AGAIN ; NO, TRY AGAIN
MOV DX, USART_DATA
IN AL, DX ; YES, READ CHARACTER
RET

CHAR_IN ENDP

COUNT_IT PROC

; THIS PROCEDURE EXPECTS A CHARACTERIIN AL. -
;  ITINCREMENTS A COUNTER IN A FREQUENCY
;  TABLE BASED ON THE BINARY VALUE OF

;  THE CHARACTER.
XOR  AH, AH ; CLEAR HIGH BYTE
MOV  SI AL ; INDEXINTO TABLE
INC FREQUENCY [S); BUMP THE COUNTER.
RET
COUNT_IT ENDP

Figure 2-64. ASM-86 Procedures

direct intersegment JMP instruction at location
FFFFOH. The target of the JMP instruction is the
logical beginning of the program. When the 8086
or 8088 is reset, this instruction is automatically
executed to restart the system. LOC-86 produces
a memory map of the absolute object module and
a table showing the address of every symbol
defined in the program.

LIB-86

LIB-86 is a valuable adjunct to the R & L pro-
grams. It is used to maintain relocatable object
modules in special files called libraries. Libraries

are a convenient way to make collections of
modules available to LINK-86. When a module
being linked refers to ‘‘external’’ data or instruc-
tions, LINK-86 can automatically search a series
of libraries, find the referenced module, and
include it in the program being created.

OH-86

OH-86 converts an absolute object moduie into
Intel’s standard hexadecimal format. This format
is used by some PROM programmers and system
loaders, such as the iSBC 957™ and SDK-86
loaders.

2-91
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CONV-86

Users who have developed substantial, fully-
tested assembly language - programs for the
8080/8085 microprocessors may want. to use
CONYV-86 to automatically convert large amounts
of this code into ASM-86 source code (see figure

2-65). CONV-86 accepts an ASM-80 source pro-

gram as input and produces an ASM-86 source
program as output, plus a print file that
documents the conversion and lists any diagnostic
messages.

Some programs cannot be completely converted

by CONV-86. Exceptions include:

*  self-modifying code,

* software timing loops,

® 8085 RIM and SIM instructions, o
* interrupt code, and

o macros.

By using the diagnostic messages produced by
CONYV-86, the converted ASM-86 source file can
be manually edited to clean up any sections not

converted. A converted program is typically -

10-20% larger than the ASM-80 version and does
not take full advantage of the 8086/8088 architec-
ture. However, the development time saved by
using CONV-86 can make it an attractive alter-
native to I'CWI'ltlng workmg programs from
scratch.

Sample Programs

Figures 2-66 and 2-67 show how a simple program
might be written in PL/M-86 and ASM-86. The
program- Simulates -a pair of -rolling dice and
executes on an Intel SDK-86 System Design Kit.
The SDK-86 is an 8086-based computer with
memory, parallel and serial 170 ports, a keypad
and a display. The SDK-86 is implemented on a
single PC board which includes a large prototypé
area for system expansion and experimentation.
A ROM-based monitor program provides a user
interface to the system; commands are entered
through the keypad and monitor responses are
written on the display. With the addition of a
cable and software interface (called SDK-C86),
the SDK-86 may be connected to an Intellec®
Microcomputer - Development -System. In this
mode, the user enters monitor commands from
the Intellec keyboard and receives replies on the
Intellec CRT display.

ASM-80
SOURCE
PROGRAM

CONV-86

DIAGNOSTICS

ASM-86
ASSEMBLER

Figure 2-65. ASM-80/ASM-86 Conversion

The dicé program runs on an SDK-86 that is con-
nected to an Intellec® Microcomputer Develop-
ment System. The program displays two con-
tinuously changing digits in the upper left corner

. of the Intellec display. The digits are random

numbers in the range 1-6. A roll is started by
entering a- monitor GO command. Pressing the
INTR key on the SDK-86 keypad stops the roll.

There are two procedures in the PL/M-86 version
of the dice program. The first is called CO for
console output. This is an untyped PUBLIC pro-
cedure that is supplied on an SDK-C86 diskette.
CO is. written in PL/M-86 and outputs one
character ‘to the Intellec console. It ‘is ‘declared
EXTERNAL in the dice program-because it exists
in" another module. "LINK-86 searches the
SDK-C86 library for CO and includes it in the
single relocatable object module it builds.

RANDOM is an internal ‘typed procedure; it is
contained in the dice module and returns a word
value that is a random number between 1 and 6.
RANDOM does not use any parameters -and is
activated in the parameter list passed to CO.
When CO is called like this, first RANDOM is ac-
tivated, then 30 is added to the number it returns
and the sum ispassed to CO. :
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PL/M-86 COMPILER DICE
ISIS-II PL/M-86 V1.2 COMPILATION OF MODULE DICE

OBJECT MODULE PLACED IN :F1:DICE.OBJ
COMPILER INVOKED BY: PLM86 :F1:DICE.P86 XREF

1 DICE: DO;
/* THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF LICE %/

/% GIVE NAMES TO CONSTANTS #*/

2 DECLARE CLEAR$CRT1 LITEKALLY 'O1BH'; /% INTELLEC #/
3 1 DECLARE CLEAR$CRT2 LITERALLY 'O45H'; /% CRT %/
TR DECLARE HOME$CURSOR1 LITERALLY 'O1BH'; /% CONTROL */
5 1 DECLARE HOME$CURSOR2 LITERALLY '048H'; /% CODES %/
6 1 DECLARE SPACE LITERALLY '020H'; /%¥ASCITI BLANKR®/
/* PROGRAM VARIABLES ¥*/
i 1 DECLARE (RANDOM$NUMBER,SAVE) WORD;
/% CONSOLE OUTPUT PROCEDURE */
8 1 CO: PROCEDURE(X) EXTERNAL;
9 2 DECLARE X BYTE;
10 2 END CO;
/% RANDOM NUMBER GENERATOR PROCEDURE */
/% ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: %/
/¥ "A GUIDE TO PL/M PROGRAMMING FOR ®/
/% MICROCOMPUTER APPLICATIONS," */
/% DANIEL D. MCCRACKEN, */
/% ADDISON-WESLEY, 1978 */
1M RANDOM: PROCEDURE WORD
12 2 RANDOM$NUMBER = SAVE; /%*START WITH OLD NUMBER¥/
13 2 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849;
14 2 SAVE = RANDOM$NUMBER; /¥SAVE FOR NEXT TIME#/
/¥*FORCE 16-BIT NUMBER INTO RANGE 1-6%/
15 2 RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1;
16 2 RETURN RANDOM$NUMBER;
17 2 END RANDOM;
/% MAIN ROUTINE */
/* CLEAR THE SCREEN¥%/
18 1 CALL CO(CLEAR$CRT1);
19 1 CALL CO(CLEAR$CRT2);
/* ROLL THE DICE UNTIL INTERRUPTED */
20 1 DO WHILE 1; /%#"DO FOREVER"#/
/#NOTE THAT ADDING 30 TO THE DIE VALUE */
/% CONVERTS IT TO ASCII.
21 2 CALL CO(RANDOM + O30H); /*#1sT DIE'/
22 2 CALL CO(SPACE); /*BLANK*/
23 2 CALL CO(RANDOM + 030H); /%¥2ND DIE#*/
/* HOME THE CURSOR %/
24 2 CALL CO(HOME$CURSOR1);
25 2 CALL CO(HOME$CURSOR2);
26 2 END;
27 1 END DICE;

CROSS-REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

2 CLEARCRT1 LITERALLY
18
3 CLEARCRT2- LITERALLY
19
8 OOOOH co PROCEDURE EXTERNAL(0) STACK=0000H
18 19 21 22 23 24 25
1 0002H 71 DICE PROCEDURE STACK=0004H
4 HOMECURSOR1 LITERALLY
24
5 HOMECURSOR2 LITERALLY
25
11 00494 44 RANDOM PROCEDURE WORD STACK=0002H
21 23

Figure 2-66. Sample PL/M-86 Program
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7 000OH 2 RANDOMNUMBER WORD .
1213 14 15 16
7 0002H 2 SAVE WORD
: 1214
6 SPACE LITERALLY
22
8 0000H 10X BYTE PARAMETER
5 RN

MODULE INFORMATION:

CODE ‘AREA SIZE = 0075H 117D
CONSTANT AREA SIZE = O00COOH 0D
VARIABLE AREA SIZE = OO0O4H 4D
MAXIMUM STACK SIZE = QQO04H 4D

51 LINES READ
0 PROGRAM ERRQR(S)

END OF PL/M~86 COMPILATION

Figure 2-66. Sample PL/M-86 Program (Cont’d.)

MCS-86 MACRO ASSEMBLER DICE

ISIS-II MCS-86 MACRO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE
OBJECT MODULE PLACED IN :F1:DICE.OBJ

ASSEMBLER INVOKED BY: ASM86 :F1:DICE.A86 XREF

LOC OBJ "~ LINE ° SOURCE

1 ; THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE
2
3 ; CONSOLE OUTPUT PRGCEDURE
4 EXTRN CO:NEAR
5
6 s SEGMENT GROUP DEFINITIONS: NEEDED FOR PL/M-86 COMPATIBILITY
7 CGROUP GROUP CODE
8 DGROUP GROUP DATA,STACK -
9
10 ; INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS.
11 ASSUME ' CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING
12
13 ; ALLOCATE DATA . '
-—— 14 DATA SEGMENT PUBLIC 'DATA*
15 7 NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86
16 ;  PROCEDURE 'CO'. BY CONVENTION, A BYTE PARAMETER IS PASSED IN
17 ;  THE LOW-ORDER 8-BITS,OF A WORD ON THE STACK. HENCE, THESE ARE
18 ;  DEFINED AS WORD VALUES THOUGH THEY OCCUPY 1 BYTE ONLY
0000 1BOO 19 CLEAR_CRT1 LW 01BH ; INTELLEC
0002 4500 20 CLEAR CRT2 DwW 0U5H H CRT
0004 1BOO 21 HOME_CURSOR1 DW 01BH H CONTROL
0006 4800 22 HOME_ CURSOR2 D 048H ;' CODES
0008 2000 23 SPACE DW 0204 ; ASCII BLARNK
0004 ??2? 24 SAVE DW ? ; HOLDS LAST 16-BIT RANDOM NUMBER
—_—— 25 DATA ENDS : -
26
27
28 ; ALLOCATE STACK SPACE
-——-- 29 STACK SEGMENT STACK 'STACK!
0000 (20 30 DW 20 DUP (?)
2277 :
)
31 ; LABEL INITIAL TOS: FOR LATER USE.
0028 32 STACK_TOP LABEL WORD
-——— 33 STACK ENDS
34
35
36 ; PROGRAM CODE
———- . 37 CODE SEGMENT PUBLIC 'CODE'
38
39
40 ; RANDOM NUMBER GENERATOR PROCEDURE
41 ; ALGORITHM FOR 16-BIT RANDOM NUMBER FROM:
42 H "A GUIDE TO PL/M PROGRAMMING FOR
43 H MICROCOMPUTER APPLICATIONS,"
4y H DANIEL D. MCCRACKEN
45 H ADDISON-WESLEY, 1978
0000 46 RANDOM  PROC
0000 A10400 R 47 MOV AX,SAVE ; NEW NUMBER =

Figure2-67. ASM-86 Sample Program
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MCS-86 MACRO ASSEMBLER DI

LOC 0BJ LI
B30508

F7E1

051936

A30400 R

0003
0006
0008
000B

000E
0010
0013
0015
0017
0018

2BD2
B90600
F7F1
8BC2
40

c3

B8--=- R
8ED8
8EDO

0019
001C
001E

0020 BC2800 R

FF360000
E80000
FF360200
E80000

0023
0027
0024
002E

o m o

E8CCFF
0430
50
E80000 E
FF360800 R
E80000 E
0041 E8BCFF

0044 0430

0046 50
0047 E80000

0031
0034
0036
0037
0034
003E

2]

004A
004E
0051
0055

FF360400
E80000
FF360600
E80000

[GERCE )

0058 EBD7

_— 1

" SYMBOL TABLE LISTING

NAME TYPE
. SEGMENT
. GROUP
. V WORD
. V WORD
. L NEAR
. SEGMENT
. SEGMENT
GROUP
V WORD*
WORD
NEAR
NEAR
WORD
. V WORD
. SEGMENT
. V WORD

L NEAR

278EG
CGROUP.
CLEAR_CRT1.
CLEAR_CRT2.
co. ...
CODE.

DATA. .
DGROUP.
HOME_CURSOR1.
HOME CURSOR2.
RANLOM.
ROLL.

SAVE.

SPACE
STACK . .
STACK_TOP .
START . .

0000H
00024
000O0H

0004H
0006H
0000H
0031H
000AH
0008H

v
L
L
\J

0028H
0019H

ASSEMBLY‘COMPLETE, NO ERRORS

CE
NE

48

SOURCE
MoV CX,2053 ; OLD NUMBER * 2053
MUL 93 ; + 13849
ADD AX, 13849 H
MOV SAVE, AX ; SAVE FOR NEXT TIME
; FORCE 16-BIT NUMBER INTO RANGE t - 6
H BY MODULO 6 DIVISION + 1
SUB DX, DX ; CLEAR UPPER DIVIDEND
MOV CcX,6 ; SET DIVISOR
DIV [%:¢ ; DIVIDE BY 6
MOV AX,DX ; REMAINDER TO AX
INC AX ; ADD 1
RET ; RESULT IN AX.
RANDOM ENDP

; MAIN PROGRAM

LOAD SEGMENT REGISTERS
NOTE PROGRAM DOES NOT USE ES; €S IS INITIALIZED BY HARDWARE RESET;
DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE

Lawewe wr s

MEMORY SEGMENT POINTED TO EY BOTH DS & SS.
TART: MOV AX,DGROUP
MOV DS, AX
MOV 8S,AX

;3 INITIALIZE STACK POINTER

MOV SP,OFFSET DGROUP:STACK_TOP
; CLEAR THE SCREEN

PUSH CLEAR_CRT1

CALL co

PUSH CLEAR_CRT2

CALL co

; ROLL THE DICE UNTIL INTERRUPTED

ROLL: CALL RANDOM 3 GET 18T DIE. IN AL
ADD AL,030H ; CONVERT TO ASCII
PUSH AX ; PASS IT TO
CALL co ; CONSOLE -OUTPUT
PUSH SPACE 3 OUTPUT
CALL co H A BLANK
CALL RANDOM ; GET 2ND DIE IN AL
ADD AL,030H ; CONVERT TO ASCII
PUSH AX ; PASS IT TO
CALL co H CONSOLE OUTPUT
; HOME THE CURSOR :
PUSH HOME_ CURSOR1
CALL co
PUSH HOME_CURSOR2
CALL co
; CONTINUE FOREVER
JMP ROLL
CODE ENDS

ATTRIBUTES, XREFS

SIZE=

CODE
DATA
DATA

EXTRN
SIZE=
SIZE=

DATA
DATA
DATA
CODE
CODE
DATA
DATA

SIZE=

0000H PARA PUBLIC
T# 11
194 77
204 79
4 78 80 86 88 92 95 97
005AH PARA PUBLIC 'CODE®
000CH PARA PUBLIC 'DATA!
STACK 84 11 11 69 T4
21# 94
22# 96
46# 60 83
83# 99
244 47 51
234 87
0028H PARA

T# 37 100
8# 14 25

89

STACK 'STACK*

STACK -32# 74

CODE

FOUND

69# 104

Figure 2-67. ASM-86 Sample Program (Cont’d.)
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The ASM-86 version of the dice program operates
like the PL/M-86 version. Since the program uses
the PL/M-86 CO procedure for writing data to
the Intellec console, it adheres to certain conven-
tions established by the PL/M-86 compiler. The
program’s logical segments (called CODE,
DATA and STACK-—the program does not use
an extra segment) are organized into two groups
called CGROUP and DGROUP. All the members
of a group of logical segments are located in the
same 64k byte physical memory segment.
Physically, the program’s DATA and STACK
segments can be viewed as ‘‘subsegments’’ of
DGROUP.

PL/M-86 procedures expect parameters to be
passed on the stack, so the program pushes each
character before calling CO. Note that the stack
will be “‘cleaned up”’ by the PL/M-86 procedure
before returning (i.e., the parameter will be
removed from the stack by CO).

2.10 Programming Guidelines
and Examples

This section addresses 8086/8088 programming
from two different perspectives. A series of
general guidelines - is - presented first. These
guidelines apply to all types of systems and are
intended to make software easier to write, and
particularly, easier to maintain and enhance. The
second part contains a number of specific pro-
gramming examples. Written primarily in
ASM-86, these examples illustrate how the
instruction set and addressing modes may be uti-
lized in various, commonly encountered program-
ming situations.

Programming Guidelines

These guidelines encourage the development of
8086/8088 software that is adaptable to change.
Some of the guidelines refer to specific processor
features and others suggest approaches to general
software design issues. PL/M-86 programmers
need not be concerned with the discussions that
deal with specific hardware topics; they should,
however, give careful attention to the system
design subjects.Systems that are designed in
accordance with these recommendations
should be less costly to modify or extend. In
addition, they should be better-positioned to

take advantage of new hardware and software
products that are constantly being introduced
by Intel.

Segments and Segment Registers

Segments should be considered as independent
logical units whose physical locations in memory
happen to be defined by the contents of the seg-
ment registers. Programs should be independent
of the actual contents of the segment registers and
of the physical locations of segments in memory.
For example, a program should not take
advantage of the ‘‘knowledge’’ that two segments
are physically adjacent to each other in memory.
The single exception to this fully-independent
treatment of segments is that a program may set
up more than one segment register to point to the
same segment in memory, thereby obtaining
addressability through more than one segment
register. For example, if both DS and ES point to
the same segment, a string located in that segment
may be used as a source operand in one string
instruction and as a destination string in another
instruction (recall that a destination string must
be located in the extra segment).

Any data aggregate or construct such as an array,
a structure, a string or a stack should be restricted
to 64k bytes in length and should be wholly con-
tained in one segment (i.e., should not cross a seg-
ment boundary).

Segment registers should only contain values sup-
plied by the relocation and linkage facilities. Seg-
ment register values may be moved to and from
memory, pushed onto the stack and popped from
the stack. Segment registers should never be used
to hold temporary variables nor should they be
altered in any other way.

As an additional guideline, code should not be
written within six bytes of the end of physical
memory (or the end of the code segment if this
segment is dynamically relocatable). Failure to
observe this guideline could result in an attempted
opcode prefetch from non-existent memory,
hanging the CPU if READY is not returned.

Self-Modifying Code

It is possible to write a program that deliberately
changes some of its own machine instructions
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during execution. While this technique may save a
few bytes or machine cycles, it does so at the

that reads a disk file, for example, should have no

" knowledge of where the file is located on the disk,

expense of program clarity. This is particularly

true if the program is being examined at the -

machine instruction level; the machine instruc-
tions shown in the assembly listing may not match
those found in memory or monitored from the
bus. It also precludes executing the code from
ROM. Also, because of the prefetch queue within
the 8086 and 8088, code. that is self-modified
within six bytes of the current point of execution
cannot be guaranteed to execute as intended.
(This code may already have been fetched.) Fin-
ally, a self-modifying program : may prove
incompatible with future Intel products that
assume that the content of a code segment
remains constant during execution.

A corrollary to this requirement is that variable

data should not be placed in a code segment. Con-
stant data may be written in a code segment, but
this is not recommended for two reasons. First,
programs are simpler to understand if they are

uniformly subdivided into segments of code, data’

and stack. Second, placing data in a code segment
can restrict the segment’s position independence.
This is because, in' general, the segment base
address of a data item may be changed, but the
offset (displacement) of the data item may not.
This means that the entire segment must be
moved as a unit to avoid changing the offset of

what size the disk sectors are, etc. This allows
these characteristics to change without affecting
the application module. To an application
module, the I/0 system appears to be a series of
file-oriented commands (e.g., Open, Close, Read,
Write). An application module would typically
issue a command by calling a file system
procedure. .

The file system processes 170 command requests,
perhaps checking for gross errors, and calls a pro-

- cedure in the I/0 supervisor. The 1/0 supervisor

the constant data. If the constant data were :

located in a data segment or an extra segment,
individual procedures within the code segment
could be moved independently.

Input/Output

Since /0 devices vary so widely in their
capabilities and their interface designs, 1/0 soft-
ware is inevitably device dependent. Substituting
a hard disk for a floppy disk, for example,
necessitates software changes even though the
disks are functionally identical, I/O software can,
however, be designed to minimize the effect of
device changes on programs.

Figure 2-68 illustrates a design concept that struc-
tures an 170 system into a hierarchy of separately
compiled/assembled modules. This approach
isolates application modules that use the
input/output devices” from~ all physical
characteristics of the hardware with which they
ultimately communicate. An application module

is a bridge between the functional I/0 request of
the application module and the physical I/0 per-
formed by the lowest-level modules in the hier-
archy. There should be separate modules in the
supervisor for different types of devices and some
device-dependent code may be unavoidable at this
level. The I/0 supervisor would typically perform
overhead activities such as maintaining disk
directories.

The modules that actually communicate with the
170 devices (or their controllers) are at the lowest
level in the hierarchy. These modules contain the
bulk of the system’s device-dependent code that
will have to be modified in the event that a device
is changed.

The 8089 Input/Output Processor is specifically
designed . to. encourage . the . development . of
modular, hierarchical 1/0 systems. The 8089
allows knowledge of device characteristics to be
“hidden’’ from not only application programs,
but also from the operating system that controls

~-the CPU. The CPU’s 1/0 supervisor can simply

prepare a message in memory that describes the
nature of the operation to be performed, and then
activate the 8089. The 8089 independently per-
forms all physical 1/0 and notifies the CPU when

the operation has been completed.

Operating Systems

Operating systems also should be organized in a
hierarchy similar to. the concept illustrated in
figure 2-69. Application modules should ‘‘see’’
only the upper level of the operating system. This
level might provide services like sending messages
between application modules, providing time
delays, etc. An intermediate level might consist of
housekeeping routines that dispatch tasks, alter
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Figure 2-68. I/0 System Hierarchy Concept
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Figure 2-69. Operating System Hiérarchy
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priorities, manage memory, etc. At the lowest
level would be the modules that implement
primitive operations such as adding and removing
tasks or messages from lists, servicing timer inter-
rupts, etc.

Interrupt Service Procedures

Procedures that service external interrupts should
be considered differently than those that service
internal interrupts. A service procedure that is
activated by an internal interrupt, may, and often
should, be made reentrant. External interrupt
procedures, on the other hand, should be viewed
as temporary tasks. In this sense, a task is a single
sequential thread of execution; it should not be
reentered. The processor’s response to an external
interrupt may be viewed as the following sequence
of events:

* therunning (active) task is suspended,

* anew task, the interrupt service procedure, is
created and becomes the running task,

® theinterrupt task ends, and is deleted,

o the suspended task is reactived and
becomes the running task from the point
where it was suspended.

An external interrupt procedure should only be
interruptable by a request that activates a dif-

ferent interrupt procedure. When the number of
interrupt sources is not too large, this can be
accomplished by assigning a different type code
and corresponding service procedure to each
source. In systems where a large number of
similar sources can generate closely spaced inter-
rupts (¢.g., 500 communication lines), an
approach similar to that illustrated in figure 2-70,
may be used to insure that the interrupt service
procedure is not reentered, and yet, interrupts
arriving in bursts are not missed. The basic
technique is to divide the code required to service
an interrupt into two parts. The interrupt service
procedure itself is kept as short as possible; it per-
forms the absolute minimum amount of process-
ing necessary to service the device, It then builds a
message that contains enough information to per-
mit another task, the interrupt message processor,
to complete the interrupt service. It adds the
message to a queue (which might be implemented
as a linked list), and terminates so that it is
available to service the next interrupt. The inter-
rupt message processor, which is not reentrant,
obtains a message from the queue, finishes pro-
cessing the interrupt associated with that message,
obtains the next message (if there is one), etc.
When a burst of interrupts occurs, the queue will
lengthen, but interrupts will not be missed so long
as there is time for the interrupt service procedure
to be activated and run between requests.

MULTIPLE INTERRUPT SCURCES

|

INTERRUPT
SERVICE ADD MESSAGE TO QUEUE
PROCEDURE ;
-7
- QUEUE (LIST)
AT 1
I-I_: — — ~ I essaGes
I S |
OBTAIN NEXT MESSAGE
FROM QUEUE
INTERRUPT
MESSAGE
PROCESSOR

Figure 2-70. Interrupt Message Processor
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Stack-Based Parameters

Parameters are frequently passed .to procedures
on a stack. Results produced by the procedure,
however, should -be returned .in other -memory
locations or.in registers. In other words, the called
procedure should ‘‘clean up’’ the stack by dis-
carding the parameters before returning.. The.
RET instruction can perform this. function.
PL/M-86 procedures always follow this
convention.

Flag-Images

Programs should make no assumptions about the
contents of the undefined bits in the flag-images
stored in. memory by the PUSHF and SAHF
instructions. These bits always should be masked
out of any comparisons or tests that use these
flag -images. The undefined bits of the word flag-
image can be cleared by ANDing the word with
FDSH. The undefined bits of the byte flag-image
can be cleared by ANDing the byte with D5H.

Programming Examples

These examples = demonstrate the 8086/8088
instruction set and addressing modes in. common
programming situations. The following topics are
addressed:

®  procedures (parameters, reentrancy)

e various forms of JMP and CALL
instructions

°  bit manipulation with the ASM-86 RECORD
facility

° ° dynamic code relocation
* memory mapped I/0

°  breakpoints

* interrupt handling

®  string operations

These examples are written primarily in-ASM-86
and will be of most interest to assembly:language
programmers. The PL/M-86 compiler -generates
code that handles many of these situations
automatically for PL/M-86 programs. For exam-
ple, the compiler takes care of thé stack' in
PL/M-86 procedures, allowing the programmer
to concentrate on solving the application prob-
lem. PL/M-86 programmers, however, may want

to- examine .the memory mapped 1/0 and
interrupt handling examples, since the concepts
illustrated are generally applicable; one of the
interrupt procedures is written in PL/M-86.

The examples are intended to show one way to use
the instruction set, addressing modes and features
of ASM-86. They do not demonstrate the ““best”’
way to solve any particular problem. The flexibil-
ity of the 8086 and 8088, apphcatlon differences
plus variations in programming style usually add
up to a number of ways to implement a program-
ming solution.

Procedures

The code in figure 2-71 illustrates. several tech-
niques that are typically used in writing ASM-86
procedures. In this example a calling program
invokes a procedure (called EXAMPLE) twice,
passing it a different byte array each time. Two
parameters are passed on the stack; the first con-
tains the number of elements in the array, and the
second contains the address (offset in
DATA__SEG) of the first array element. This
same technique can be used to pass a variable-
length parameter list to a procedure (the ‘‘array’’
could be any series of parameters or parameter
addresses) Thus, although the procedure always
receives two parameters, these can ‘be used to
indirectly access any number of variables in
memory.

Any results returned by a procedure should be
placed in registers or in memory, but not on the
stack. AX or ‘AL is often used to hold a single
word or byte result. Alternatively, the calling pro-
gram can pass the address (or addresses) of a
result area to-the procedure as a parameter. It is
good practice for ASM-86 programs to follow the
calling conventions. used by PL/M-86; these are
documented in MCS-86 Assembler Operating
Instructions For ISIS-II Users, Order No.
9800641.

EXAMPLE is defined as a FAR procedure,
meaning it is in a different segment than the call-
ing program. The calling program must use an
intersegment CALL to activate the procedure.
Note that this type of CALL saves CS and IP on
the stack. If EXAMPLE were defined as NEAR
(in the same segment as the caller) then an intra-
segment CALL would be used, and only IP would
be saved on the stack. It is the responsibility of
the calling program to know how the procedure is

defined and to issue the correct type of CALL.
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STACK_SEG SEGMENT

DW 20DUP (?) ; ALLOCATE 20-WORD STACK
STACK_TOP LABEL WORD ; LABEL INITIAL. TOS
STACK_SEG ENDS
DATA_SEG SEGMENT
ARRAY_1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY
ARRAY_.2 DB 5DUP (?) ; 5-ELEMENT BYTE ARRAY
DATA_SEG ENDS

PROGC__SEG SEGMENT
ASSUME CS:PROC__SEG,DS:DATA__SEG,SS:STACK__SEG,ES:NOTHING

EXAMPLE PROC FAR ; MUST BE ACTIVATED BY
; INTERSEGMENT CALL
; PROCEDURE PROLOG
PUSH BP ; SAVE BP
MOV BP, SP ; ESTABLISH BASE POINTER
PUSH CX ; SAVE CALLER’S
PUSH BX ; REGISTERS
PUSHF ; AND FLAGS
suB SP, 6 ; ALLOCATE 3 WORDS LOCAL STORAGE
; END OF PROLOG
; PROCEDURE BODY
MOV CX,[BP+8] ;GETELEMENT COUNT
MOV BX, [BP+6] ;GET OFFSET OF 1ST ELEMENT

: PROCEDURE CODE GOES HERE

: FIRST PARAMETER CAN BE ADDRESSED:
; [BX]

' LOCAL STORAGE CAN BE ADDRESSED:

; [BP-8], [BP-10], [BP-12]

; END OF PROCEDURE BODY
; PROCEDURE EPILOG

ADD SP, 6 ; DE-ALLOCATE LOCAL STORAGE

POPF ; RESTORE CALLER’S

POP BX ;  REGISTERS

POP CX ; AND

POP BP ;  FLAGS

; END OF EPILOG
; PROCEDURE RETURN

RET 4 ; DISCARD 2 PARAMETERS
EXAMPLE ENDP ; END OF PROCEDURE ““EXAMPLE"”’
PROC__SEG ENDS

Figure 2-71. Procedure Example 1
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CALLER_SEG  SEGMENT

; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE

ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,

& SS:STACK__SEG,
& ES:NOTHING

; INITIALIZE SEGMENT REGISTERS

; NO EXTRA SEGMENT IN THIS PROGRAM

START: MOV AX,DATA_SEG
MOV DS,AX
MoV AX,STACK__SEG
MOV SS,AX
MoV SP,OFFSET STACK_TOP ; POINTSPTO TOS

; ASSUME ARRAY__11S INITIALIZED

:‘ CALL “EXAMPLE”, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS
; INTHE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

MoV AX,SIZE ARRAY__1
PUSH AX

MOV AX,OFFSET ARRAY__1'
PUSH AX

CALL EXAMPLE

; ASSUME ARRAY__2 IS INITIALIZED

; CALL ““EXAMPLE’’ AGAIN WITH DIFFERENT SIZE ARRAY.

MOV AX,SIZE ARRAY_2
PUSH AX
MOV AX,OFFSET ARRAY_ 2
PUSH AX
CALL EXAMPLE
CALLER_SEG ENDS
END - START

Figure 2-71. Procedure Example 1 (Cont’d.)

Figure 2-72 shows the stack before the caller
pushes the parameters onto it. Figure 2-73 shows
the stack as the procedure receives it after the
CALL has been executed.

EXAMPLE is divided into four sections. The
““prolog’’ sets up register BP so it can be used to
address data on the stack (recall that specifying
BP as a base register in an instruction auto-
matically refers to the stack segment unless a seg-
ment override prefix is coded). The next step in

the prolog is to save the *‘state of the machine’’ as

it existed when the procedure was activated. This
is done by pushing any registers used by the pro-
cedure (only CX and BP in this case) onto the
stack. If the procedure changes the flags, and the
caller expects the flags to be unchanged following
execution of the procedure, they also may be
saved on the stack. The last instruction in the pro-
log allocates three words on the stack for the pro-
cedure to use as local temporary storage. Figure
2-74 shows the stack at the end of the prolog.
Note that PL/M-86 procedures assume that all
registers except SP and BP can be used without
saving and restoring.
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¢~ SP (TOS)

Figure 2-72. Stack Before Pushing Parameters

HIGH ADDRESSES
BP 48— PARAMETER 1
BP + 6 ——» PARAMETER 2
oLD CS
oLD IP
OLD BP «——BP
OLD CX
OLD BX
OLD FLAGS
BP-8—» LOCAL1
BP~10 —» LOCAL 2
BP-12———» LOCAL3 l-«—— sp (TOS)
LOW ADDRESSES

Figure 2-74. Stack Following Procedure Prolog

HIGH ADDRESSES
PARAMETER 1
PARAMETER 2
oLD CS
oLDIP «——— SP(TOS)
LOW ADDRESSES

Figure 2-73. Stack at Procedure Entry

The procedure ‘°body’’ does the actual processing
(none in the example). The parameters on the
stack are addressed relative to BP. Note that if
EXAMPLE were a NEAR procedure, CS would
not be on the stack and the parameters would be
two bytes ‘‘closer’ to BP. BP also is used to
address the local variables on the stack. Local
constants are best stored in a data or extra
segment.

The procedure “‘epilog”’ reverses the activities of
the prolog, leaving the stack as it was when the
procedure was entered (see figure 2-75).

HIGHER ADDRESSES
iy

~
PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP -«——BP &SP (TOS)
[ g} AR
LOWER ADDRESSES

Figure 2-75. Stack Following Procedure Epilog
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The procedure “‘return’’ restores CS and IP from
the stack and discards the parameters. As figure
2-76 shows, when the calling program is resumed,
the stack is in the same state as it was before any
parameters were pushed onto it.

HIGH ADDRESSES

«g——— SP (TOS)

LOW ADDRESSES

Figure 2-76. Stack Following Procedure Return

Figure 2-77 shows a simple procedure that uses an
ASM-86 structure to address the stack. Register
BP is pointed to the base of the structure, which is
the top of the stack since the stack grows toward
lower addresses (see figure 2-78). Any structure
element can then be addressed by specifying BP as
a base register:

[BP].structure__element.

Figure 2-79 shows a different approach to using
an ASM-86 structure to define the stack layout.
As shown in figure 2-80, register BP is pointed at
the middle of the structure (at OLD__BP) rather
than at the base of the structure. Parameters and
the return address are thus located at positive
displacements (high addresses) from BP, while
local variables are at negative displacements
(lower addresses) from BP. This means that the
local variables will be ‘“closer’’ to the beginning
of the stack segment and increases the likelihood
that the assembler will be able to produce shorter
instructions to access these variables, i.e., their
offsets from SS may be 255 bytes or less and can
be expressed as a 1-byte value rather than a 2-byte
value. Exit from the subroutine also is slightly
faster because a MOV instruction can be used to
deallocate the local storage instead of an ADD
(compare figure 2-71).

It is possible for a procedure to be activated a sec-
ond time before it has returned from its first
activation. For example, procedure A may call
procedure B, and an interrupt may occur while
procedure B is executing, If the interrupt service
procedure calls B, then procedure B is reentered
and must be written to handle this situation cor-
rectly, i.e., the procedure must be made
reentrant.

In PL/M-86 this can be done by simply writing:
B: PROCEDURE (PARM1, PARM2) REENTRANT;

An ASM-86 procedure will be reentrant if it uses
the stack for storing all local variables. When the
procedure is reentered, a new ‘‘generation’’ of
variables will be allocated on the stack. The stack
will grow, but the sets of variables (and the
parameters and return addresses as well) will
automatically be kept straight. The stack must be
large enough to accommodate the maximum
““depth’’ of procedure activation that can occur
under actual running conditions. In addition, any
procedure called by a reentrant procedure must
itself be reentrant.

A related situation that also requires reentrant
procedures is recursion. The following are
examples of recursion:

e A calls A (direct recursion),
e Acalls B, B calls A (indirect recursion),

e A calls B, B calls C, C calls A (indirect
recursion).
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CODE SEGMENT

ASSUME CS:CODE

MAX PROC

THIS PROCEDURE IS CALLED BY THE FOLLOWING

SEQUENGE:
PUSH PARM1
PUSH PARM2

; ITRETURNS THE MAXIMUM OF THE TWO WORD

§ CALL MAX

PARAMETERS IN AX.

; DEFINE THE STACK LAYOUT AS A STRUCTU RE.

STACK_LAYQUT STRUC

OLD_BP Dw? : SAVED BP VALUE—BASE OF STRUCTURE
RETURN_ADDR DW ? ; RETURN ADDRESS
PARM__2 DW ? ; SECOND PARAMETER
PARM_1 DW ? | FIRST PARAMETER
STACK_LAYOUT ENDS
; PROLOG
PUSH BP ; SAVE IN OLD_BP
MOV BP, SP ; POINTTOOLD_BP
; BODY
MOV AX, [BP].PARM__1 ;IFFIRST
CMP AX, [BP].PARM_2 ;>SECOND
JG FIRST__IS_MAX  ; THEN RETURN FIRST
MOV AX, [BP].PARM_2 ;ELSE RETURN SECOND
; EPILOG A
FIRST_IS__MAX: POP BP  RESTORE BP (& SP)
; RETURN
RET 4 ; DISCARD PARAMETERS
MAX ENDP
CODE ENDS
END

Figure 2-77. Procedure Example 2

HIGHER ADDRESSES

PARAMETER 1
PARAMETER 2
RETURN ADDRESS
OLD BP

~«——BP & SP (TOS)

J

LOWER ADDRESSES

Figure 2-78. Procedure Example 2 Stack Layout

Jumps and Calis -

The 8086/8088 instruction set contains many dif-
ferent types of JIMP and CALL instructions (e.g.,
direct, indirect through register, indirect through
memory, etc.). These varying types of transfer
provide efficient use of space and execution time
in different programming situations. Figure 2-81
illustrates -typical use of the different forms of
these instructions. Note that the ASM-86
assembler uses the terms “NEAR”’ and “FAR”’
to denote intrasegment and intersegment trans-
fers, respectively.
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EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT *“NEARPROC"’
;  USES TO ADDRESS AN ARRAY PASSED BY ADDRESS.

DUMMY STRUC
PARM_ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA)
DSASTRUC STRUC
1 DW ? ; LOCAL VARIABLES FIRST
LOC__ARRAY DW 10 DUP (?) ; ,
OLD_BP DW ? ; ORIGINAL BP VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? ; 2ND PARM—POINTER TO ““PARM_ARRAY"'
COUNT DB ? ; 1IST PARM-—A BYTE OCCUPIES
: DB ? ; A WORD ON THE STACK
DSASTRUC ENDS

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
;  DSA.CANNOT SIMPLY USE BP BECAUSE IT WILL
;  BEPOINTING TO ““OLD__BP" IN THE MIDDLE OF

;  THEDSA.
DSA EQU [BP — OFFSET OLD__BP]
; PROCEDURE ENTRY
‘ PUSH BP ; SAVE BP
MOV BP, SP ; POINT BP AT OLD__BP
SuB SP, OFFSET OLD__BP; ALLOCATE LOC_ARRAY &1
; PROCEDURE BODY
; ACCESS LOCAL VARIABLE |
MoV AX,DSA.l
; ACCESS LOCAL ARRAY (3) LLE., 4TH ELEMENT
MOV S1,6 ; WORD ARRAY-INDEX IS 3*2
MoV AX,DSA.LOC__ARRAY [SI]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS
LES BX,DSA.POINTER

; ES:BX NOW POINTS TO PARM__ARRAY (0)
; ACCESS SI'TH ELEMENT OF PARM__ARRAY
MoV AL,ES:[BX].PARM__ARRAY [SI]

; ACCESS THE BYTE PARAMETER
MoV AL,DSA.COUNT

Figure 2-79. Procedure Example 3
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; PROCEDURE EXIT
MOV sp
POP BP

.BP

; DE-ALLOCATE LOCALS
; RESTORE BP

; STACK NOW AS-RECEIVED FROM CALLER

RET 6

NEARPROC ENDP
CODE ENDS
END

: DISCARD PARAMETERS

Figure 2-79. Procedure Example 3 (Cont’d.)

~ HIGHER ADDRESSES

| count

POINTER

RETADDR
OLD_BP «——BpP
LOC_ARRAY (9)
LOC__ARRAY (8)
LOC__ARRAY {7)
LOC__ARRAY (6)
LOC__ARRAY (5)
LOC_ARRAY (4)
LOC_ARRAY (3)
LOC__ARRAY (2)
LOC_ARRAY (1)
LOC_ARRAY (0)
| -« 5P

LOWER ADDRESSES

Figure 2-80. Procedure Example
3 Stack Layout

The procedure in figure 2-81 illustrates how a
PL/M-86 DO CASE construction may be
implemented in ASM-86. It also shows:

® an indirect CALL through memory to a
procedure located in another segment,

* adirect JMP to a label in another segment,

* anindirect JMP though memory to a label in
the same segment,

*  an indirect JMP through a register to a label

in the same segment,

¢ a direct CALL to'a procedure in another
segment,

e a direct CALL to a procedure in the same
segment,

o  direct JMPs to labels in the same segment,
within —128 to +127 bytes (‘*‘SHORT?”’) and
farther than —128 to +127 bytes (*‘NEAR”’).
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DATA SEGMENT

; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; “DO_CASE."” THE OFFSET OF EACH LABEL WILL

; BE PLACED IN THE TABLE BY THE ASSEMBLER.

CASE__TABLE DW ACTIONO, ACTION1, ACTIONZ,
& ACTION3, ACTION4, ACTIONS -
DATA ENDS” ' =

; DEFINE TWO EXTERNAL (NOT PRESENTIN THIS -
; ASSEMBLY BUT SUPPLIED BY R & L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).
EXTRN NEAR__PROC: NEAR, FAR__PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
; IS IN ANOTHER SEGMENT.
EXTRN ERR_EXIT: FAR

GODE SEGMENT
-ASSUME .. CS:CODE, DS: DATA
; ASSUME DS HAS BEEN SET UP

; 'BYCALLERTOPOINTTO ““DATA” SEGMENT.

DO__CASE PROC NEAR
; THIS EXAMPLE PROCEDURE RECEIVES TWO
; PARAMETERS ON THE STACK. THE FIRST
; PARAMETERIS THE ‘‘CASE NUMBER’ OF
;  AROUTINE TO BE EXECUTED (0-5). THE SECOND
5" PARAMETER IS A POINTER TO AN ERROR
;. PROCEDURE THAT IS EXECUTED IF AN INVALID
; ~ CASE NUMBER (>5) IS RECEIVED.

; LAY OUT THE STACK.
STACK LAYOUT STRUC
OLD_BP DW 2
RETADDR DW ?
ERR_PROC__ADDR DD ?
CASE__NO DB ?

DB ?

~ STACK_LAYOUT ENDS
; SET UP PARAMETER ADDRESSING
" PUSH BP
MOV: ~ BP,SP

; CODETO SAVE CALLER’S REGISTERS COULD GO HERE. -

; CHECK THE CASE NUMBER
MOV BH, 0
MOV BL,[BP].CASE_NO
CMP BX, LENGTH CASE__TABLE
JLE OK ; ALL CONDITIONAL JUMPS

; ARE SHORT DIRECT

Figure 2-81. JMP and CALL Examples
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; CALL THE ERROR ROUTINE WITH A FAR
;  INDIRECT CALL. AFARINDIRECT CALL
;  ISINDICATED SINCE THE OPERAND HAS
;  TYPE“DOUBLEWORD.”
CALL (BP].ERR__PROC__ADDR

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
; AFARDIRECT JUMP IS INDICATED SINCE
THE OPERAND HAS TYPE “FAR.”
JMP ERR_EXIT

OK:

; MULTIPLY CASENUMBER BY 2 TO GET OFFSET .
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES).
SHL BX,1 -

; NEAR INDIRECT JUMP THROUGH SELECTED
;  ELEMENT OF CASE_TABLE. ANEAR
INDIRECT JUMP IS INDICATED SINCE THE
OPERAND HAS TYPE “WOQORD.”

©JMP CASE_TABLE [BX]

L]

]

ACTIONO: ; EXECUTED IF CASE_NO =0

; CODE TO PROCESS THE ZERO CASE GOES HERE.
FOR ILLUSTRATION PURPOSES, USE A

;  NEARINDIRECT JUMP THROUGH A

;  REGISTER TO BRANCH TO THE POINT

i WHERE ALL CASES CONVERGE.

;  ADIRECT JUMP (JMP ENDCASE) IS

;  ACTUALLY MORE APPROPRIATE HERE.

MoV AX, OFFSET ENDCASE
JMP AX
ACTION1: ; EXECUTED IF CASE_NO =1

; CGALL A FAR EXTERNAL PROCEDURE. A FAR
;  DIRECT CALL IS INDICATED SINCE OPERAND
;  HASTYPE “FAR.”

CALL FAR_PROC
; CALLANEAR EXTERNAL PROCEDURE.
CALL NEAR_PROC

; BRANCH TO CONVERGENCE POINT USING NEAR
;  DIRECT JUMP. NOTE THAT ‘“ENDCASE"’

;  ISMORE THAN 127 BYTES AWAY

; SO ANEARDIRECT JUMP WILL BE USED.

JMP ENDCASE
ACTION2: ; EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP

Figure 2-81. JMP and CALL Examples (Cont’d.)
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ACTIONS: ; EXECUTED IF CASE_NO =3
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE “ENDCASE”’ FURTHER AWAY
; SO THAT ABOVE JUMPS CANNOT BE ‘‘SHORT.”

ORG 500
ACTION4: ; EXECUTED IF CASE__ NO 4
; CODE GOES HERE
JMP ENDCASE - NEAR DIRECT JUMP
ACTIONS: ; EXECUTED IF CASE_NO =5

; CODE GOES HERE.

; BRANCH TO CONVERGENGE POINT USING
;  SHORT DIRECT JUMP SINCE TARGET IS
; WITHIN 127 BYTES. MACHINE INSTRUCTION
;  HAS1-BYTE DISPLACEMENT RATHER THAN
; 2-BYTE DISPLACEMENT REQUIRED FOR
;  NEARDIRECT JUMPS: “SHORT”’ IS
;  WRITTEN BECAUSE “‘ENDCASE’’ IS A FORWARD
; REFERENCE, WHICH ASSEMBLER ASSUMES IS
;. “NEAR.”IF “ENDCASE’’ APPEARED PRIOR
;  TOTHE JUMP, THE ASSEMBLER WOULD
;  AUTOMATICALLY DETERMINEIFIT WERE REACHABLE
; WITH ASHORT JUMP. -

JMP SHORT ENDCASE

ENDCASE: ; ALL CASES CONVERGE HERE. .~

; POP CALLER'S REGISTERS HERE. ‘
; RESTORE BP & SP, DISCARD PARAMETERS

; AND RETURN TO CALLER.
MoV SP, BP
POP BP
RET SB
DO_CASE ENDP
CODE ENDS :
END - ; OF ASSEMBLY

Figure 2-81.J MP and CALL Examples (Cont’d.).

Records

Figure 2-82 shows how the ASM-86 RECORD
facility may be used to manipulate bit data. The

example shows how to: * assign a constant known at assembly time,
¢ right-justify a bit field, °  assigna variable,
o test for avalue, : P ® et or clear a bit field.
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DATA SEGMENT
; DEFINE A WORD ARRAY
XREF DW 3000 DUP (?)

; EACH ELEMENT OF XREF CONSISTS OF 3FIELDS: -
; A 2-BIT TYPE CODE,
; A1-BIT FLAG,
; A13-BIT NUMBER.
DEFINE A RECORD TO LAY OUT THIS ORGANIZATION.

LINE REC RECORD  LINE_TYPE: 2,
& VISIBLE: 1,

& LINE_NUM: 13
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT SI INDEXES AN ELEMENT OF XREF.

; ARECORD FIELD-NAME USED BY ITSELF RETURNS
;  THESHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
;  THE FIELD. ISOLATE “‘LINE__TYPE’ IN THIS

;  MANNER.

MOV AL, XREF [SI]
MOV CL, LINE_TYPE
SHR AX, CL

THE “MASK’* OPERATOR APPLIED TO A RECORD
FIELD-NAME RETURNS THE BIT MASK
REQUIRED TO ISOLATE THE FIELD WITHIN
THE RECORD. CLEAR ALL BITS EXCEPT

CSLINE_NUM.”
MOV DX, XREF[SI]
_ AND DX, MASK LINE_NUM
: DETERMINE THE VALUE OF THE “VISIBLE’’ FIELD
TEST XREF([SI], MASK VISIBLE
Jz NOT_VISIBLE

i NOJUMP IF VISIBLE =1
NOT__VISIBLE: ;JUMPHERE IFVISIBLE =0

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME
; TO AFIELD, BY FIRST CLEARING THE BITS

; AND THEN OR’ING IN THE VALUE. IN

; THIS CASE “LINE_TYPE” IS SETTO 2 (10B).

AND XREF[SI], NOT MASK LINE__TYPE

OR XREF[SI],2 SHL LINE__TYPE
: THE ASSEMBLER DOES THE MASKING AND SHIFTING. -
; THE RESULT IS THE SAME AS:
AND XREF|[SI], 3FFFH
_ OR XREF[SI], 8000H
: BUTIS MORE READABLE AND LESS SUBJECT
. TOCLERICAL ERROR.

Figure 2-82. RECORD Example
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; ASSIGN A VARIABLE (THE CONTENT OF AX)

; TOLINE__TYPE.
MOV CL,LINE_TYPE ; SHIFT COUNT"
SHL AX,CL ;SHIFTTO ‘“LINE UP” BITS
AND XREF[SI}, NOT MASK LINE_TYPE ;CLEARBITS
OR XREF[SI], AX ; ORIN NEW VALUE

; NO SHIFT IS REQUIRED TO ASSIGN TOTHE
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS
; A VALID NUMBER (HIGH 3 BITS ARE 0),

; ASSIGN AXTO “LINE_NUM.”

AND XREF(SI], NOT MASK LINE__NUM
OR XREF[SI}, AX

; AFIELD MAY BE SET OR CLEARED WITH

;  ONEINSTRUCTION. CLEAR THE *‘VISIBLE"

; FLAG ANDTHEN SETIT.

AND XREF[SI], NOT MASK VISIBLE

OR XREF[SI], MASK VISIBLE
CODE ENDS ,

END ' ;OF ASSEMBLY

Figure 2-82. RECORD Example (Cont’d.)

The following considerations apply to position-
independent code sequences:

* A label that is referenced by a direct FAR
(intersegment) transfer is not moveable.

* A label that is referenced by an indirect
transfer (either NEAR or FAR) is moveable
so long as the register or memory pointer to
the label contains the label’s current address.

*  Alabel that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (in-
trasegment) transfer is moveable so long as
the referencing instruction is moved with the
label as a unit. These transfers are self-
relative; that is they require only that the

label maintain the same distance from the’

referencing instruction, and actual addresses
are immaterial.

® Data is segment-independent, but not offset-
independent. That is, a data item may be
moved to a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit
of code also effectively makes the code
offset-dependent, and therefore is not
recommended.

¢ A procedure should not be moved while it is
active or while any procedure it has called is
active.

¢ A section of code that has been interrupted
should not be moved.

The segment that is receiving a section of code
must have ‘“‘room”’ for the code. If the MOVS (or
MOVSB or MOVSW) instruction attempts to
auto-increment DI past 64k, it wraps around to 0
and causes the beginning of the segment to be
overwritten. If a segment override is needed for
the source operand, code similar to the following
can be used to properly resume the instruction if it
is interrupted:

RESUME: REP = MOVS DESTINATION, ES:SOURCE
;IF CX NOT = 0 THEN INTERRUPT HAS OCCURRED
AND ~ CX,CX ; CX=0?
JNZ RESUME ;NO, FINISH EXECUTION
;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED.

If the MOVS is interrupted, the CPU
“remembers’’ the segment override, but
“forgets’’ the presence of the REP prefix when
execution resumes. Testing CX indicates whether
the instruction is completed or not. Jumping back
to the instruction resumes it where it left off. Note
that a segment override cannot be specified with
MOVSB or MOVSW.

i ) 978
Mnemonics © Intel, 1 2-112



8086 AND 8088 CENTRAL PROCESSING UNITS

Dynamic Code Relocation

Figure 2-83 illustrates one approach to moving
programs in memory at execution time. A ‘‘super-
visor’’ program (which is not moved) keeps
a pointer variable that contains the current loca-
tion (offset and segment base) of a position-
independent procedure. The supervisor always

calls the procedure through this pointer. The
supervisor also has access to the procedure’s
length in bytes. The procedure is moved with the
MOVSB instruction. After the procedure is
moved, its pointer is updated with the new loca-
tion. The ASM-86 WORD PTR operator is writ-
ten to inform the assembler that one word of the
doubleword pointer is being updated at a time.

MAIN_DATA SEGMENT

; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE

;  AND FREE SPACE.
PIP_PTR DD
FREE__PTR DD

EXAMPLE
TARGET__SEG

; SET UP SIZE OF PROCEDURE IN BYTES

PIP_SIZE DW EXAMPLE__LEN
MAIN_DATA ENDS
STACK SEGMENT :

DW 20DUP(?) ; 20 WORDS FOR STACK
STACK_TOP LABEL WORD ; TOS BEGINS HERE
STACK ENDS :
SOURCE_SEG SEGMENT :

; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SOURCE_SEG
EXAMPLE PROC FAR

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL

; BIT3OF THE VALUE READ IS FOUND SET. IT

; THEN READS ANOTHER PORT. IF THE VALUE READ

; IS GREATER THAN 10H IT WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

; OVER.

STATUS_PORT EQU 0DOH

PORT__READY EQU 008H

INPUT_PORT EQU 0D2H

THRESHOLD EQU 010H

OUTPUT__PORT EQU 0D4H

CHECK__AGAIN: - IN AL,STATUS_PORT ;GETSTATUS
TEST AL,PORT__READY ;DATA READY?
JNE CHECK__AGAIN ; NO, TRY AGAIN
IN AL,INPUT__PORT ; YES, GET DATA
CMP AL, THRESHOLD ; >10H?
JLE CHECK_AGAIN ; NO, TRY AGAIN
ouT ; YES, WRITEIT

OUTPUT__PORT,AL

Figure 2-83. Dynamic Code Relocation Example
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RET - ; RETURN TO CALLER
GET PROCEDURE LENGTH
EXAMPLE_LEN EQU (OFFSET THIS BYTE)—(OFFSET CHECK__AGAIN)

ENDP EXAMPLE ENDP
SOURCE_SEG ENDS »

TARGET_SEG = SEGMENT :
; THE POSITION-INDEPENDENT PROCEDURE
; ISMOVED TO THIS SEGMENT, WHICH IS
; INITIALLY “EMPTY.”
; INTYPICAL SYSTEMS, A “‘FREE SPACE MANAGER” WOULD
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENOUGH
;  SPACETOHOLDIT _
DB EXAMPLE_LEN DUP (?)

TARGET_SEG  ENDS

MAIN__CODE SEGMENT
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE
; ATITS INITIAL LOCATION, MOVES IT, AND-

; CALLS IT AGAIN AT THE NEW LOCATION.

ASSUME CS:MAIN__CODE,SS:STACK,
& DS:MAIN_DATA,ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MoV AX,MAIN__DATA
MOV DS,AX
MOV AX,STACK
MOV 8S,AX
Mov SP,OFFSET STACK__TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL - PIP__PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP__SIZE

; SAVE DS, SET UP DS/SI AND ES/DITO

; POINT TO THE SOURCE AND DESTINATION

;  ADDRESSES.
PUSH DS
LES DI, FREE_PTR
LDS SI,PIP_PTR

; MOVE THE PROCEDURE.
CLD ; AUTO INCREMENT
REP MOVSB

; RESTORE OLD ADDRESSABILITY.
MoV AX,DS ; HOLD TEMPORARILY
POP DS .

; UPDATE POINTER TO POSITION- INDEPENDENT PROCEDURE

MOV WORD PTR PIP__PTR+2,ES
suB DI1,PIP_SIZE ; PRODUCES OFFSET
MOV WORD PTR PIP__PTR,DI

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)
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; UPDATE POINTER TO FREE SPACE

MOV
SuB
MOV

WORD PTR FREE_PTR+2,AX
SI,PIP__SIZE
WORD PTR FREE__PTR,SI

; PRODUCES OFFSET

; CALL POSITION-INDEPENDENT PROCEDURE AT

; NEW LOCATION AND STOP

CALL PIP_PTR
MAIN_CODE ENDS
END START

Figure 2-83. Dynamic Code Relocation Example (Cont’d.)

Memory-Mapped 1/0

Figure 2-84 shows how memory-mapped I/0 can
be used to address a group of communication
lines as an ‘‘array.”” In the example, indexed
addressing is used to poll the array of status ports,
one port at a time. Any of the other 8086/8088
memory addressing modes may be used in con-
junction with memory-mapped I/O devices as
well.

In figure 2-85 a MOVS instruction is used to per-
form a high-speed transfer to a memory-mapped
line printer. Using this technique requires the
hardware to be set up as follows. Since the MOVS

instruction transfers characters to successive
memory addresses, the decoding logic must select
the line printer if any of these locations is written.
One way of accomplishing this is to have the chip
select logic decode only the upper 12 lines of the
address bus (A19-A8), ignoring the contents of
the lower eight lines (A7-A0). When data is writ-
ten to any address in this 256-byte block, the
upper 12 lines will not change, so the printer will
be selected. :

If an 8086 is being used with an 8-bit printer, the
8086’s 16-bit data bus must be mapped into 8-bits
by external hardware. Using an 8088 provides a
more direct interface.

COM__LINES

SEGMENT AT 800H

; THE FOLLOWING IS A MEMORY MAPPED ‘' ARRAY"’

; OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS
; (E.G., 8251 USARTS). PORTS HAVE ALL-ODD

; OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE

; IS SKIPPED) FOR 8086-COMPATIBILITY.

COM_DATA b ?

DB ?
COM_STATUS DB ?

bB . ?

DB 28 DUP(?)
COM__LINES ENDS .
CODE" SEGMENT

; SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF "“ARRAY”’

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
; FOLLOWING CODE POLLS THE LINES.

CHAR_RDY EQU 00000010B
START_POLL: MOV CX, 8
SuB Sl, S

; CHARACTER PRESENT
: POLL 8 LINES ZERO
; ARRAY INDEX

Figure 2-84. Memory Mapped 1/0 “Array”’
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POLL__NEXT: TEST COM__STATUS [Sl}, CHAR__RDY:
JE - READ_CHAR ; READ IFPRESENT
~ADD Sl, 4 ; ELSE BUMP TO NEXT LINE
LOOP - POLL_-NEXT ; CONTINUE POLLING UNTIL
; ALL8HAVEBEEN CHECKED
JMP START__POLL; START OVER -~
READ_CHAR: MOV AL,COM__DATA [Sl] GET THE DATA
; ETC.
CODE ENDS
END
Figure 2-84. Memory Mapped 170 ““Array’’ (Cont’d.)
PRINTER SEGMENT-

; THIS SEGMENT-CONTAINS A “'STRING™ THAT
1S'/ACTUALLY A MEMORY-MAPPED LINE PRINTER.

TO A.BLOCK OF THE ADDR

)
’
s
’
H

THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)

ESS SPACE SUCH

THAT WRITING TO ANY ADDRESS IN THE
BLOCK SELECTS THE PRINTER. .

PRINT_SELECT DB133  DUP () ;'STRING”” REPRESENTING PRINTER.
' : DB 123 - DUP(?) REST OF 256-BYTE BLOCK -
PRINTER - ENDS .

DATA ~ SEGMENT

PRINT_BUF ~ DB133  DUP(?) ; LINE TO BE PRINTED
PRINT_COUNT DB ?

; OTHER PROGRAM DATA
DATA ENDS

CODE SEGMENT

; LINE LENGTH

; ASSUME STACK AND SEGMENT REG|STERS HAVE

; THE PRINTER.
ASSUME
MOV
MOV
SuB
Sus
MoV
CLD
MOVS

; ETC.
ENDS . .
END

REP
CODE

Figure2-85.

BEEN SET UP (DS POINTS TO DATA SEGMENT).
FOLLOWING CODE TRANSFERS A LINETO

_ ES:PRINTER o ‘
_AX, PRINTER : PREVENT SEGMENT OVERRIDE
ES, AX ' o
DI, DI ; CLEAR SOURCE AND -
St, S ;

DESTINATION POINTERS.
CX, PRINT_COUNT : ‘ C
; AUTO-INCREMENT. .
PR|NT SELECT, PRINT _ BUF

Memory Mapped Block Transfer Example
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Breakpoints

Figure 2-86 illustrates how a program may set a
breakpoint. In the example, the breakpoint
routine puts the processor into single-step mode,
but the same general approach could be used for
other purposes as well. A program passes the
address where the break is to occur to a procedure

that saves the byte located at that address and
replaces it with an INT 3 (breakpoint) instruction.
When the CPU encounters the breakpoint
instruction, it calls the type 3 interrupt procedure.
In the example, this procedure places the pro-
cessor into single-step mode starting with the
instruction where the breakpoint was placed.

INT_PTR..TAB SEGMENT

 INTERRUPT POINTER TABLE-LOCATE AT OH

TYPE__O DD ? ; NOT DEFINED IN EXAMPLE

TYPE__1 DD SINGLE__STEP

TYPE_2 DD ? ; NOT DEFINED IN EXAMPLE

TYPE_.3 DD BREAKPOINT

INT_PTR_TAB ENDS

SAVE__SEG SEGMENT

SAVE__INSTR DBA1 DUP (?) ; INSTRUCTION REPLACED
; BY BREAKPOINT

SAVE__SEG ENDS

MAIN_CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
;  LABEL “*“NEXT" BY PASSING SEGMENT AND
;  OFFSET OF “NEXT" TO “SET__BREAK" PROCEDURE

; BREAKPOINT SET HERE

PUSH Cs
LEA AX, CS: NEXT
PUSH AX .
CALL FARSET_BREAK
; ETC.
NEXT: IN AL, OFFFH
; ETC.
MAIN__CODE ENDS
BREAK SEGMENT
SET_BREAK PROGC FAR

; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE ‘
; ADDRESS IS PASSED BY THE CALLER) AND WRITES
; AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION

AT THE TARGET ADDRESS.

TARGET EQU

DWORD PTR [BP +6]

Figure 2-86. Breakpoint Example
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; SET-UP.BP FOR PARM ADDRESSING & SAVE REGISTERS

PUSH BP
MOV  BP,SP
PUSH DS
PUSH  ES
. PUSH AX
PUSH BX
. POINT DS/BX TO THE TARGET INSTRUCTION
LDS BX, TARGET
; POINT ES TO THE SAVE AREA
MOV - AX,SAVE_SEG
MOV ES, AX
SWAPTHETARGEHNSTRUCHONFOR|NT3wCCH)
MOV AL, 0CCH

XCHG AL, DS: [BX]'
: SAVE THE TARGET INSTRUCTION

. MoV ES: SAVE__INSTR, AL
; RESTORE AND RETURN

POP BX
POP AX
POP ES
POP DS
POP BP
RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT
;  EXECUTES THE INT 3INSTRUCTION SET BY THE
; SET_BREAK PROCEDURE. THIS PROCEDURE
; RESTORES THE SAVED INSTRUCTION BYTE TOITS
;i ORIGINAL LOCATION AND BACKS UP THE
;  INSTRUCTION POINTER IMAGE ON THE STACK
; SOTHAT EXECUTION WILL RESUME WITH
;  THE RESTORED INSTRUCTION. IT THEN SETS
;  TF(THE TRAP FLAG) IN THE FLAG-IMAGE
;  ONTHESTACK. THIS PUTS THE PROCESSOR
; . INSINGLE-STEP MODE WHEN EXECUTION

RESUMES.
FLAG_IMAGE EQU WORD PTR [BP +6]
_IMAGE EQU WORD PTR [BP +2]
NEXT__INSTR EQU DWORD PTR [BP + 2]
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MOV BP, SP
PUSH- - DS -
PUSH ES
PUSH AX
PUSH BX
; POINT ES AT THE SAVE AREA ,
MoV AX, SAVE_SEG
MoV ES, AX
; GET THE SAVED BYTE
MOV AL, ES: SAVE_ INSTR

Figure 2-86. Breakpoint Example (Cont’d.)
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; GET THE ADDRESS OF THE TARGET + 1
; (INSTRUCTION FOLLOWING THE BREAKPOINT)

LDS BX, NEXT__INSTR
- BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
DEC BX
MOV __IMAGE, BX
: RESTORE THE SAVED INSTRUCTION
MOV DS: [BX], AL
: SET TF ON STACK
AND FLAG__IMAGE, 0100H
: RESTORE EVERYTHING AND EXIT
POP BX
POP AX
POP ES
POP DS
POP BP
IRET
BREAKPOINT  ENDP
SINGLE STEP PROGC FAR

ONCE SINGLE-STEP MODE HAS BEEN ENTERED,
THE CPU *“TRAPS” TO THIS PROCEDURE
AFTER EVERY INSTRUCTION THAT IS NOT IN
AN INTERRUPT PROCEDURE. IN THE CASE
OF THIS EXAMPLE, THIS PROCEDURE WILL

“IN AL, OFFFH" INSTRUCTION (WHERE THE
BREAKPOINT WAS SET) AND AFTER EVERY
SUBSEQUENT INSTRUCTION. THE PROCEDURE

; BE EXECUTED IMMEDIATELY FOLLOWING THE

COULD “TURN ITSELF OFF’ BY
; TFONTHE STACK.
; SINGLE-STEP CODE GOES HERE.
; SINGLE__STEP ENDP

BREAK ENDS

END ;

CLEARING

Figure 2-86. Breakpoint Example (Cont’d.)

Interrupt Procedures

Figure 2-87 is a block diagram of a hypothetical
system that is used to illustrate three different
examples of interrupt handling: an  external
(maskable) interrupt, an external non-maskable
interrupt and a software interrupt.

In this hypothetical system; an 8253 Program-
mable Interval Timer is used to generate a time
base. One of the three timers on the 8253 is pro-
grammed to repeatedly generate interrupt
requests at 50 millisecond intervals. The output
from this timer is tied to one of the eight interrupt
request lines of an 8259A Programmable Inter-
rupt Controller. The 8259A,, in turn, is connected
to the INTR line of an 8086 or 8088.
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ACLO IV o BATTERY
BATTERY cs POWERED
coLp START—l l > RAM
7 POWER DOWN
CIRCUITS e
RESET MPRO DECODER
PF1
f PFSR
(PULSE) PFS
| I
NMI TR B0 E2
- R3] CTR1
8086/8085 8259A 8253 PORTS
L I
ADDRESS BUS m I —y I | L : I L ! =)
DATA BUS mumms ! — | | - %
CONTROL BUS ' l . ! d ’
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cs [T
DECODER »| EPROM DECODER » RAM

Figure 2-87. Interrupt Example Block Diagram

A power-down circuit is used in the system to
illustrate one application -of the 8086/8088 NMI
(non-maskable interrupt) line. If the ac line
voltage drops below a certain threshold, the
power supply activates ACLO. The power-down
circuit then sends a power-fail interrupt (PFI)
pulse to the CPU’s NMI input. After 5
milliseconds, the power-down circuit activates

MPRO (memory protect) to disable reading

from and writing to the system’s battery-powered
RAM. This protects the RAM from fluctuations
that may occur when power is actually lost 7.5
milliseconds after the power failure is detected.
The system software must save all vital informa-
tion in the battery-powered RAM segment within
5 milliseconds of the activation of NMI.

When power returns, the power-down circuit
activates -the system RESET line. Pressing the
“‘cold start”” switch also produces a system
RESET. The PFS (power fail status) line, which is

connected to the low-order bit of port EO, iden-
tifies the source of the RESET. If the bit is set, the
software executes a ‘‘warm start’’ to restore the
information saved by the power-fail routine. If
the PFS bit is cleared, the software executes a
““cold start’’ from the beginning of the program.
In either case, the software writes a “‘one’’ to the
low-order bit of port E2. This line is connected to
the power-down circuit’s PFSR (power fail status
reset) signal and is used to enable the battery-
powered RAM segment.

A software interrupt is used to update a simple
real-time clock. This procedure is written in
PL/M-86, while the rest of the system is written in
ASM-86 to demonstrate the interrupt handling
capability of both languages. The system’s main
program simply initializes the system following
receipt of a RESET and then waits for an
interrupt. An example of this interrupt procedure
is given in figure 2-88.
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INT_POINTERS SEGMENT

; INTERRUPT POINTER TABLE, LOCATE AT OH, ROM-BASED
TYPE 0 DD ? ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE.
TYPE__1 DD ? ; SINGLE-STEP NOT SUPPLIED IN EXAMPLE.
TYPE_2 DD POWER__FAIL ; NON-MASKABLE INTERRUPT
TYPE_3 DD ? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE.
TYPE_4 DD ? ; OVERFLOW NOT SUPPLIED IN EXAMPLE.

; SKIP RESERVED PART OF EXAMPLE

ORG 32*4
TYPE_32 DD ? ; 8259A IR0 - AVAILABLE
TYPE_33 DD ? ; 8250A IR1 - AVAILABLE
TYPE__34 DD ? ; 8250A IR2 - AVAILABLE
TYPE_35 DD TIMER_PULSE ; 8250A IR3
TYPE__36 DD ? ; 8259A 1R4 - AVAILABLE
TYPE_37 .. DD ? ; 8250A IR5 - AVAILABLE
TYPE__38 DD ? : ; 8259A IR6 - AVAILABLE
? 3 8259A IR7 - AVAILABLE

TYPE__39 DD

; POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER
INT__POINTERS ENDS

BATTERY SEGMENT

; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA
i THAT MUST BE MAINTAINED DUHING POWEH OUTAGES.

STACK_PTR DW ? ; 8P SAVE AREA
STACK_SEG DW- 2 ; SS SAVE AREA

; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE
BATTERY ENDS
DATA SEGMENT
; RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY _ ‘
N_PULSES DB 1DUP (0) ; # TIMER PULSES
; ETC. i
DATA ENDS
STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM oo

Dw ' 100DUP(?) ; THIS 1S AN ARBITRARY STACKSIZE

STACK__TOP LABEL WORD ; LABEL THE INITIAL TOS
STACK ENDS

INTERRUPT_HANDLERS SEGMENT
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)

ASSUME: CS:INTERRUPT__HANDLERS,DS:DATA,SS:STACK,ES:BATTERY

POWER__FAIL PROC ; TYPE 2INTERRUPT
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU iIF POWER IS

;  ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN

; RAM(ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SOTHAT IT

;  CANBE RESTORED BY A WARM START ROUTINE IF POWER RETURNS )

Figure 2-88. Interrupt Procedures Example
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;IP,CS, AND FLAGS ARE ALREADY ON THE STACK.
; SAVETHE OTHER REGISTERS.

PUSH AX
PUSH BX
PUSH CcX
PUSH DX
PUSH sl

PUSH DI

PUSH BP
PUSH DS’
PUSH ES

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT;I'HIS
;  POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE ‘BATTERY"
; SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER

:  ISLOST.
: SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.
MOV AX,BATTERY
MOV ES,AX
MoV ES:STACK_PTR,SP
MOV ES:STACK__SEG,SS
: STOP GRACEFULLY
HLT
POWER__FAIL ENDP
TIMER_PULSE PROC . : TYPE 35 INTERRUPT

; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253.
;  ITCOUNTS THE INTERRUPTS AND AGTIVATES THE TYPE 40 INTERRUPT

;  PROCEDURE ONCE PER SECOND.

; DS 1S ASSUMED TO BE POINTING TO THE DATA SEGMENT

;THE 8253 1S RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
;  REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NM).

INC N_PULSES

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
sTI
CMP N_PULSES,200 ; 1SECOND PASSED?
JBE DONE ;NO,GOON.
MOV N_PULSES,0  YES, RESET COUNT.
INT ‘ 40 ; UPDATE CLOCK .

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL
;  ORLOWER PRIORITY INTERRUPTS.

DONE: Mov AL,020H ; EOLCOMMAND .
ouT 0COH,AL . . ;8259A PORT
IRET

TIMER_PULSE ENDP

INTERRUPT__HANDLERS ENDS

CODE SEGMENT

; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM.

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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INIT

PROC

NEAR

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE
; THEB253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR

EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START.
i INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

1 INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED.
; CLKINPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS
HI50MS
CONTROL
COUNT_1
MODE2

EQU
EQU
EQU
EQU
EQU

MOV
MoV
ouT
MoV
MoV
ouT
MOV
ouT

000H
OFOH
0D6H
0D2H
011101008

DX,CONTROL

AL,MODE2
DX,AL

DX,COUNT_A1

AL,LO50MS
DX,AL
AL, HI50MS
DX,AL

; COUNT VALUE IS
;61440 DECIMAL.

; CONTROL PORT ADDRESS
; COUNTER 1 ADDRESS

; MODE 2, BINARY

; LOAD CONTROL BYTE

; LOAD 50MS DOWNCOUNT

; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED,
i INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT
;  REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT.
; MASK OFF UNUSED INTERRUPT REQUEST LINES.

1ICW1
ICW2
ICW4
OoCcwi1
PORT_A
PORT_B

EQU
EQU
EQU
EQU
EQU
EQU

MOV
MoV
ouTt
MOV
MOV
ouT
MOV
out
MOV
ouT

000100118
001000008
00000001B
111101118
0COH
0C2H

DX,PORT__A
AL,ICWA
DX,AL
DX,PORT_B
AL,ICW2
DX,AL
AL,ICW4
DX,AL
AL,0CW1
DX,AL

; EDGE-TRIGGERED, SINGLE 8258A, ICW4 REQUIRED.

; TYPE 20H, 32 - 40D

; 8086 MODE, NORMAL EOI

i MASK ALL BUT IR3

; ICW1 WRITTEN HERE

; OTHER ICW’S WRITTEN HERE

i WRITE 1STICW

; WRITE 2ND ICW

; WRITE 4TH ICW

; MASK UNUSED IR'S

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED

INIT

USER__PGM:

RET

ENDP

; “REAL” CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENbLESS LOOP

UNTIL AN INTERRUPT OCCURS.

; EXECUTION STARTS HERE WHEN CPU IS RESET.

JMP

POWER__FAIL__STATUS

ENABLE__RAM

USER__PGM

EQU  0EOH
EQU  OE2H

; PORT ADDRESS
; PORT ADDRESS

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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; ENABLE BATTERY-POWERED RAM SEGMENT

START: MOV
ouT

; DETERMINE WARM OR COLD START

IN
RCR
JC

AL,001H
ENABLE_ RAM,AL

AL,POWER__ FAIL STATUS
AL ; ISOLATE LOW BIT
WARM_START s

COLD__START:
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER. )
ASSUME CS:CODE,DS:CATA,SS:STACK,ES: NOTHING
; RESET TAKES CARE OF CS AND IP. :

MOV AX,DATA
MOV. DS,AX
MOV AX,STACK
MOV - §5,AX .
MOV SP,OFFSET STACK_TOP
; INITIALIZE 8253 AND 8258A.
CALL INIT
; ENABLE INTERRUPTS
STl
; START MAIN PROCESSING
JMP USER_.PGM
WARM__START:
INITIALIZE 8253 AND 8259A.
CALL INIT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED

; MAKE BATTERY SEGMENT ADDRESSABLE
MOV  AX,BATTERY
MOV DX,AX :

; VARIABLES SAVED IN THE “BATTERY’” SEGMENT WOULD BE MOVED
; BACKTOUNPROTECTED RAM NOW. SEGMENT REGISTERS AND
“ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
;  ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV  SS,DS:STACK_SEG
MOV . SP,DS:STACK_PTR

; RESTORE THE OTHER REGISTERS

POP ES
POP DS
POP BP
POP D
POP Si
POP DX
POP CX
POP BX
POP AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED.
; I.LE., POP CS, IP, & FLAGS, EFFECTIVELY “RETURNING” FROM THE
NMI PROCEDURE.
IRET
CODE ENDS

H TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM. -
END START

Figure 2-88. Interrupt Procedures Example (Cont’d.)
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TYPES$40: DO;
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATE$TOD: PROCEDURE INTERRUPT 40;

/*THE PROCESSOR ACTIVATES THIS PROCEDURE
*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME CLOCK.
*IT DOES NOT PRETEND TO BE ‘'REALISTIC”

*AS THERE IS NO WAY TO SET THE CLOCK.*/

SEC=SEC + 1;
IF SEC = 60 THEN DO;

SEC=0;

MIN=MIN + 1;

IF MIN = 60 THEN DO;
MIN = 0;
HOUR=HOUR + 1;
IFHOUR =24 THEN DO;

HOUR=0;
END;
END;

END;

END UPDATESTOD;
END;

Figure 2-88. Interrupt Procedures Example (Cont’d.)

String Operations

Figure 2-89 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
also is demonstrated. The first example simply
moves 80 words of a string using MOVS. Then
two byte strings are compared to find the
alphabetically lower string, as might be done in a
sort. Next a string is scanned from right to left

(the index register is auto-decremented) to find
the last period (‘‘.”’) in the string. Finally a byte

string of EBCDIC characters is translated to

ASCII. The translation is stopped at the end of
the string or when a carriage return character is
encountered, whichever occurs first. This is an
example of using the string primitives in combina-
tion with other instructions to build up more com-
plex string processing operations.

ALPHA SEGMENT

; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE
OUTPUT DW 100 DUP (?)

INPUT DW 100 DUP (?)

NAME__1 DB ‘JONES, JONA’

NAME__2 DB ‘JONES, JOHN’

SENTENCE DB 80 DUP (?)

EBCDIC_CHARS DB &0 DUP(?)

ASCII_CHARS DB3&80 DUP (?)

CONV_TAB DB 64 DUP(0H)

Figure 2-89. String Examples
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; ASCIINULLS ARE SUBSTITUTED FOR “UNPRINTABLE” CHARS

DB1 20H
DB 9 ‘DUP (0H) )
DB7 0, <L O, R
DB9 DUP(OH)
DB 8 TR R MR
DB 8 DUP(OH) '
DB 6 R AN,
DB9 DUP (0H) B
DB 17 L@,
0H, @', b, ‘a1’ b, P, g, e,

DB7 DUP (0H) ‘
DBg ‘j” ik" ‘IY’ Km” inY, ‘o’, ‘p’,‘qu’ er
DB7 DUP (0H)
DB9 I P S VIR VAR A G VA 4
DB 22 DUP (0H)
DB 10 LA B C D B R G, HY
DB6 DUP (0H)
DB 10 LK LM N O P R
DB 6 DUP (0H) ‘
DB 10 “0H, 'S, T U VL WX Y,
DB 6 DUP (0H)
DB 10 0,1, 12, B, B 6, T, 8,
DB6 DUP (0H)

ALPHA ENDS

STACK SEGMENT _ , e
DW100  DUP(?) _ ; THIS IS AN ARBITRARY STACK SIZE

; FOR ILLUSTRATION ONLY.
STACK_BASE ~ 'LABEL- -~ WORD }INITIAL TOS
'STACK ENDS
- CODE: ~ SEGMENT

BEGIN: ; SET UP SEGMENT REGISTERS. NOTICE THAT :
- ; ES & DS POINT TO THE SAME SEGMENT, MEANING
; THAT THE CURRENT EXTRA & DATA :
; SEGMENTS FULLY OVERLAP. THIS ALLOWS.
; ANY STRING IN ‘*‘ALPHA’’ TO BE USED
; AS A SOURCE OR A DESTINATION.
SR ASSUME CS: CODE, SS: STACK,
& DS: ALPHA, ES: ALPHA

MOV AX, STACK
MOV~ SS,AX

MOV~ SP,OFFSET STACK_BASE; INITIAL TOS
MOV AX, ALPHA

MOV DS, AX

MOV ES, AX

; MOVE THE FIRST 80 WORDS OF “INPUT” TO'
;  THE LAST 80 WORDS OF “OUTPUT"". ' - : B
LEA SI, INPUT - ; INITIALIZE
LEA DI, OUTPUT+20 ; INDEX-REGISTERS

Figure 2-89. String Examples (Cont’d.)
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MOV CX, 80 ; REPETITION COUNT
CLD ; AUTO-INCREMENT
REP MOVS OUTPUT, INPUT
; FIND THE ALPHABETICALLY LOWER OF 2 NAMES.
MOV Sl, OFFSETNAME_1 ; ALTERNATIVE
MOV DI, OFFSET NAME_2 ;TOLEA
MOV CX, SIZE NAME__2 ; CHAR. COUNT
CLD ; AUTO-INCREMENT
REPE CMPS NAME__2, NAME_1 “WHILE EQUAL"”
JB NAME__2_ LOW
NAME_1__LOW: ; NOTIN THIS EXAMPLE
NAME_2_ LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.

; DIPOINTS TO BYTE (‘H') THAT
; COMPARED UNEQUAL.

; FIND THE LAST PERIOD (*.’) IN A TEXT STRING.

MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ; START ATEND

MoV CX, SIZE SENTENCE

STD ; AUTO-DECREMENT

MoV AL, ‘Y ; SEARCH ARGUMENT

REPNE SCAS SENTENCE ; "WHILENOT ="'

JCXZ NO__PERIOD ; IF CX=0, NO PERIOD FOUND
PERIOD: ; IF CONTROL COMES HERE THEN

; DIPOINTS TO LAST PERIOD IN SENTENCE.
NO__PERIOD: ; ETC.

; TRANSLATE A STRING OF EBCDIC CHARACTERS
; TO ASCII, STOPPING IF A CARRIAGE RETURN
; (ODH ASCII) IS ENCOUNTERED.

MOV BX, OFFSET CONV__TAB ; POINT TO TRANSLATE TABLE
MOV Sl, OFFSET EBCDIC__CHARS ; INITIALIZE
MOV DI, OFFSET ASCIl_CHARS ;  INDEXREGISTERS
MOV CX, SIZE ASCII_CHARS ; AND COUNTER
CLD ; AUTO-INCREMENT

NEXT: LODS EBCDIC__CHARS ; NEXT EBCDIC CHAR IN AL
XLAT CONV__TAB ; TRANSLATE TO ASCII
STOS ASCIll_CHARS ; STORE FROM AL
TEST AL, ODH ;1S 1T CARRIAGE RETURN?
LOOPNE  NEXT ; NO, CONTINUE WHILE CX NOT 0
JE CR_FOUND ; YES, JUMP

; CONTROL COMES HERE IF ALL CHARACTERS
; HAVE BEEN TRANSLATED BUT NO
; CARRIAGE RETURN 1S PRESENT.

; ETC.

CR_FOUND:
; DI-1 POINTS TO THE CARRIAGE RETURN
i IN ASCII_CHARS.

CODE ENDS

END

Figure 2-89. String Examples (Cont’d.)
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CHAPTER 3
THE 8089 INPUT/OUTPUT PROCESSOR

This chapter describes the 8089 Input/Qutput
Processor (IOP). Its organization parallels
Chapter 2; that is, sections generally proceed
from hardware to software topics as follows:

1. Processor Overview

Processor Architecture

Memory

Input/Output

Multiprocessing Features
Processor Control and Monitoring
Instruction Set

Addressing Modes

Programming Facilities

:OOO\IO\’JI&LHN

._.
e

Programming Guidelines and Examples

As in Chapter 2, the discussion is confined to
covering the hardware in functional terms; tim-
ing, electrical characteristics and other physical
interfacing data are provided in Chapter 4.

3.1 Processor Overview

The 8089 Input/Output Processor is a high-
performance, general-purpose [/O system
implemented on a single chip. Within the 8089 are
two independent I/O channels, each of which
combines attributes of a CPU with those of a very
flexible DMA (direct memory access) controller.
For example, channels can execute programs like
CPUs; the IOP instruction set has about 50 dif-
ferent types of instructions specifically designed
for efficient input/output processing. Each chan-
nel also can perform high-speed DMA transfers; a
variety of optional operations allow the data to be
manipulated (e.g., translated or searched) as it is
transferred. The 8089 is contained in a 40-pin
dual in-line package (figure 3-1) and operates
from a single’ +5V power source. An integral
member of the 8086 family, the IOP is directly
compatible with both the 8086 and 8088 when
these processors are configured in maximum
mode. The IOP also may be used in any system
that incorporates Intel’s Multibus™ shared bus
architecture, or a superset of the Multibus™
design.

vstt 7 0[] vec
Ala014 ] 2 39 [] A15/D15
A13D13[] 3 38 [ Ate1s3
A2012[] 4 37 [ atniss
Ao s 36 ] A18/S5
Atop10 ] 8 . 357 ateise
asmmo 7 34 [ BRE
AsmD8[]8 33 exti
A7io7 [} 9 32 ] EXT2
AsiD8 [] 10 3171 bRQ1
AsDs [} 11 8089 30 ] bRQ 2
A4pa [ 12 29[ [ocK
A3D3[] 13 28[] §2
A2/p2 ] 14 270§
A1D1}15 : 267 50
A0/D0 [] 16 25 RGIGT
SINTR1.[] 17 24| SEL
SINTR-2[] 18 2371 cA
CLK-] 19 221 READY
Vss [ 20 211 RESET

Figure 3-1. 8089 Input/Output Processor
Pin Diagram

Evolution

Figure 3-2 depicts the general trend in CPU and
1/0 device relationships in the first three genera-
tions of microprocessors. First generation CPUs
were forced to deal directly with substantial
numbers of TTL components, often performing
transfers at the bit level. Only a very limited
number. of relatively slow devices could be
supported.

Single-chip interface controllers were introduced
in the second generation. These devices removed
the lowest level of device control from the CPU
and let the CPU transfer whole bytes at once.
With the introduction of DMA controllers, high-
speed devices could be added to a system, and
whole blocks of data could be transferred without
CPU intervention. Compared to the previous
generation, 1/0 device and DMA controllers
allowed microprocessors to be applied to prob-
lems that required moderate levels of 1/0, both in
terms of the numbers of devices that could be sup-
ported and the transfer speeds of those devices.
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The controllers - themselves, "however, still
required a considerable amount of attention from
the CPU, and in many cases the CPU had to
respond to an interrupt with every byte read or
written. The CPU also had to stop while DMA
transfers were performed.

The 8089 -introduces the third generation of
input/output processing. It continues the trend of
simplifying the CPU’s “‘view’’ .of 1/0 devices by
removing another level of control from the CPU.
The CPU performs'an I/0 operation by building
a message in memory that describes the function
to be performed; the IOP reads the message, car-
ries out the operation and notifies the CPU when
it has finished. All'1/O devices appear to the CPU
as transmitting and receiving whole blocks of
data; the IOP can make both byte- and word-level
transfers invisible to the CPU: The IOP assumes
all device controller overhead, performs both pro-
grammed and DMA transfers; and can recover
from ‘‘soft’’ 1I/0 errors without-CPU interven-
tion; all of these activities may be performed
while the CPU is attending to other tasks.

Pr‘inv‘ciples‘of Operation

Since the 8089 is a new concept in microprocessor
components, this section surveys the basic opera-
tion. of the IOP as background to the detailed
descriptions provided in the rest of the chapter.
This summary delibérately omits some -operating
details in order to provide an integrated overview
of basic concepts.

CPU/IOP Communications

A CPU communicates with an IOP in two distinct
modes: initialization and command. The
initialization sequence is typicelly performed
when the system is powered-up or teset. The CPU
initializes the IOP by preparing a series of linked
message blocks in memory. On.a signal from the
CPU, the IOP reads these blocks and determines
from them how the data buses are ¢onfigured and
how access to the buses is to be controlled.
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Following initialization, the CPU directs all com-
munications to either of the IOP’s two channels;
indeed, during normal operation the IOP appears
to be two separate devices—channel 1 and chan-
nel 2. All CPU-to-channel communications center
on the channel control block (CB) illustrated in
figure 3-3. The CB is located in the CPU’s
memory space, and its address is passed to the
IOP during initialization. Half of the block is
dedicated to each channel. The channel maintains
the BUSY flag that indicates whether it is in the
midst of an operation or is available for a new
command. The CPU sets the CCW (channel com-
mand word) to indicate what kind of operation
the IOP is to perform. Six different commands
allow the CPU to start and stop programs,
remove interrupt requests, etc.

If the CPU is dispatching a channel to run a pro-
gram, it directs the channel to a parameter block
(PB) and a task block (TB); these are also shown
in figure 3-3. The parameter block is analogous to
a parameter list passed by a program to a
subroutine; it contains variable data that the
channel program is to use in carrying out its
assignment. The parameter block also may con-

tain space for variables (results) that the channel
is to return to the CPU. Except for the first two
words, the format and size of a parameter block
are completely open; the PB may be set up to
exchange any kind of information between the
CPU and the channel program.

A task block is a channel program-—a sequence of
8089 instructions that will perform an operation.
A typical channel program might usé parameter
block data to set up the IOP and a device con-
troller for a transfer, perform the transfer, return
the results, and then halt. However, there are no
restrictions on what a channel program can do; its
function may be simple or elaborate to suit the
needs of the application.

Before the CPU starts a channel program, it links
the program (TB) to the parameter block and the
parameter block to the CB as shown in figure 3-3.
The links are standard 8086/8088 doubleword
pointer variables; the lower-addressed word con-
tains an offset, and the higher-addressed word
contains a segment base value. A system may
have many different parameter and task blocks;
however, only one of each is ever linked to a
channel at any given time. '
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Figure 3-3. Command Communication Blocks
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After the CPU has filled in the CCW and has
linked the CB to.a parameter block and a task
block, if appropriate, it issues a charinel attention
(CA). This is done by activating the I0P’s CA
(channel attention) and SEL (channel select) pins.
The state of SEL at the falling edge of CA directs
the channel attention to channel 1 or channel 2. If
the IOP.is located in the CPU’s I/0 space, it
appears to the CPU as two consecutive 1/0 ports
(one for each channel), and an OUT instruction
to the port functions as a CA.-If the IOP is
memory-mapped, the channels appear as two
consecutive memory. locations, and any memory
reference instruction (e.g., MOYV) to these loca-
tions causes a channel attention.

An 10P channel attention is functionally similar
to a CPU interrupt. When the channel recognizes
the CA, it stops what it is doing (it will typically
be idle) and examines the command in the CCW.
If it is to'start a program, the channel loads the
addresses of the parameter and task blocks into
internal registers, sets its BUSY flag and starts
executing the channel program. After it has issued
the CA, the CPU'is free to perform other process-
ing; the channel can perform its function in
parallel, subject to limitations imposed by bus
configurations (discussed shortly).

When the channel has completed its program, it
notifies the CPU by clearing its BUSY flag in the
CB. Optionally, it may issue an interrupt request
to the CPU.

The CPU/IOP communication structure is sum- -

marized in figure 3-4. Most communication takes
place via ‘‘message areas’’ shared in common
memory. The only direct hardware communica-
tions between the devices are channel attentions
and interrupt requests.

Chann_els

Each of the two IOP channels operates
independently, and each has its own register set,
channel attention, interrupt request and DMA
control signals. At a given point in time, a chan-
nel may be idle, executing a programi, performing
a DMA transfer, or responding to a channel
attention. Although only one channel actually
runs at a time, the channels can be active concur-
rently, alternating their operations (e.g., channel
1 may execute instructions in ‘the periods between
successive DMA transfer cycles run by channel 2).
A built-in priority system allows high-priority
activities on one channel to preempt less critical
operations on the other channel. The CPU is able
to further adjust priorities to handle special cases.
The CPU starts the channel and can halt it, sus-
pend it, or cause it to resume a suspended’ opera-
tion by placing different values in the CCW.

Channel Progréms (Task Blocks)

Channel programs are written in ASM-89, the
8089 assembly language. About 50 basic instruc-
tions are available. These instructions operate on
bit, byte, word and doubleword (pointer) variable
types; a 20-bit physical address variable type (not
used by the 8086/8088) can also be manipulated.
Data may be taken from registers, immediate con-
stants and memory. Four memory addressing
modes allow flexible access to both memory
variables and 1/0O devices located anywhere in
either the CPU’s megabyte memory space or in
the 8089’s 64k 1/0 space.

The IOP instruction set contains general purpose
instructions similar to those found in CPUs as
well ‘as instructions specifically tailored for 1/0

 CHANNEL ATTENTION
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operations. Data transfer, simple arithmetic,
logical and address manipulation operations are
available. Unconditional jump and call instruc-
tions also are provided so that channel programs
can link to each other. An individual bit may be
set or cleared with a single instruction. Condi-
tional jumps can test a bit and jump if it is set (or
cleared), or can test a value and jump if it is zero
(or non-zero). Other instructions initiate DMA
transfers, perform a locked test-and-set
semaphore operation, and issue an interrupt
request to the CPU.

DMA Transfers

The 8089 XFER (transfer) instruction prepares
the channel for a DMA transfer. It executes one
additional instruction, then suspends program
execution and enters the DMA transfer mode.
The transfer is governed by channel registers
setup by the program prior to executing the
XFER instruction.

Data is transferred from a source to a destination.
The source and destination may be any locations
in the CPU’s memory space or in the IOP’s I/0O
space; the IOP makes no distinction between
memory components and I/O devices. Thus
transfers may be made from 1/0 device to
memory, memory.to I/O device, memory to
memory and I/0 device to 1/0 device. The IOP
automatically matches 8- and 16-bit components
to each other.

Individual transfer cycles (i.e., the movement of a
byte or a word) may be synchronized by a signal
(DMA request) from the source or from the
destination. In the synchronized mode, the chan-
nel waits for the synchronizing signal before start-
ing the next transfer cycle. The transfer also may
be unsynchronized, in which case the channel
begins the next transfer cycle immediately upon
completion of the previous cycle.

A transfer cycle is performed in two steps: fetch-
ing a byte or word from the source into the IOP
and then storing it from the IOP into the destina-
tion. The IOP automatically optimizes the
transfer to make best use of the available data bus
widths, For example, if data is being transferred
from an 8-bit device to memory that resides on a
16-bit bus (e.g., 8086 memory), the IOP will nor-
mally run two one-byte fetch cycles and then store
the full word in a single cycle.

Between the fetch and store cycles, the IOP can
operate on the data. A byte may be translated to
another code (e.g., EBCDIC to ASCII), or com-
pared to a search value, or both, if desired.

A transfer can be terminated by several
programmer-specified conditions. The channel
can stop the transfer when a specified number (up
to 64k) of bytes has been transferred. An external
device may stop a transfer by signaling on the
channel’s external terminate pin. The channel can
stop the transfer when a byte (possibly translated)
compares equal, or unequal, to a search value.
Single-cycle termination, which stops uncondi-
tionally after one byte or word has been stored, is
also available.

When the transfer terminates, the channel
automatically resumes  program execution. The
channel program can determine the cause of the
termination in situations where multiple termina-
tions are possible (e.g., terminating when 80 bytes
are transferred or a carriage return character is
encountered, whichever occurs first). As an exam-
ple of post-transfer processing, the channel pro-
gram could read a result register from the I/0
device controller to determine if the transfer was
performed successfully. If not (e.g., a CRC error
was detected by the controller), the channel pro-
gram could retry the operation without CPU
intervention.

A channel program typically ends by posting the
result of the operation to a field supplied in the
parameter block, optionally interrupting the
CPU, and then halting. When the channel halts,
its BUSY flag in the channel control block is
cleared to indicate its availability for another
operation. As an alternative to being interrupted
by the channel, the CPU can poll this flag to
determine when the operation has been
completed.

Bus Configurations

As shown in figure 3-5, the IOP can access
memory or ports (I/O devices) located in a
1-megabyte system space and memory or ports
located in a 64-kilobyte 1/0 space. Although the
10P only has one physical data bus, it is useful to
think of the IOP as accessing the system space via
a system data bus and the I/0 space over an 1/O
data bus. The distinction between the ‘‘two”’
buses is based on the type-of-cycle signals output

3-5
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by the 8288 Bus Controller. Components in the
system .space respond. to' the memory read and
memory write signals, whether they are memory
or 1/0 devices. Components in the 1/0 space
respond to the 170 read and 1/0 write signals.
Thus 1/0 devices located in the system space are
memory-mapped and memory in the I/0 space is
1/0-mapped. The two basic configuration op-
tions differ in the degree to which the IOP shares
these buses with the CPU. Both configurations re-
qulre an'8086/8088 CPU to be strapped in max-
imum mode.

In the local configuration, shown in figure 3-6,
the IOP (or IOPs if two. are used) shares both
buses with the CPU. The system bus and the 1/0
bus are the same width (8 bits if the CPU is an

8088 or 16 bits if the CPU is an 8086). The IOP
system space corresponds to the CPU memory
space, and the IOP 1/0 space corresponds to the
CPU 1/0 space. Channel programs are located in
the system space; I/0 devices may be located in
either space. The IOP requests use of the bus for
channel program instruction fetches as well as for
DMA and programmed transfers. In the local
configuration, either the IOP or the CPU may use
the buses,. but not both simultaneously. The
advantage . of .the local configuration is that
intelligent DMA may be added to a system with
no additional components beyond the IOP. The
disadvantage is that parallel operation of the pro-
cessors is limited to cases in which the: CPU has
instruction in its queue that can be executed
without using the bus. ‘

170 /0
DEVICE DEVICE
MEMORY. MEMORY ; :
170 ‘
DEVICE
SYSTEM SPACE (1 MBYTE) 1/0 SPACE (64 KBYTES)

1/0
DATA
BUS -

10P

" Figure 3-5. IOP Data Buses
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SYSTEM BUS
MEMORY,
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" Figure 3-6. Local Configuration

In the remote configuration (figure 3-7), the IOP
(or IOPs) shares a common system bus with the
CPU. Access to this bus is controlled by 8289 Bus
Arbiters. The IOP’s I/0 bus, however, is
physically separated from the CPU in the remote
configuration. Two IOPs can share the local I/0
bus. Any number of remote JOPs may be con-
tained in a system, configured in remote clusters
of one or two. The local 1/0 bus need not be the
same physical width as the shared system bus,
allowing an IOP, for example, to interface 8-bit
peripherals to an 8086. In the remote configura-
tion, the IOP can access local I/0 devices and
memory without using the shared system bus,
thereby reducing bus contention with the CPU.
Contention can further be reduced by locating the
IOP’s channel programs in the local 1/0 space.
The IOP can then also fetch instructions without

accessing the system' bus. Parameter, channel
control and other CPU/IOP communication
blocks must be located in system memory,
however, so that both processors can access them.
The remote configuration thus increases the
degree to which an IOP and a CPU can operate in
parallel and thereby increases a system’s
throughput potential. The price paid for this is
that -additional hardware must be added to
arbitrate use of the shared bus, and to separate
the shared and local buses (see Chapter 4 for
details).

It is also possible to configure an IOP remote to
one CPU, and local to another CPU (see figure
3-8). The local CPU could be used to perform
heavy computational routines for the IOP.
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A Sample Transaction

Figure 3-9 shows how a CPU and an IOP might
work together to read a record (sector) from a
floppy disk. This example is not illustrative of the
I0P’s full capabilities, but it does review its basic
operation and its interaction with a CPU.

The CPU must first obtain exclusive use of a

channel. This can be done by performing a ‘‘test
and set lock’ operation on the selected channel’s - .
BUSY flag. Assuming the CPU wants to use

channel 1, this' could be accompllshed
PL/M-86 by coding similar to the following:

DO WHILE LOCKSET (@CH1.BUSY,0FFH),
END;

In ASM-86 a loop containing the XCHG instruc-

tion prefixed by LOCK would accomplish the .

same thing, namely testing the BUSY flag until it

is clear: (OH), and immediately setting it to FFH:
(busy) to prevent another task or processor from.

obtaining use of the channel.

Having obtained the channel, the CPU fills'in a
parameter block (see figure 3-10). In this case, the

in.

CPU passes the following parameters to the chan-

nel: the address of the floppy disk controller, the
address of the buffer where the data is to be
placed, and the drive, track and sector to be read.
It also supplies space for the IOP to return the

delete, etc.) in the parameter block and let a single
channel program execute different routines
depending on which function is requested.

After the communication blocks have been setup,
the CPU dispatches the channel by issuing a chan-
nel attention, typically by an OUT instruction for
an I/0-mapped 8089, or a MOV or other memory
reference mstructlon for a memory-mapped 8089.

The channel begins executing the channel pro-
gram (task block) whose address has been placed
in the parameter block by the €CPU. In this case
the program initializes the 8271 Floppy Disk Con-
troller by sending it a “‘read data” command
followed by a parameter-indicating the track to be
read. The program initializes the channel registers
that define and control the DMA transfer.

Having prepared the 8271 and the channel itself,
the channel program executes a XFER instruction
and sends a final parameter (the sector to be read)
to the 8271. (The 8271 enters DMA transfer mode
immediately upon receiving the last of a series of
parameters; sending the last parameter after the
XFER instruction gives the channel time to setup
for the transfer.) The DMA transfer begins when
the 8271 issues a DMA request to the channel.
The transfer continues until the 8271 issues an
interrupt request, indicating that the data has

““been transferred- or-that an error has occurred.

result of the operation. Note that this is quite a -

“low-level” parameter block in that it implies
that the CPU has detailed knowledge of the I/0
system. For a “‘real’’ system, a higher-level
parameter block would isolate the CPU from 1/0
device characteristics. Such a block might contain
more general parameters such as file name and
record key.

After setting up the parameter block, the CPU
writes a ‘“‘start channel program’’ command in
channel 1’s CCW. Then the CPU places the
address of the desired channel program in the
parameter block and writes the parameter block
address in the CB. Notice that in this simple
example, the CPU “‘knows’’ the address of the
channel program for reading from the disk, and
presumably also ‘‘knows’’ the address of another
program for writing, etc. A more general solution
would be to place a function code (read, write,

The 8271’s interrupt request.line is tied to the
IOP’s EXTI (external terminate on charinel 1) pin
so that the channel interprets an mterrupt request
as ‘an’extérnal terminate condition.” Upon ter-
mination of the transfeér, the channel resumes
executing instructions and reads.the 8271: result
register to determine if the data ‘was read suc-

“cessfully. If a soft (correctable) error is indicated,

the 10P retriés the transfer: If a hard (uricorrect-
able) error is detected, or if the transfer has been
successful, the IOP posts the content of the result
register to the parameter block result field, thus
passing the result back to the CPU. The channel
then interrupts the CPU (to inform the CPU that
the request has been processed) and halts.

When the CPU recognizes the interrupt, it
inspects the result field in the parameter block to
see if the content of the buffer is valid. If so, it
uses the data; otherwise it typically executes an
errorroutine. -

Mnemonics © intel, 1979
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Figure 3-10. Sample Parameter Block

Applications

Combining the raw speed and responsiveness.of a
traditional DMA controller,
instruction set, and a flexible bus organization,
the 8089 IOP is a very versatile 1/0O system.

Applications with demanding I/O requirements,

previously beyond the abilities of microcomputer

an 1/0-oriented = -

systems, can be undertaken with the IOP. These -

kinds of 1/0O-intensive applicationsinclude:

e systems that employ high- bandwidth, low-
latency devices such as hard dlSkS and
graphics terminals;

® gsystems with many dev1ces
asynchronous service; and

®  systems with high-overhead peripherais such
as intelligent CRTs and graphics terminals.

In addition, virtually every application that per-
forms a moderate amount of I/O can benefit
from the design philosophy embodied in the [OP:
system functions should be distributed among
special-purpose processors. An IOP channel pro-
gram is likely to be both faster and smaller than
an equivalent program implemented with a CPU.

requiring

Programming also is more straightforward w1th \

the IOP’s specialized instruction set.

Removing 1/0 from the CPU and assigning it to
one or more 1OPs simplifies and structures a
system’s design. The main interface to the 170
system can be limited to the parameter blocks.
Once these are defined, the I/0 system can be

designed and implemented in p_arallel with the rest .

of the system. I/0 specialists can work on the I/O
system without detailed knowledge of the applica-
tion; . conversely, the operating system and
application teams do not need to be expert in the
operation of 170 devices. Standard high-level I/0
systems can be-used in multiple application
systems. Because-the application and 1/0 systems
are . almost - independent, application system
changes can be"introduced without affecting the
170 'system. New peripherals can similarly be
incorporated . into-a system without impacting
applications or -operating system software. The
I0P’s simple CPU interface also is designed to be
compatible with future Intel CPUs.

Keeping in mind the true general-purpose nature
of the IOP, some of the situations where it can be
used to advantage are:

¢  Bus matching = The IOP can transfer data

between virtually any combination of 8- and

16-bit meémory and I/O components. For

¢ “éxample, it can interface a 16-bit peripheral

_to'an 8:bit CPU bus, such as the 8088 bus.

The IOP also provides a straightforward

means of performing DMA between an 8-bit

- peripheral and 8086 memory that is split

into odd- and even-addressed banks. The

. 8089 can access both 8- and 16-bit
‘peripherals connected to a 16-bit bus.

e String processing - The 8089 can perform a
memory move, translate, scan-for-match or
scan-for-nonmatch operation much faster
than the equivalent instructions in an 8086 or
8088. Translate and scan operations can be
setup so that the source and destination refer
to the same addresses to permit the string to
be operated on in place.

*  Spooling - Data from low-speed devices such
. -as terminals and paper tape readers can be
read by the 8089 and placed in memory or on
disk until the transmission is complete. The
IOP can then transfer the data at high speed
when it is needed by an application program.
Conversely, output data ultimately destined
+ for a low-speed device such as a printer, can
be temporarily spooled to disk and then
printed later. This permits batches of data to
be gathered ‘or distributed by low-priority
programs that runin the background, essen-
tially using up “‘spare”” CPU and IOP cycles.
Application programs that use or produce
" the data can execute faster because they are
not bound by the low-speed devices.
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Multitasking operating systems - A
multitasking operating system can dispatch
I7/0 tasks to channels with an absolute
minimum of overhead. Because a remote
channel can run in parallel with the CPU, the
operating system’s capacity for servicing
application tasks can increase dramatically,
as can its ability to handle more, and faster,
170 devices. If both channels of an IOP are
active concurrently, the IOP automatically
gives preference to the higher-priority activ-
ity (e.g., DMA normally preempts channel
program execution). The operating system
can adjust the priority mechanism and also
can halt or suspend a channel to take care of
a critical asynchronous event.

Disk systems - The IOP can meet the speed
and latency requirements of hard disks. It
can be used to implement high-level, file-
oriented systems that appear to application
programs as simple commands: OPEN,
READ, WRITE, etc. The IOP can search
and update disk directories and maintain free
space maps. ‘‘Hierarchical memory”’ systems
that automatically transfer data among
memory, high-speed disks and low-speed
disks, based on frequency of use, can be built
around IOPs. Complex database searches
(reading data directly or following pointer
chains) can appear to programs as simple
commands and can execute in parallel with
_application programs if an IOP is configured
remotely.

Display terminals - The 8089 is well suited to
handling the DMA requirements of CRT
controllers. The IOP’s transfer bandwidth is
high enough to support both alphanumeric
~and graphic displays. The 8089 can assume
responsibility for refreshing the display from
memory data; in the remote configuration,
the refresh overhead can be removed from
the system bus entirely. Linked-list display
algorithms may be programmed to perform
sophisticated modes of display.

Each time it performs a refresh operation,
the IOP can scan a keyboard for input and
translate the key’s row-and-column format
into an ASCII or EBCDIC character. The
8089 can buffer the characters, scanning the
stream until an end-of-message character
(e.g., carriage return) is detected, and then
interrupt the CPU,

A single IOP can concurrently support an
alphanumeric CRT and keyboard on one
channel and a floppy disk on the other chan-
nel. This configuration makes use of approx-
imately 30 percent of the available bus band-
width. Performance can be increased within
the available bus bandwidth by adding an
8086 or 8088 CPU to a remote IOP con-
figuration. This configuration can provide
scaling, rotation or other sophisticated
display transformations.

3.2 Processor Architecture

The 8089 is internally divided into the functional
units depicted schematically in figure 3-11. The
units are connected by a 20-bit data path to obtain
maximum internal transfer rates.

Common Control Unit (CCU)

All IOP operations (instructions, DMA transfer
cycles, channel attention responses, etc.) are com-
posed of sequences of more basic processes called
internal cycles. A bus cycle takes one internal
cycle; the execution of an instruction may require
several internal cycles. There are 23 different
types of internal cycles each of which takes from
two to eight clocks to execute, not including
possible wait states and bus arbitration times.

The common control unit (CCU) coordinates the
activities of the IOP primarily by allocating inter-
nal cycles to the various processor umits; i.e., it
determines which unit will execute the next inter-
nal cycle. For example, when both channels are
active, the CCU determines which channel has
priority and lets that channel run; if the channels
have equal priority, the CCU “‘interleaves’’ their
execution (this is discussed more fully later in this
section). The CCU also initializes the processor.

Arithmetic/Logic Unit (ALU)

The ALU can perform unsigned binary arithmetic
on 8- and 16-bit binary numbers. Arithmetic
results may be up to 20 bits in-length. Available
arithmetic instructions include addition, incre-
ment and decrement. Logical operations (“‘and,’”
““or”* and ‘‘not’’) may be performed on either 8-
or 16-bit quantities.
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Figure 3-11. 8089 Block Diagram

Assembly/Disassembly Registers

All data entering the chip flows through these
registers. When data is being transferred between
different width buses, the 8089 uses the
assembly/disassembly registers to effect the
transfer in the fewest possible bus cycles. In a
DMA transfer from an 8-bit peripheral to 16-bit
memory, for example, the IOP runs two bus
cycles, picking up eight bits in each cycle,
assembles a 16-bit word, and then transfers the
word to memory in a single bus cycle. (The first
and last cycles of a transfer may be performed
differently to accommodate odd-addressed
words; the IOP automatically adjusts for this
condition.)

Instruction Fetch Unit

This unit controls instruction fetching for the
executing channel (one channel actually runs at a
time). If the bus over which the instructions are
being fetched is eight bits wide, then the instruc-
tions are obtained one byte at a time, and ecach
fetch requires one bus cycle. If the instructions
are being fetched over a 16-bit bus, then the
instruction fetch unit automatically employs a 1-
byte queue to reduce the number of bus cycles.
Each channel has its own queue, and the activity
of one channel does not affect the other’s queue.

During sequential execution, instructions are
fetched one word at a time from even addresses;
each fetch requires one bus cycle. This process is
shown graphically in figure 3-12. When the last
byte of an instruction falls on an even address, the
odd-addressed byte (the first byte of the following
instruction) of the fetched word is saved in.the
queue. When the channel begins execution of the
next instruction, it fetches the first byte from the
quene rather than from memory. The queue,
then, keeps the processor fetching words, rather
than bytes, thereby reducing its use of the bus and
increasing throughput.

The processor fetches bytes rather than words in
two cases. If a program transfer instruction (e.g.,
JMP or CALL) directs the processor to an
instruction located at an odd address, the first
byte of the instruction is fetched by itself as
shown in figure 3-13. This is because the program
transfer invalidates the content of the queue by
changing the serial flow of execution.

The second case arises when an LPDI instruction
is located at an odd address. In this situation, the
six-byte LPDI instruction is fetched: byte, word,
byte, byte, byte, and the queue is not used. The
first byte of the following instruction is fetched in
one bus cycle as if it had been the target of a pro-
gram transfer. Word fetching resumes with this
instruction’s second byte.

3-14
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Bus Interface Unit (BIU)

The BIU runs all bus cycles, transferring instruc-
tions and data between the IOP and external
memory or peripherals. Every bus access is
associated with a register tag bit that indicates to
the BIU whether the system or 1/0 space is to be
addressed. The BIU outputs the type of bus cycle
(instruction fetch from 1/0 space,_data store into
system space, etc.) on status lines SO, S1, and S2.
An 8288 Bus Controller decodes these lines and
provides signals that selectively enable one bus or
the other (see Chapter 4 for details).

The BIU further distinguishes between the
physical and logical widths of the system and I/0
buses. The physical widths of the buses are fixed
and are communicated to the BIU during
initialization. In the local configuration, both
buses must be the same width, either 8 or 16 bits
(matching the width of the host CPU bus). In the
remote configuration, the IOP system bus must
be the same physical width as the bus it shares

with the CPU. The width of the IOP’s I/O bus,

which is local to the 8089, may be selected
independently. If any 16-bit peripherals are
located in the 1/0 space, then a 16-bit 1/0 bus
must be used. If only 8-bit devices reside on the
I/0 bus, then either an 8- or a 16-bit I/O bus may
be selected. A 16-bit I/0 bus has the advantage of
easy accommodation of future 16-bit devices and
fewer instruction fetches if channel programs are
placed in the 1/0 space.

For a given DMA transfer, a channel program
specifies the logical width of the system and the
1I/0 buses; each channel specifies logical bus
widths independently. The logical width of an
8-bit physical bus can only be eight bits. A 16-bit
physical bus, however, can be used as either an 8-
or 16-bit logical bus. This allows both 8- and

16-bit devices to be accessed over a single 16-bit.

physical bus. Table 3-1 lists the permissible
physical and logical bus widths for both locally
and remotely configured IOPs. Logical bus width
pertains to DMA transfers only. Instructions are
fetched and operands are read and written in
bytes or words depending on physical bus width.

In addition to performing transfers, the BIU is
responsible for local bus arbitration. In the local
configuration, the BIU wuses the RQ/GT
(request/grant) line to obtain the bus from the
CPU and to return it after a transfer has been per-
formed. In the remote configuration, the BIU

uses RQ/GT to coordinate use of the local 1/0
bus with another IOP or a local CPU, if present.
System bus arbitration in the remote configura-
tion is performed by an 8289 Bus Arbiter that
operates invisibly to the IOP. The BIU
automatically asserts the LOCK (bus lock) signal
during execution of a TSL (test and set lock)
instruction and, if specified by the channel pro-
gram, can assert the LOCK signal for the dura-
tion of a DMA transfer. Section 3.5 contains a
complete discussion of bus arbitration.

Table 3-1. Physical/Logical Bus Combinations

Contiguration System Bus 170 Bus
9 Physical:Logical Physical:Logical
Local 88 8:8
i 16:8/16 16:8/16
8:8 8:8
Remote 16:8/16 16:8/16
emo 16:8/16 88
8:8 16:8/16
~ Channels

Although the 8089 is a single processor, under
most circumstances it is useful to think of it as
two independent channels. A channel may per-
form DMA transfers and may execute channel
programs; it also may be idle. This section
describes the hardware features that support these
operations. )

1/0 Control

Each channel contains its own I/O control section
that governs the operation of the channel during

. DMA transfers. If the transfer is synchronized,

the channel waits for a signal on its DRQ (DMA

- request) line before performing the next fetch-

store sequence in the transfer. If the transfer is to
be terminated by an external signal, the channel
monitors its EXT (external terminate) line and
stops the transfer when this liné goes active.
Between the fetch and store cycles (when the data
is in the IOP) the channel optionally counts,
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translates, and scans the data, and may terminate
the transfer based on the results of these opera-
tions. Each channel also has a SINTR (system
interrupt) line that can be activated by software to
issue an interrupt request to the CPU.

Registers

Figure 3-14 illustrates the channel register set, and
table 3-2 summarizes the uses of each register.
Each channel has an independent set of registers;
they are not accessible to the other channel. Most
of the registers play different roles during channel
program execution than in DMA transfers. Chan-
nel programs must be careful to save these
registers in memory prior to a DMA transfer if
their values are needed following the transfer.

General Purpose A (GA). A channel program
may use GA for a general register or a base
register. A general register can be an operand of
most IOP instructions; a base register is used to
address memory operands (see' section 3.8).
Before initiating a DMA transfer, the channel
program points GA to either the source or
destination address of the transfer.

General Purpose B (GB). GB is functionally
interchangeable with GA. If GA points to the
source of a DMA transfer, then GB points to the
destination, and vice versa.

TB‘}-? 19 1.5 '{ (]
ra GENERAL PURPOSE A GA
I_ -I GENERAL PURPOSE B GB
I_ 4 GENERAL PURPOSE C GC
t :ll TASK POINTER TP
PARAMETER BLOCK POINTER | PP
INDEX X
BYTE COUNT BC
MASK/COMPARE MC

CHANNEL CONTROL cc

Figure 3-14. Channel Register Set

General Purpose C (GC). GCmaybeusedasa
general register or a base register during channel
program execution. If data is to be translated dur-
ing a DMA transfer, then the channel program
loads GC with the address of the first byte of a
translation table before initiating the transfer. GC
is not altered by a transfer operation.

Task Pointer (TP). The CCU loads TP from the
parameter block when it starts or resumes a chan-
nel program. During program execution, the
channel automatically updates TP to point to the

Table 3-2. Channel Register Summary

Program System
Register | Size A orl/0 Use by Channel Programs Use in DMA Transfers
ccess .
Pointer
GA 20 Update | Either |General, base Source/destination pointer
GB 20 Update | Either |General, base Source/destination pointer
GC 20 Update [ Either |General, base Transiate table pointer
TP 20 Update | Either [Procedure return, Adjusted to reflect cause of
instruction pointer termination
PP 20 [Reference|System |Base N/A
IX 16 Update N/A |General, auto-increment N/A
BC 16 Update N/A |General Byte counter
MC 16 Update | N/A |General, masked compare Masked compare
CC 16 Update | N/A |Restricted use recommended Defines transfer options
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next instruction to be executed; i.e., TP is used as
an instruction pointer or program counter. Pro-
gram transfer instructions (JMP, CALL, etc.)
update TP to cause nonsequential execution. A
procedure (subroutine) returns to the calling pro-
gram by loading TP with an address previously
saved by the CALL instruction, The task pointer
is fully accessible to channel programs; it can be
used as a general register or as a base register.
Such use is not recommended, however, as it can
make programs very difficult to understand.

Parameter Block Pointer (PP). The CCU
loads this register with- the address of the
parameter block before it starts a channel pro-
gram. The register cannot be altered by a channel
program, but is very useful as a base register for
accessing data in the parameter block. PP is not
used during DMA transfers.

Index (IX). IX may be used as a general register
during channel program execution. It also may be
used ‘a$ an index register ‘to address memory
operands (the address of the operand is computed
by adding the content of IX to the content of a
base register). When specified as an index
register, IX may be optionally auto-incremented
as the last step in the instruction to provide a con-
venient means of ‘‘stepping’’ through arrays or
strings. IX is not used in DMA transfers.

Byte Count (BC). BC may be used as a general
register during channel program execution. If
DMA is to be terminated when a specific number
of bytes has been transferred, BC should be
loaded with the desired byte count before
initiating the transfer. During DMA, BC is
decremented for each byte transferred, whether
byte count termination has been selected or not.
If BC reaches zero, the transfer is stopped only if
byte count termination has been specified. If byte
count termination has not been selected, BC
“wraps around’’ from OH to FFFFH and con-
tinues to be decremented.

Mask/Compare (MC). A channel program may
use MC for a general register. This register also
may be used in either a channel program or in a
DMA transfer to perform a masked compare of a
byte value. To use MC in this way, the program
loads a compare value in the low-order eight bits
of the register and a mask value in the upper eight
bits (see figure 3-15). A ‘‘1”’ in a mask bit selects

the bit in the corresponding position in the com- .

pare value; a “‘0” in a mask bit masks the cor-

responding bit in the compare value. In figure
3-15, a value compared with MC will be con-.
sidered equal if its low-order five bits contain the
value 00100; the upper three bits may contain any
value since they arer masked —out of the
comparison.

15 87 0

1
'|00011111=10100100j

MASK COMPARE
VALUE VALUE

1
|X'XXD’0100|

MASKED
COMPARE
VALUE

(X = IGNORE VALUE OF CORRESPONDING BIT)

Figure 3-15. Mask/Compare Register

Channel Control (CC). The content of the
channel control register governs a DMA transfer
(see figure 3-16). A channel program loads this
register with appropriate values before beginning
the transfer operation; section 3.4 covers the
encoding-of each field in detail. Bit 8 (the chain
bit) of CC pertains to channel program execution
rather than to a DMA transfer. When this bit is
zero, the channel program runs at normal prior-
ity; when it is one, the priority of the program is
raised to the same level as DMA (priorities are
covered later in this section). Although a channel
program may use CC as a general register, such
use is not recommended because of the side
effects on the chain bit and thus on the priority of
the channel program. Channel programs should
restrict their use of CC to loading control values
in preparation for a DMA transfer, setting and
clearing the chain bit, and storing the register.

Program Status Word (PSW)

Each channel maintains its own program status
word (PSW) as shown in figure 3-17. Channel-
programs do not. have access to the PSW. The
PSW records the state of the the channel so that
channel operation may' be suspended and then
resumed later. When the CPU issues a “‘suspend”’
command, the channel saves the PSW, task

* pointer, and task pointer tag bit in the first four
.bytes of the channel’s parameter block as shown

in figure 3-18. Upon. receipt of a subsequent
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Figure 3-16. Channel Control Register

“resume’’ command, the PSW, TP, and TP tag
bit are restored from the parameter block save
area and execution resumes.

Two conditions override the normal channel
priority mechanism. If one channel is performing
DMA (priority 1) and the channel receives a chan-
nel attention (priority 2), the channel attention is
serviced at the end of the current DMA transfer
cycle. This override prevents a synchronized
DMA transfers from ‘‘shutting out’’ a channel
attention. DMA terminations and chained chan-
nel programs postpone recognition of a CA on
the other channel; the CA is latched, however,
and is serviced as soon as priorities permit.

The IOP’s LOCK (bus lock) signal also
supersedes channel switching. A running channel
will not relinquish control of the processor while
LOCK is active, regardless of the priorities of the
activities on the two channels. This is consistent
with the purpose of the LOCK signal: to
guarantee exclusive access to a shared resource in
a multiprocessing system. Refer to sections 3.5
and 3.7 for futher information on the LOCK
signal and the TSL instruction.

Tag Bits

Registers GA, GB, GC, and TP are called pointer
registers because they may be used to access, or

7 L]

 °Jxe| o [is]ic]ra] s o]
I_L- DESTINATION BUS LOGICAL WIDTH (0 = 8, 1 = 16}
SOURCE BUS LOGICAL WIDTH (0 =3, 1 = 16)
TASK BLOCK IN P
INTERRUPT CONTROL (0 = DISABLED, 1 = ENABLED)
INTERRUPT SERVICE (0 = SINTRy INACTIVE 1 = SINTRy ACTIVE)
BUS LOAD LIMIT
IN
PRIORITY BIT

Figure 3-17. Program Status Word
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Figure 3-18. Channel State Save Area
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point to, addresses in either the system space or
the 170 space. The pointer registers may address
either memory or 1/0 devices (IOP instructions
do not distinguish between memory and 170
devices since the latter are memory-mapped). The
tag bit associated with each register (figure 3-14)
determines whether  the register’ points- to an
address in the system. space (tag=0) or the 1/0
space (tag=1).

The CCU sets or clears TP’s tag bit depending on
whether the command it receives from the CPU is
‘“‘start channel program in system space,”’ or
“‘start channel program in I/0 space.’”’ Channel
programs alter the tag bits of GA, GB, GC, and
TP by using different instructions for loading the
registers. Briefly, a “‘load pointer’ instruction
clears a tag bit, a “‘move’’ instruction sets a tag
bit, and a ‘““move pointer’’ instruction moves a
memory value (either 0 or 1) to a tag bit. Section
3.9 covers these instructions in detail.

If a register points to the system space, all 20 bits
are placed on the address lines to allow the full
megabyte to be directly addressed. If a register
points to the I/0 space, the upper four bits of the
address lines are undefined; the lower 16 bits are
sufficient to access any locatlon in the 64k byte
1/0 space.

Concurrent Channel Opération

Both channels may be active concurrently, but
only one can actually run at a time. At the end of

each internal cycle, the CCU lets one channel or
-the other execute the next internal cycle. No extra
overhead is incurred by this channel switching.

- The basis for making the determination is a
priority mechanism built into .the IOP. This
mechanism recognizes that some kinds of
activities. (e.g., DMA) are more important than
others. Each activity that a channel can perform
has a priority that reflects its relative importance
(see table 3-3).

Two new activities are introduced in table 3-3.
When a DMA transfer terminates, the channel
executes a short internal channel program. This
DMA termination program adjusts TP so that the
user’s program resumes at the instruction
specified when the transfer was setup (this is
discussed in detail in section 3.4). Similarly, when
a channel attention is recognized, the channel
executes an internal program that examinés the
CCW and carries out its command. Both of these
programs consist of standard 8089 instructions
that are fetched from internal ROM. Intel’
Application Note AP-50, Debugging Strategies
and Considerations for 8089 Systems, lists the
instructions in these programs. Users monitoring
the bus during debugging may see operands read

or written by the termination or channel attention
programs. The instructions themselves, however,
will not appear on the bus as they are resident in
the chip.

Notice also that, according to table 3-3, a channel
program may run at priority 3 or at priority 1.

Table 3-3. Channel Priorities and Interleave Boundaries

Channel Activity - (1 =P ::;rliitgst) By I!)nh:lfleave BOU;;’ letruction :
DMA transfer 1 Buscycle! Bus cycie'
DMA termination sequence 1 “ Internal cyc|e‘ . None
Chahnel program (chained) 1 Internal cycle® Instruction
Channel attention sequence 2 internal cycle o None
Channel program (not chained) 3 Internal cycle? Instruction
Idle 4 Two clocks Two clocks

'DMA is not interleaved while LOCK is active.
2Except TSL instruction; see section 3.7.
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Channel program priority is determined by the
chain bit in the channel control register. If this bit
is cleared, the program runs at normal priority
(3); if it is set, the program is said to be chained,
and it runs at the same priority as DMA. Thus,
the chain bit provides a way to raise the priority
of a critical channel program.

The CCU lets the channel with the highest priority
run. If both channels are running activities with
the same priority, the CCU examines the priority
bits in the PSWs. If the priority bits are unequal,
the channel with the higher value (1) runs. Thus,
the priority bit serves as a ‘‘tie breaker’’ when the
channels are otherwise at the same priority level.
The value of the priority bit in the PSW is loaded
from a corresponding bit in the CCW; therefore,
the CPU can control which channel will run when
the channels are at the same priority level. The
priority bit has no effect when the channel
priorities are different. If both channels are at the
same priority level and if both priority bits are
equal, the channels run alternately without any
additional overhead.

The CCU switches channels only at certain points
called interleave boundaries; these vary according
to the type of activity running in each channel and
are shown in table 3-3. In table 3-3 and in the
following discussion, the terms ‘‘channel A’ and
“‘channel B”’ are used to identify two active chan-
nels that are bidding for control of an IOP.
“‘Channel A”’ is the channel that last ran and will
run again unless the CCU switches to ‘‘channel
B.” Where the CCU switches from one channel
(channel A) to another (channel B) depends on
whether channel B is performing DMA or is
executing instructions. For this determination,
instructions in the internal ROM are considered
the same as instructions executed in user-written
channel programs (chained or not chained). Table
3-3 shows that a switch from channel A to chan-
nel B will occur sooner if channel B is running
DMA. DMA, then, interleaves instruction execu-
tion at internal cycle boundaries. Since instruc-
tions are often composed of several internal
cycles, instruction execution on channel A can be
suspended by DMA on channel B (when channel
A next runs, the instruction is resumed from the
point of suspension). DMA on channel A is
interleaved by DMA on channel B after any bus
cycle (when channel A runs again, the DMA
transfer sequence is resumed from the point of
suspension). If both channels are executing pro-
grams, the interleave boundaries are extended to

instruction boundaries: a program on channel B
will not run until channel A reaches the end of an
instruction. Note that a DMA termination
sequence or channel attention sequence on chan-
nel A cannot be interleaved by instructions on
channel B, regardless -of channel B’s priority.
These internal programs are short, however, and
will not delay channel B for long (see Chapter 4
for timing infurmation).

Table 3-4 summarizes the channel switching
mechanism with several examples. It is important
to remember that channel switching occurs only
when both channels are ready to run. In typical
applications, one of the channels will be idle
much of the time, either because it is waiting to be

" dispatched by the CPU or because it is waiting for

a DMA request in a synchronized transfer. (Dur-
ing a. synchronized transfer, the channel is idle
between DMA requests; for many peripherals, the
channel will spend much more time idling than
executing DMA cycles.) The real potential for one
channel “‘shutting out’ a priority 1 activity on the
other channel is largely limited to unsynchronized
DMA transfers and locked transfers (synchro-
nized or unsynchronized). Long, chained channel
programs and high-speed synchronized DMA will
slow a priority 1 activity on the other channel, but
will not shut it out because the channels will alter-
nate (assuming their priority bits are equal). A
chained channel program will shut out any lower
priority activity on the other channel, including a
channel attention. (The- channel - attention is
latched by the IOP, however, so it will execute
when the other channel drops to a lower priority.)
Chained channel programs should therefore be
used with discretion and should be made as short
as poss1ble

3.3 Memory

The 8089 can access memory components located
in two different address spaces. The system space,
which coincides with the CPU’s memory space,
may contain up to 1,048,576 bytes. The 170
space, which may either coincide with the CPU’s
1/0 space or be local (private) to the IOP, may
contain up to 65,536 bytes. Memory components
in the system space should respond to the memory
read and write commands issued by the 8288 Bus
Controller. Memory components in the 1/0 space
must respond to 8288 I/0 read and write com-
mands. Memory in either space may be
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-Table 3-4. Channel Switching Examples

Channel A (Ran Last) . Channel B
Result
L Chain | Priority . Chain | Priority
Activity Bit Bit LOCK ‘ Activity Bit Bit

DMaA transfer X X Inactive | Idle X X Aruns.

DMA transfer X X Inactive | Channel attention X X Aruns until end of current
transfer cycle; then B runs.

Channel program X 0 Inactive § Channel program X 1 Bruns.

Channel program X 0 Inactive | Channel program X 0 A and B alternate by
instruction.

Channel program 1 X Inactive | Channel program 0 X A runs.

DMA transfer X -1 Inactive | Channel program 1 1 B runs one bus or internal
cycle following each bus cycle

. runby A.*
Channel attention X X Inactive | Channel program 1 X A runs if it has started the
) . . sequence; otherwise B runs.
DMA transfer X X Active Channel attention X X A runs until DMA terminates.
Channel program 0 X Active | DMA transfer X X A completes TSL instruction,
(TSL instruction) | =~ LOCK goes inactive and B

runs.

*If transfer.is synchronized, B also.runs when A goes idle between transfer cycl‘esA

implemented like 8086 memory (16-bit words split
into even- and odd-addressed 8-bit banks) or 8088
memory (a single 8-bit bank). See Chapter 4 for
phy51cal implementation considerations.

Storage Organization

From a software point of view, both 8089
memory spaces are organized as unsegmented
arrays of individually addressable 8-bit bytes
(figure 3-19). Instructions and data may be stored
at any address without regard for allgnment
(figure 3-20).

The IOP views the system space differently from
the 8086 or 8088 with which it typically shares the
space. The 8086 and 8088 differentiate between a
location’s logical (segment and offset) address
and its physical (20-bit) address.

The 8089 does not ““see’” the logically segmented
structure of the memory space; it uses its 20-bit
pointer registers to- access all locations in-the
system space by their physical addresses. Memory
in the 8089 170 space is treated similarly except
that only 16 bits are needed to. address any
location.

SYSTEM
SPACE

1/Q
SPACE

LOW MEMORY
00000H

HIGH MEMORY

00001H 00002H FFFFEH FFFFFH

,mmm

|<—1 MEGABVTE—>

LOW MEMORY:
0000H |

HIGH MEMORY

0001H 0002H FFFEH FFFFH

mm

I<—— 84K BYTES —>|

Figure 3-19. Storage Organization

1AH 1BH 1CH 1DH 1{EH 1FH 20H 21H 22H 23H

Figure 3-20. Instruction and Variable Storage
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Following Intel convention, word data is stored
with the most-significant byte in the. higher
address (see figure 3-21). The 8089 recognizes the
doubleword pointer variable used by the 8086 and
8088 (figure 3-22). The lower-addressed word of
the pointer contains an offset value, and the
higher-addressed word contains a segment base
address. Each word is stored conventionally, with
the higher-addressed byte containing the most-
significant eight bits of the word. The 8089 can
convert a doubleword pointer into a 20-bit
physical address when it is loaded into a pointer
register to address system memory. A special 3-
byte variable, called a physical address pointer
(figure 3-23), is used to save and restore pointer
registers and their associated tag bits.

Dedicated and Reserved Memory
Locations

The extreme low and high addresses of the system
space are dedicated to specific processor func-
tions or are reserved for use by other Intel hard-

“728H 725H
P HEX

NN T S L.

0000 , 0010 0101 , 0101 BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 3-21. Storage of Word Variables

ware and software products; the locations are OH
through 7FH (128 bytes) and FFFFOH through
FFFFFH (16 bytes), as shown in figure 3-24. The
low addresses are used for part of the 8086/8088
interrupt pointer table. Locations FFFFOH-
FFFFBH are used for 8086, 8088 and 8089 startup
sequences; the remaining locations are reserved
by Intel.

If an IOP is configured locally, its I/O space coin-
cides with the CPU’s 1/0 space, and it must
respect the reserved addresses F8H-FFH. The
entire 170 space of a remotely-configured IOP
may be used without restriction.

Using any dedicated or reserved addresses may
inhibit the compatibility of a system with current
or future Intel hardware and software products.

Dynamic Relocation

The 8089 is very well-suited to environments in
which programs do not occupy static memory
locations, but are moved about during execution.
Dynamic code relocation allows systems to make
efficient use of limited memory resources- by
transferring programs between external storage
and memory, and by combining scattered free
areas of memory into larger, more useful, con-
tinuous spaces.

IOP channel programs are inherently position-
independent, the only restriction being that chan-
nel programs that transfer to each other or
share data must be moved as a unit. Since the IOP

4H 5H

6H 7H

| 5 _ | 4

— — b — —
0110 0101 | 0000—-—1 0000 0100

| C_| 3 | B _JHEX __

1100 0011 —16?1 BINARY

VALUE OF DOUBLEWORD POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3BACH

OFFSET: 65H

Figure 3-22. Storage of Doublewbrd Pointer Variables
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ponter YRS | 2} 5 4 5 | F I3 JHEX_
REGISTER E 0010 | o110 | o101 | 1111 { 0011 | BINARY
19 0
I 100 1 101w | 1020 |
Flale|s | 2] 1 |nex
MEMORY S T AN ENh i ER R
1111 | 0011 | o110 | o101 | 0oz0 | 0coo | BiNARY

VALUE OF PHYSICAL ADDRESS POINTER AT 100H:
ADDRESS: 265F3H
TAG: 0

Figure 3-23. Storage of Physical Address
Pointer Variables

FFFFFH
RESERVED
FFFFCH
FFFFBH
DEDICATED
FFFFOH
FFFEFH
FFFFH
L OPEN
T’
ry
S OPEN T\
J80H
7FH
RESERVED L%O'r
14H RESERVED
1aH o
DEDICATED OPEN
OH OH
SYSTEM SPACE

1/0 SPACE
(LOCAL CONFIGURATION ONLY)

Figure 3-24. Reserved Memory Locations

receives the address of a channel program and its
associated parameter block when it is dispatched
© by the CPU, the location of these blocks is
immaterial and can change from one dispatch to
the next. (Note, however, that the channel control
block cannot be moved without reinitializing the
IOP.) Typically, then, the CPU would direct the
movement of IOP channel programs and
parameter blocks. These blocks, of course, can-
not be moved while they are in use.

While the CPU may be in charge of relocation,
the IOP is an excellent vehicle for performing the
actual transfer of channel programs, parameter
blocks, and CPU programs as well. A very simple
channel program can transfer code between
memory locations by DMA much faster than the
equivalent CPU instructions, and transfers
between disk and memory also can be performed
more efficiently.

Memory Access

Memory accesses are always performed using a
pointer register and its associated tag bit. The tag
bit indicates whether the access is to the system
space (tag=0) or the I/O space (tag=1). The
pointer register contains the base address of the
location; i.e., the pointer register is used as a base
register. Only the low-order 16 bits of the pointer

register are used for 1/0 space locations; all 20
bits are used for system space addresses. Different
types of memory accesses use base registers as
shown in table 3-5. The 8089 addressing modes
allow the base address of a memory operand to be
modified by other registers and constant values to
yield the effective address of the operand (see sec-
tion 3.8). '

Notice that table 3-5 indicates that memory
operands may be addressed using register PP in
addition to GA, GB, and GC. PP is maintained
by the IOP and can neither be read nor written by
a channel program; it can be used, however, to
access data in the parameter block. PP has no
associated tag bit; a reference to it implies the
system space, where a parameter block always
resides. '

Table 3-5. Base Register Use in Memory Access

Memory Access Base Register
Instruction Fetch TP
DMA Source GAorGB!
DMA Destination GA orGB!
DMA Translate Table | GC
Memory Operand GA orGB or GC or PP?

‘As specified in CC register
*As specified in instruction
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The IOP is told the physical widths of the system
and 170 buses when it is initialized. If a bus is
eight bits wide, the IOP accesses memory on this
bus likg an 8088. Instruction fetches and operand
reads and writes are performed one byte at a time;
one bus cycle is run for each memory access.
Word operands are accessed in two cycles, com-
pletely transparent to software. Instruction
fetches are made as needed, and the instruction
stream is not queued.

The IOP accesses memory on a 16-bit bus like an
8086. As mentioned in the previous section, the
instruction stream is generally fetched in words
from even addresses with the second byte held in
the one-byte queue. If a word operand is aligned
(i.e., located at an even address), the 8089 will
access it in a single 16-bit bus cycle. If a word
operand is unaligned (i.e., located at an odd
address), the word will be accessed in two con-
secutive 8-bit bus cycles. Byte operands are
always accessed in 8-bit bus cycles.

For memory on 16-bit buses, performance is
improved and bus contention is reduced if word
operands are stored at even addresses. The
instruction queue tends to reduce the effect of
alignment on instructions fetched on a 16-bit bus,
In tight loops, performance can be increased by
word-aligning transfer targets.

Notice that the correct operation of a program is
completely independent of memory bus width. A
channel program written for one system that uses
an 8-bit memory bus will execute without
modification if the bus is increased to 16 bits. It is
good practice, though, to write all programs as
though they are to run on 16-bit systems; i.e., to
align word operands. Such programs will then
make optimal use of the bus in whatever system
they are run.

3.4 Input/Output

The 8089 combines the programmed I1/0
capabilities of a CPU with the high-speed block
transfer facility of a DMA controller. It also pro-
vides additional features (e.g., compare and
translate during DMA) and is more flexible than a
typical CPU or DMA controller. The 8089
transfers data from a source address to a destina-
tion address. Whether the component mapped

into a given address is actually memory or I/0 is
immaterial. All addresses in both the system and
I70 spaces are equally accessible, and transfers
may be made between the two spaces as well as
within either address space.

Programmed I/0

A channel program performs I/0 similar to the
way a CPU communicates with memory-mapped
170 devices. Memory reference instructions per-
form the transfer rather than ‘‘dedicated” 1/0
instructions, such as the 8086/8088 IN and OUT
instructions. Programmed I/0 is typically used to
prepare a device controller for a DMA transfer
and to obtain status/result information from the
controller following termination of the transfer.
It may be used, however, with any device whose
transfer rate does not require DMA.,

1/0 Instructions

Since the 8089 does not distinguish between
memory components and I/0 devices, any
instruction that accepts a byte or word memory
operand can be used to access an I/0 devicé.
Most memory reference instructions take a source
operand or a destination operand, or both. The
instructions generally obtain data from the source
operand, operate on the data, and then place the
result of the operation in the destination operand.
Therefore, when a source operand refers to an
address where an 170 device is located, data is
input from the device. Similarly, when a destina-
tion operand refers to an I/0 device address, data
is output to the device.

Most 1/0O device controllers have one or more
internal registers that accept commands and
supply status or result information. Working with
these registers typically involves:

* reading or writing the entire register;

® setting or clearing some bits in a register while
leaving others alone; or

e testing a single bit in a register.

Table 3-6 shows some of the 8089 instructions
that are useful for performing these kinds of
operations. Sectien 3.7 covers-the 8089 instruc-
tion set in detail.
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Table 3-6. Memory Reference Instructions
Used for 170 ‘

Instruction Effectonl/O Dévice

MOV/MOVB | Read or write word/byte »
AND/ANDB | Clear multiple bits in word/byte

OR/ORB Set multiple bits in word/byte

CLR Clear single bit (in byte)

SET Set single bit (in byte)

JBT Read (byte) and jump if
single bit =1

JNBT Read (byte) and jump if
single bit =0

Device Addressing

Since memory reference instructions are used to
perform programmed 1/0, device addressing is
very similar to memory addressing. An operand
that refers to an I/0 device always specifies one
of the pointer registers GA, GB, or GC (PP is
legal, but an 1I/0 device would not normally be
mapped into a parameter block). The . base
address of the device is taken from the specified
pointer register.- Any of the memory addressing
modes (see section 3.8) may be used to modify the
base address to produce the effective (actual)
address of the device. The pointer register’s tag
bit locates the device in the system space (tag=0)
or in the I/0 space (tag=1). If the device is in
the 1/0 space, only the low-order 16 bits of the
pointer register are used for the base address; all
20 bits are used for a system space address. The
IOP’s system and 1/0 spaces are fully compatible

with the corresponding address spaces of the
other 8086 family processors.

1/0 Bus Transfers

Table 3-7 shows the number of bus cycles the IOP
runs for all combinations of bus size, transfer size
(byte or word), and transfer address (even or
odd). Bus width refers to the physical bus
implementation; the instruction mnemonic deter-
mines whether a byte or a word is transferred.

Both 8- and 16-bit devices may reside on a 16-bit
bus. All 16-bit devices should be located at even
addresses so that transfers will be performed in
one bus cycle. The 8-bit devices on a 16-bit bus
may be located at odd or even addresses. The
internal registers in an 8-bit device on a 16-bit bus
must be assigned all-odd or all-even addresses
that are two bytes apart (e.g., 1H, 3H, 5H, or 2H,
4H, 6H). All 8-bit peripherals should be refer-
enced with byte instructions, and 16-bit devices
should be referenced with word instructions.
Odd-addressed 8-bit devices must be able to
transfer data on the upper eight bits of the 16-bit
physical data bus.

Only 8-bit devices should be connected to an 8-bit
bus, and these should only be referenced with
byte instructions. An 8-bit device on an 8-bit bus
may be located at an odd or even address, and its
internal registers. may be assigned consecutive
addresses (e.g., 1H, 2H, 3H). Assigning all-odd
or all-even addresses, however, will simplify con-
version to a 16-bit bus at a later date.

Table 3-7. Programmed I/0 Bus Transfers

Bus-Width: 8 16

instruction: byte word* - byte word ,
Device Address: even odd even odd even odd even odd*
Bus Cycles: 1 1 2 1 1 1 2

* not normally used
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DMA Transfers

In addition to byte- and word-oriented pro-
grammed I/0, the 8089 can transfer blocks of
data by direct memory access. A block may be
transferred between any two addresses; memory-
to-memory transfers are performed as easily as
memory-to-port, port-to-memory or port-to-port
exchanges. There is no limitation on the size of
the block that can be transferred except that the
block cannot exceed 64k bytes if byte count ter-
mination is used. A channel program typically
prepares for a DMA transfer by writing com-
mands to a device controller and initializing chan-

nel registers that are used during the transfer. No.

instructions are executed during the transfer,
however, and very high throughput speeds can be
achieved.

Preparing the Device Controller

Most controllers that can peform DMA transfers
are quite flexible in that they can perform several
different types of operations. For example, an
8271 Floppy Disk Controller can read a sector,
write a sector, seek to track 0, etc. The controller
typically has one or more internal registers that
are ‘‘programmed’’ to perform a given operation.
Often, certain registers will contain status
information that can be read to determine if the
controller is busy, if it has detected an error, etc.

An 8089 channel program views these device
registers as a series of memory locations. The
channel program typically places the device’s base
address in a pointer register and uses programmed
170 to communicate with the registers.

Some controllers start a DMA transfer
immediately upon receiving the last of a series of

parameters. If this type of controller is being
used, the channel program instruction that sends
the last parameter should follow the 8089 XFER
instruction. (The XFER instruction places the
channel in DMA mode after the next instruction;
this is explained in more detail later in this
section.)

Preparing the Channel

For a channel to perform a DMA transfer, it must
be provided with information that describes the
operation. The channel program provides this
information by loading values into channel
registers and, in one case, by executing a special
instruction (see table 3-8).

Source and Destination Pointers. One
register is loaded to point to the transfer source;
the other points to the destination. A bit in the
channel control register is set to indicate which
register is the source pointer. If a register is
pointed at a memory location, it should contain
the address where the transfer is to begin — i.e.,
the lowest address in the buffer. The channel
automatically increments a memory pointer as the
transfer proceeds. If the tag bit selects the 170
space, the upper four bits of the register are
ignored; if the tag selects the system space, all 20
bits are used. The source and destination may be
located in the same or in different address spaces.

Translate Table Pointer. If the data is to be
translated as it is transferred, GC should be
pointed at the first (lowest-addressed) byte in a
256-byte translation table. The table may be
located in either the system or I/0 space, and GC

Table 3-8. DMA Transfer Control Information

Information

Source Pointer
Destination Pointer
Translate Table Pointer
Byte Count
Mask/Compare Values
Logical Bus Width
Channel Control

Register or Instruction - Required or Optional
GAorGB Required
GAorGB Required
GC Optional
BC Optional
MC Optional
WID Optional*

CC Required

*Must be executed once following processor RESET.
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should be loaded by an instruction that sets or
clears ‘its tag -bit as appropriate. The translate
operation is only defined for byte data; source
and destination:logical bus widths must both be
set to eight bits.

The channel translates a byte by treating it as an
unsigned 8-bit binary number. This number is
added to the content of register GC to form a
memory address; GC is not altered by the opera-
tion. If GC points to the /0O space, its upper four
bits are ignored in the operation. Thé byte at this
address (which is in the translate table) is then
fetched from memory, replacing the source byte.
Figure 3-25 illustrates the translate process.

Byte Count. If the transfer is to be terminated
on byte count— i.e., after a specific number of
bytes have been transferred—the desired count
should be loaded into register BC as.an unsigned
16-bit number. The channel decrements BC as the
transfer proceeds, whether or not byte count ter-
mination has been specified. There are cases
(discussed later in this section) where the dif-

ference between BC’s value before and after -the
transfer does not accurately reflect the number of
bytes transferred to the destination.

Mask/Compare Values. If the transfer is to be
terminated when a byte (possibly translated) is
found equal or unequal to a search value, MC
should be loaded as described in section 3.2. MC
is not altered during the transfer. Normally, the
logical destination bus width is set to eight bits
when transferred data is being compared. If the
logical destination width is 16 bits, only the low-
order byte of each word is compared.

Logical Bus Width. The 8089 WID (logical bus
width) instruction is used to set the logical width
of the source and destination buses for a DMA
transfer. Any bus whose physical width is eight
bits can only have a logical width of eight bits. A
16-bit physical bus, however, can have a logical
width of 8 or 16 bits; i.e., it can be used as either
an 8-bit or 16-bit bus in any given transfer.
Logical bus widths are set independently for each
channel. '

TRANSLATE TABLE

INSYSTEM OR1/0 SPACE

00200 |- 4c| 66|19 |87 i
GC A A
+ 02 : ‘
SOURCE BYTE |
= 00202 f ——— ——_— _!
* TRANSLATE ADDRESS

TRANSLATED BYTE

»| 66 |—> TO DESTINATION

Figure 3-25. Translate Operation
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For a transfer to or from an I/O device on a
16-bit physical bus, the logical bus width should
be set equal to the peripheral’s width; i.e., 8 or 16
bits. Transfers to or fromy 16-bit memory will run
at maximum speed if the logical bus width is set to
16 since the channel will fetch/store words. In the
following cases, however, the logical width
should be set to 8:

s thedatais being translated,

¢ the data is being compared under mask, and
the 16-bit memory is the destination of the
transfer.

The WID instruction sets both logical widths and
remains in effect until another WID instruction is
executed. Following processor reset, the settings
of the logical bus widths are unpredictable.
Therefore, the WID instruction must be executed
before the first DMA transfer.

Channel Control. The 16 bits of the CC register
are divided into 10 fields that specify how the
DMA transfer is to be executed (see figure 3-26).
A channel program typically sets these fields by
loading a word into the register.

The function field (bits 15-14) identifies the
source and destination as memory or ports (I/0
devices). During the transfer, . the channel

increments source/destination pointer. registers’

that refer to memory so that the data will be
placed in successive locations. Pointers that refer
to I/0 devices remain constant throughout the
transfer. .

The transiate field (bit 13).controls data transla-
tion. If it is set, each incoming byte is translated
using the table pointed to by register GC.
Translate is defined only for byte transfers; the
destination bus must have a logical width of eight.

The synchronization field (bits:12-11) specifies
how the transfer is to be synchronized.
Unsynchronized (‘‘free running’’) transfers are
typically used in memory-to-memory moves. The
channel begins the next transfer cycle immediately
upon completion of the current cycle (assuming it
has the bus). Slow memories, which cannot run as
fast as the channel, can extend bus cycles by
signaling ‘‘not ready” to the 8284  Clock

Generator, which will insert” wait states into the-

bus cycle. A similar technique may be used with
peripherals whose speed excecds the channel’s

ability to execute a synchronized transfer: in
effect, the peripheral synchronizes the transfer
through the use of wait states. Chapter 4 discusses
synchronization in more detail.

Source synchronization is typically selected when
the source is an 170 device and the destination is
memory. The I/0 device starts the next transfer

cycle by activating the channel’s DRQ (DMA

request) line. The channel then runs one transfer
cycle and waits for the next DRQ.

Destination synchronization is most often used

.when the source is memory and the destination is

an 1/0 device. Again, the 1/0 device controls the
transfer frequency by signaling on DRQ when it is
ready to receive the next byte or word.

The source field (bit 10) identifies register GA or
GB as the source pointer (and the other as the
destination pointer).

The lock field (bit 9) may be used to instruct the
channel to assert the processor’s bus lock (LOCK)
signal during the transfer. In a source-
synchronized transfer, LOCK is active from the
time the first DMA request is received until the
channel enters the termination sequence. In a
destination-synchronized transfer LOCK is active
from the first fetch (which precedes the first
DMA request) until the channel enters the ter-
mination sequence.

- The chain field (bit 8) is not used during the

transfer. As  discussed previously, setting this
bit raises channel program execution to priority
level 1.

The terminate on single transfer field (bit 7) can
be used to cause the channel to run one complete
transfer cycle only—i.e., to transfer one byte or
word and immediately resume channel program
execution. When single transfer is specified, any
other termination conditions are ignored. Single
transfer termination can be used with low-speed
devices, such as keyboards and communication
lines, to translate and/or compare one byte as it
transferred.

‘The three low-order fields in register CC instruct
the channel when to terminate the transfer,
assuming -that single transfer has not been
selected. Threc termination conditions may be
specified singly or in combination.
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. 15 7
F |TR| SYN|S|L|C|TS Tlx TBC TMC
i 1 L g
E FUNCTION
00 PORTTO PORT
01  MEMORY TO PORT
10 PORTTO MEMORY
11 MEMORY TO MEMORY
TR TRANSLATE
0 NO TRANSLATE
1 TRANSLATE
SYN SYNCHRONIZATION
00 NOSYNCHRONIZATION
01  SYNCHRONIZE ON SOURCE
10 SYNCHRONIZE ON DESTINATION
11 RESERVED BYINTEL
5 SOURCE
0 GA POINTS TO SOURCE
1 GB POINTS TO SOURCE
L LOCK
0 NO LOCK
1 ACTUATE LOCK DURING TRANSFER
e CHAIN
0 .NO CHAINING :
1 CHAINED: RAISETB TO PRIORITY 1
TS TERMINATE ON SINGLE TRANSFER
0 NO-SINGLE TRANSFER TERMINATION
1 TERMINATE AFTER SINGLE TRANSFER
TX TERMINATE ON EXTERNAL SIGNAL
00 NOEXTERNAL TERMINATION
0t  TERMINATE ON EXT ACTIVE; OFFSET = 0
10 TERMINATE ON EXT ACTIVE; OFFSET = 4
11 TERMINATE ON EXT ACTIVE; OFFSET =8
TBC TERMINATE ON BYTE COUNT
00 NOBYTECOUNT TERMINATION
01 TERMINATEONBC = 0; OFFSET = 0
10 TERMINATE ON BC = 0; OFFSET = 4
11 TERMINATEONBC = 0; OFFSET =8
Hﬂ__(_: TERMINATE ON MASKED COMPARE
000 NO MASK/COMPARE TERMINATION
001 TERMINATE ON MATCH; OFFSET = 0
010 TERMINATE ON MATCH; OFFSET = 4
011  TERMINATE ON MATCH; OFFSET = 8
100 (NO EFFECT)
101 TERMINATE ON NON-MATCH; OFFSET = 0
110 TERMINATE ON NON-MATCH; OFFSET = 4
111 TERMINATE ON NON-MATCH; OFFSET = 8
Figure 3-26. Channel Control Register Fields
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External termination allows an I/0 device
(typically, the one that is synchronizing the
transfer) to stop the transfer by activating the
channel’s EXT (external terminate) line. If byte
count termination is selected, the channel will
stop when BC=0. If masked compare termination
is specified, the channel will stop the transfer
when a byte is found that is equal or unequal (two
options are available) to the low-order byte in MC
as masked by MC’s high-order byte. The byte that
stops the termination is transferred. If translate
has been specified, the translated byte is
compared.

When a DMA transfer ends, the channel adds a
value called the termination offset to the task
pointer and resumes channel program execution
at that point in the program. The termination off-
set may assume a value of 0, 4, or 8. Single
transfer termination always results in a termina-
tion offset of 0. Figure 3-27 shows how the ter-
mination offsets can be used as indices into a
three-element ‘“‘jump table’’ .that identifies the
condition that caused the termination.

As an example of using the jump table, consider a
case in which a transfer is to terminate when 80
bytes have been transferred or a linefeed
character is detected, whichever occurs first. The
program would load 80H into BC and 000AH
into MC (ASCII line feed, no bits masked). The
channel program could assign byte count termina-
tion an offset of 0 and masked compare termina-
tion an offset of 4. If the transfer is terminated by
byte count (no linefeed is found), the instruction
at location TP + 0 will be executed first after the
termination. If the linefeed is found before the
byte count expires, the instruction at TP +4 will
be executed first. The LIMP (long unconditional
jump, see section 3.7) instruction is four bytes
long and can be placed at TP+0 and TP +4 to
cause the channel program to jump to a different
routine, depending on how the transfer
terminates.

If the transfer can only terminate in one way and
that condition is assigned an offset of 0, there is
no need for the jump table. Code which is to be
unconditionally executed when the transfer ends
can immediately follow the instruction after
XFER. This is also the case when single transfer is
specified (execution always resumes at TP +0).

It is possible, however, for two, or even three, ter-
mination conditions to arise at the same time. In

4= —-(COULD BE A DIFFERENT INSTRUCTION)

PERFORM TRANSFER
(TP POINTS TO 1ST LJMP INSTRUCTION)

TRANSFER
TERMINATION

>
z
n

TP +0)

LJMP OFFSET_0_CODE .
TP+4

LIMP OFFSET_4_CODE THREE-ELEMENT JUMP TABLE
TP+8

LIMP OFFSET_a_CODE

OFFSET_0_.CODE:
LXECUTED IF TERMINAT!ON\L
OFFSET = 0

OFFSET—A‘CODE:\rﬁL
EXECUTED IF TERMINATION.

. : \[ OFFSET m 4 Jr

QFFSET_.B—CODEI—T
EXECUTED IF TERMINATION.

‘] OFFSETw 8 ]

Figure 3-27. Termination Jump Table

the preceding example, this would occur if the
80th character were a linefeed. When multiple ter-
minations occur sirmultaneously, the channel
indicates that termination resulted from the con-
dition with the largest offset value. In the
preceding example, if byte count and search ter-
mination occur at the same time, the channel pro-
gram resumes at TP +4. ‘

Beginning the Transfer

The 8089 XFER (transfer) instruction puts the
channel into DMA transfer mode after the
following instruction has been executed. This
technique gives the channel time to set itself up
when it is used with device controllers, such as the
8271 Floppy Disk Controller, that begin transfer-
ring immediately upon receipt of the last in a
series of parameters or commands. If the transfer
is to or from such a device, the last parameter
should be sent to the device after the XFER
instruction. If this type of device is .not being
used, the instruction following XFER would
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typically send a ‘‘start’”” command to the con-
troller. If a memory-to-memory transfer is being
made, any instruction may follow XFER except
one that alters GA, GB, or CC. The HLT instruc-
tion should normally not be coded after the
XFER; doing so clears the channel’s BUSY flag,
but allows the DMA transfer to proceed.

DMA Transfer Cycle .

A DMA transfer cycle is-illustrated in figure 3-28;
a complete transfer is a series of these cycles run
until a termination condition is encountered. The
figure is deliberately simplified to explain the
general operation of .a. DMA transfer; in par-
ticular, the updating of the source and destination
pointers (GA and GB) can be more complex than
the figure indicates. Notice that it is possible to
start an unending transfer by not specifying a ter-
mination condition in CC or by specifying a con-
dition that never occurs; it-is the programmer’s
responsibility to ensure that the transfer eventu-
ally stops.

If the transfer is source-synchronized, the channel
waits until the synchronizing device activates the
channel’s DRQ line. The other channel is free to
run during this idle period. The channel fetches a
byte or a word, depending on the source address
(contained in. GA or GB) and the logical bus
width, Table 3-9 shows how a channel performs
the fetch/store sequence for all combinations of
addresses and bus widths. If the destination is on
a 16-bit logical bus and the source is on an 8-bit
logical bus, and the transfer is to an even address,
the channel fetches a second byte and assembles a
word internally. During each fetch, the channel
decrements BC according to whether a byte or
word is obtained. Thus BC always indicates the
number of bytes fetched.

The channel samples its EXT line after every bus
cycle in. the transfer. If EXT is recognized after
the first of two scheduled fetches, the second
fetch is not run. After the fetch sequence has been
completed, the channel translates the data if this
option is specified.in CC. :

- If a word has been feiched or assembled, ‘and
bytes are to be stored (destination bus is eight bits
or transfer is to an odd address), the channel
disassembles the word into two bytes. If the
transfer is ‘destination-synchronized (only one

Table 3-9. DMA Transfer

Assembly/Disassembly
Address Logical Bus Width

_ (Source— Source->Destination)
Destination) | 8—+8| 8—16 | 16—8 | 16—16
EVEN—EVEN B-B B/B~W|w-B/B wW-w
EVEN—-ODD | B—B|B—»B. |W—B/B|W—B/B
ODD—EVEN | B—B|B/B—»W|{B—B |[B/B-W
ODD—-0ODD B—~B|B—B B—~B '|B—B

B= Byte Fetched or Stored in 1 Bus Cycle
W= Word Fetched or Stored in 1 Bus Cycle
B/B=2Bytes Fetched or Stored in 2 Bus Cycles

type of synchronization may be specified for a
given transfer), the channel waits for DRQ before
running ‘a store cycle. It stores 'a word or the
lower-addressed byte (which may be the only byte
or the first of two bytes). Table 3-9 shows the
possible combinations of even/odd addresses and
logical bus widths that define the store cycle.
Whenever stores are to memory on a 16-bit logical
bus, the channel stores words, except that bytes
may be stored on the first and last cycles.

The channel samples EXT again after the first
store cycle and, if it is active, the channel prevents
the second store cycle from running. If specified
in the CC register, the low-order byte is compared
to the value in MC. A “‘hit”’ on the comparison
(equal or unequal, as indicated in CC) also
prevents the second of two scheduled store cycles
from running. In both of these cases, one byte has
been “‘overfetched,”” and this is reflected in BC’s
value. It would be unusual, however, for a syn-
chronizing device to issue EXT in the midst of a
DMA cycle. Note ‘also that EXT is valid only
when DRQ is inactive. Chapter 4 covers the tim-
ing requirements for these two signalsin detail.

GA and GB are updated next. Only memory
pointers are incremented; pointers to I/0 devices
remain constant throughout the transfer. ‘

If any termination condition has occurred during
this cycle, the channel stops the transfer. It uses
the content of the CC register to assign a value to
the termination offset, to reflect the cause of the
termination. The channel adds this offset to TP
and resumes channel program execution at the
location now addressed by TP. This offset will
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Figure 3-28. Simplified DMA Transfer Flowchart

always be zero, four, or eight bytes past the end
of the instruction following the XFER instruc-
tion.

If no termination condition is detected and
another byte remains to be stored, the channel
stores this byte, waiting for DRQ if necessary,
and updates the source and destination pointers.
After the store, it again checks for termination.

Following the Transter’

A DMA transfer updates register BC, register GA
(if it points to memory), and register GB (if it
points to memory). If the original contents of
these registers are needed following the transfer,
the contents should be saved in memory prior to
executing the XFER instruction.
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A program may determine the address of the last
byte stored by a DMA transfer by inspecting the
pointer registers as shown in table 3-10. The
number of bytes stored is equal to:

last__byte._address — first__byte__address + 1.

For port-to-port transfers, the number of bytes
transferred can be determined by subtracting the

final value of BC from its original value provided

that:

the original BC > final BC,

a transfer cycle is not ““chopped off*’ béfore
it completes by a masked compare or exter-
nal termination.

In general, programs should not use the contents
of GA, GB and BC following a transfer except as
noted above and in table 3-10. This is because the -
contents of the registers are affected by numerous
conditions, particularly when the transfer is ter-
minated by EXT. In particular, when a program,
is performing a sequence of transfers, it should
reload these registers before each transfer.

3.5 Multiprocessing Features

The 8089 shares the multiprocessing facilities
common to the 8086 family of processors. It has
on-chip logic for arbitrating the use of the local
bus with a CPU or another IOP; system bus
arbitration is delegated to an 8289 Bus Arbiter.

The 8089’s TSL (test and set while locked) in-
struction enables it to share a resource, such as a
buffer, with other processors by means of
semaphore (see section 2.5 for a discussion of the
use of semaphores to control access to shared
resources). Finally, the 8089 can lock the system
bus for the duration of a DMA .transfer to ensure
that the transfer completes without interference
from other processors on the bus.

In the remote configuration, the 8089 is electric-
ally compatible with Intel’s Multibus™ multi-
master bus design. This means that the power and
convenience of 8089 I/0 processing can be used
in 8080- or 8085-based systems that implement the
Multibus protocol or a superset of it. This
includes single-board computers such as Intel’s
iSBC 80/20™ and iSBC 80/30™ boards. In addi-
tion, the IOP can access other iSBC board
products such as memory and communications
controllers.

Bus Arbitration

. The 8089 shares its system bus with a CPU, and

may also share its I/0 bus with an IOP or another
CPU. Only one processor at-a time may drive a
bus. When two (or. more) processors want to use a
shared bus, the system must provide an arbitra-
tion mechanism that will grant the bus to one of
the processors. This section  describes the bus
arbitration facilities that may be used with the
8089 and covers their apphcablllty to different
IOP configurations.

Table 3-10. Address of Last Byte Stored

Termination Source Destination Synchronization Last Byte Stored
memory memory any destination pointer,
byte count memory . port any source pointer
port memory any destination pointer
memory memory any destination pointer
masked compare " memory port any ‘source pointer
port memory © any destination pointer
memory- - memory unsynchronized destination pointer
external memory port destination - sourcepointer?
port memory source destination pointer

'Source pointer may also be used:

*|f transfer is B/B—W, source pomter must be decremented by 1 to point to last byte transferred.
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Request/Grant Line

When ‘an 8089 is directly connected to
another 8089, an 8086 or an 8088, the
RQ/GT (request/grant) lines built into all of
these processors are used to arbitrate use of a
local bus. In the local mode, RQ/GT is used
to control access to both the system and the
170 bus.

As discussed in section 2.6, the CPU’s
request/grant lines (RQ/ GTO and RQ/GTl)
operate as follows:

¢ an external processor sends a pulse to the
CPU to request use of the bus;

¢ the CPU finishes its current bus cycle, if one
is in progress, and sends a pulse to the pro-
cessor to indicate that it has been granted the
bus; and

* when the external processor is finished with
the bus, it sends a final pulse to the CPU, to
indicate that it is releasing the bus.

The 8089’s request/grant circuit can operate in
two modes; the mode is selected when the IOP is
initialized (see section 3.6). Mode 0 is compatible
with the 8086/8088 request/grant circuit and
must be specified when the 8089°s RQ/GT line is
connected to RQ/GTO or RQ/GTI of one of
these_CPUs. Mode 0 may be specified when
RQ/GT of one 8089 is tied to RQ/GT of another
8089. When mode O is used with a CPU, the CPU
is designated the master, and the IOP is
designated a slave. When mode 0 is used with
another IOP, one IOP is the master, and the other
is the slave. Master/slave designation also is made
at initialization time as discussed in section 3.6.
The master has the bus when the system is in-
itialized and keeps the bus until it is requested by
the slave. When the slave requests the bus, the
master grants it if the master is idle. In this sense,
the CPU becomes idle at the end of the current
bus cycle. An IOP master, on the other hand,

does not become idle until both channels have -

halted program execution or are waiting for DMA
requests. Once granted the bus, the slave (always
an IOP) uses it until both channels are idle, and
then releases it to the master. In mode 0, the
master has no way of requesting the slave to
return the bus.

Mode 1 operation of the request/grant lines may
only be used to arbitrate use of a private I/0 bus

between two IOPs. In this case, one IOP is
designated the master, and the other is designated
the slave. However, the only difference between a
master and a slave running in-mode 1 is that the
master has the bus at initialization time. Both
processors may request the bus from each other at
any time. The processor that has the bus will
grant it to the requester as soon as one of the
following occurs on either channel:

*  an unchained channel program instruction is
completed, or

* achannel goes idle due to a program halt or
the completion of a synchronized transfer
cycle (the channel waits for a DMA request).

Execution of a chained channel program, a DMA
termination sequence, . a channel attention
sequence, or a synchronized DMA transfer (i.e., a
high-priority operation) on either channel
prevents the IOP from granting the bus to the
requesting [OP.

The handshaking sequence in mode 1 is:

* the requesting processor pulses once on

RQ/GT;

* the processor with the bus grants it by
pulsing once; and

e if the processor granting the bus wants it
back immediately (for example, to_fetch the
next instruction), it will pulse RQ/GT again,
two clocks after the grant pulse.

The fundamental difference between the two
modes is the frequency with which the bus can be
switched between the two processors when both
are active. In mode 0, the processor that has the
bus will tend to keep it for relatively long periods
if it is executing a channel program. Mode 1 in
effect places unchained channel programs at a
lower priority since the processor will give up the
bus at the end of the next instruction. Therefore,
when both processors are running channel pro-
grams or synchronized DMA, they will share the
bus more or less equally. When a processor
changes to what would typically be considered a
higher-priority activity such as chained program
execution or DMA termination, it will generally
be able to obtain the bus quickly and keep the bus
for the duration of the more critical activity.
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8289 Bus Arbiter

When.an IOP is configured remotely, an 8289 Bus
Arbiter is used to: control its access to the shared
system ‘bus (the CPU also has its own 8289). In-a
remote cluster.of two IOPs or an IOP and a CPU,
one 8289 controls access to the system bus for
both processors. in the cluster. The 8289 has
several operating modes; when used with an 8089,
the 8289 is usually strapped in its IOB (I/0
Perlpheral Bus) mode.

The 8289 ‘monitors the IOP s status lines. When
these indicate that the IOP needs a cycle on the
system bus, and the IOP does not presently have
the bus, the 8289 activates a bus request ‘signal.
This ‘signal, along with the bus request lines of
other 8289s on the same bus, can be routed to an
external priority-resolving circuit.: At the end of
the current bus cycle, this circuit grants the bus to
the requesting 8289 with the highest priority.
‘Several different prioritizing techniques may be
‘used; in a typical system, an IOP would have
higher bus priority than a CPU. If the 8289 does
not obtain the bus for its processor, it makes the
bus appear ‘‘not ready’’ as if a slow memory were
being accessed. The processor’s clock generator
responds to the ‘‘not ready’’ condition by insert-
ing wait states into the IOP’s bus cycle, thereby
extending the cycle until the bus is acquired.

Bus Arbltratlon for IOP Conflguratlons

When the CPU lmtlallzes an IOP, it must inform
the IOP whether ‘it is a master or a slave, and
which request/grant mode is to be used. This sec-
tion covers the requirements and options
available for each IOP configuration; section 3.6
describes ‘how the information is communicated
-atinitialization time. S

Table 3-11 summarizes the bus. arbitration
requirements and options by IOP configuration.
In the local configuration, all bus arbitration is
performed by the request/grant lines without
additional hardware. One IOP may be connected
to each of the CPU’s RQ/GT lines. The IOP con-
nected to RQ/ GTO will obtain the bus if both pro-
cessors make simultaneous requests.

Since a single IOP in a remote configuration does
not use RQ/GT, its mode may be set to 0 or 1
without affect. The single remote IOP, however,
must be initialized as a master. If two remote
IOPs share an I/0 bus, one must be a master and
the other a slave; both must be initialized to use
the same request/grant mode. Normally, mode 1
will be selected for its improved responsiveness,
and the designation of master will be arbitrary. If
one IOP must have the 170 bus when the system
comes up, it should be initialized as the master.

When a remote IOP shares . its:I/O bus. with a
local CPU, it must be a slave and must use
request/grant mode 0.

Bus Load Limit

A locally configured IOP effectively has higher
bus . priority than the CPU:since the CPU will
grant the bus upon request from the IOP. One or
two local. IOPs can potentially monopolize the
bus at the expense of the CPU. Of course, if the
IOP activities are time-critical, this is exactly what
should happen. On the other hand, there may be
low-priority channel programs that have less
demanding performance requirements.

In such cases, the CPU may set a CCW bit called
bus load limit to constrain the channel’s use of the
bus during-normal (unchained) channel program

Table 3-11. Bus Arbitration Requirements and Options

L ' Remote With
- o Local. Remote . Local CPU
fOP - - —— — —
T ‘Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT
i Slave‘ Mode Slave Mode Slave Mode
IOP1 Slave 0 " Master - Oor1 Slave 0
| 1op2 Slave . | .0 Slave | Sameas N/A N/A
‘ » . aster o
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execution. When this bit is set, the channel
decrements a 7-bit counter from 7F (127) to OH
with each instruction executed. Since the counter
is decremented once per clock period, the channel
waits a minimum of 128 clock cycles before it exe-
cutes the next instruction. By forcing the execu-
tion time of all instructions to 128 clocks, the use
of the bus is reduced to between 3 and 25 percent
of the available bus cycles,

Setting the bus load limit effectively enables a
CPU to slow the execution of a normal channel
program, thus freeing up bus cycles. This is of
most use in local configurations, but also may be
effective in remote configurations, particularly
when channel programs are executed from system
memory. Bus load limit has no effect on chained
channel programs, DMA transfers, DMA ter-
mination, or channel attention sequences.

Bus Lock

Like the 8086 and 8088, the 8089 has a LOCK
{bus lock) signal which can be activated by soft-
ware. The LOCK output is normally connected to
the LOCK input of an 8289 Bus Arbiter. When
LOCK is active, the bus arbiter will not release the
bus to another processor regardless of its priority.
A channel automatically locks the bus during exe-
cution of the TSL (test and set while locked)
instruction and may lock the bus for the duration
of a DMA transfer.

If bit 9 of register CC is set, the 8089 activates its
LOCK output during a DMA transfer on that
channel. If the transfer is synchronized, LOCK is
active from the time that the first DRQ is
recognized. If the transfer is unsynchronized,
LOCK is active throughout the entire transfer
(there are no idle periods in an unsynchronized
transfer). LOCK goes inactive when the channel
begins the DMA termination sequence.

A locked transfer ensures that the transfer will be
completed in the shortest possible time and that
the transferring channel has exclusive use of the
bus. Once the channel obtains the bus and starts a
locked transfer, the channel, in effect, becomes
the highest-priority processor on that bus.

The 8089 TSL (test and set while locked)
instruction can be wused to implement a
semaphore. (See section 2.5 for a discussion of
how a semaphore may be used to control the

access of multiple processors to a shared
resource.) The instruction activates LOCK and
inspects the value of a byte in memory. If the
value of the byte is OH, it is changed (set) to a
value specified in the instruction and the follow-
ing instruction is executed. If the byte does not
contain OH, control is transferred to another loca-
tion specified in the instruction. The bus is locked
from the time the byte is read until it is either writ-
ten or control is transferred to ensure that another
processor does not access the variable after TSL
has read it, but before it has updated it (i.e.,
between bus cycles). The following line of code
will repeatedly test a semaphore pointed to by GA
until it is found to contain zero:

TEST__FLAG: TSL [GA],0FFH, TEST_FLAG

When the semaphore is found to be zero, it is set
to FFH and the program continues with the next
instruction.

3.6 Processor Control and
Monitoring

This section focuses on IOP/CPU interaction,
i.e., how the CPU initializes the IOP and sub-
sequently sends commands to channels, and how
the channels may interrupt the CPU. It also
covers the channels’ DMA control signals and the
status signals that external devices can use to
monitor IOP activities.

Initialization

Before the 8089 channels can be dispatched to
perform 1/0 tasks, the IOP must be initialized.
The initialization sequence (figure 3-29) provides
the IOP with a definition of the system environ-
ment: physical bus widths, request/grant. mode,
and the location of the channel control block.

The sequence begins when the IOP’s RESET line
is activated. This halts any operation. in progress,
but does not affect any registers. Upon the first
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‘Figl_lre 3-29. Initialization Sequence

RESET after power-up, the content of all IOP
registers is undefined. Register contents are
preserved if the IOP is subsequently RESET,
except that RESET always clears the chain bit in
register CC.

The 1OP initializes itself by reading information
from initialization control blocks located in the
system space (see figure 3-30). The three blocks
are the SCP (system configuration pointer), SCB
(system configuration block) and the CB (channel
control block). The CB is normally RAM-based;

the SCP and the SCB may be in RAM or ROM. It
is the CPU’s responsibility to properly setup the
control blocks.

The CPU starts the initialization sequence by issu-
ing a channel attention to channel 1 (SEL low) or
to channel 2 (SEL high). The CPU typically
accesses the channels as two consecutive addresses
in its I/0 or memory space. An OUT instruction
(for an I/0-mapped IOP) or a memory reference
instruction (such as MOV) then issues the channel
attention. ‘
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Figure 3-30. Initialization Control Blocks

If channel 1 is-selected (SEL=low), the IOP con-
siders itself a master (as discussed in section 3.5).
If channel 2 is selected (SEL=high), the IOP
operates as a slave. The IOP ignores, and does
not latch, any subsequent channel attentions that
occur during initialization.

If the IOP is a master, it assumes that it_has the
bus immediately. If it is a slave, it pulses RQ/GT
to request the bus from the CPU (local configura-
tion) or the other IOP (remote configuration).
When the IOP has obtained the bus, it assumes
that the system bus is eight bits wide and reads the
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SYSBUS field (figure 3-31) from location
FFFF6H in system memory. This byte tells the
IOP the actual physical width of the system bus;
all subsequent accesses take advantage of a 16-bit
bus if it is available; i.e., even-addressed words
are fetched in single bus cycles. It is therefore
advantageous to word-align the control blocks.

8-BIT SYSTEM BUS
16-BIT SYSTEM BUS

Figure 3-31. SYSBUS Encoding

Next, the IOP reads the SCB address located at
FFFF8H. This is a standard doubleword pointer,
and the IOP constructs a 20-bit physical address
from it by shifting the segment base left four bits
and adding the offset word of the pointer.

Having obtained the SCB address, the IOP reads
the SOC (system operation command). This byte
(see figure 3-32) tells the IOP the request/grant
mode and the width of the I/0 bus.

7 0
I 0 0 0 0 0 0 R . I l
R = REQUEST/GRANT MODE
| =0=8-BIT 110 BUS
1=1=16-BIT 1/0 BUS

Figure 3-32. SOC Encoding

Then the IOP reads the doubleword pointer to the
channel control block, converts the pointer into a
20-bit physical address, and stores it in an internal
register. This register is not accessible to channel

programs and is only loaded during initialization.
The CB, therefore, cannot be moved during exe-
cution except by reinitializing the IOP.

After loading the address of the CB, the IOP
clears the channel 1 BUSY flag to OH. The other
fields in the CB are used when a channel is dis-
patched and are not read or altered in the
initialization sequence.

After the CPU has started the initialization
sequence, it should monitor channel 1’s BUSY
flag in the CB to determine when the sequence has
been completed. When the BUSY flag has been
cleared, the CPU can dispatch either channel. It
also can begin the initialization of another IOP.
Since each IOP normally has a separate CB, the
CPU must allocate the CB and update the pointer
in the SCB before initializing the next IOP. Alter-
natively, multiple SCBs could be employed, each
pointing to a different CB area. In this case the
CPU would update the pointer in the SCP before
initializing the next IOP. It follows from this that
in multi-IOP systems, either the SCB or SCP, or
both, must be RAM-based. When all IOPs have
been initialized, the CPU may use RAM occupied
by the SCB for another purpose.

Channel Commands

After initialization, any channel attention is
interpreted as a command to channel 1
(SEL=low) or to channel 2 (SEL=high). As
discussed in section 3.2, the channel attention,
depending on the activities of both channels, may
not be recognized immediately. The channel
attention is latched, however, so that it will be
serviced as soon as priorities allow.

When the channel recognizes the CA, it sets its
BUSY flag in the CB to FFH. This does not pre-
vent the CPU from issuing another CA, but pro-
vides status information only. In its response to a
CA, the channel reads various control fields from
system memory. It is the responsibility of the
CPU to ensure that the appropriate fields are
properly initialized before issuing the CA.

After setting its BUSY flag, the channel reads its
CCW from the CB. It examines the command
field (see figure 3-33) and executes the command
encoded there by the CPU. ‘

3-40



8089 INPUT/OUTPUT PROCESSOR

ICF
]

CF

COMMAND FIELD
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(RESERVED)
(RESERVED)

10 ENABLE INTERRUPTS.
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0 NOBUSLOAD LIMIT
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START CHANNEL PROGRAM LOCATED IN 1/0 SPACE.
START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE.

RESUME SUSPENDED CHANNEL OPERATION
SUSPEND CHANNEL OPERATION )
HALT CHANNEL OPERATION

INTERRUPT CONTROL FIELD

IGNORE, NO EFFECT ON INTERRUPTS.
REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED.

Figure 3-33. Channel Command Word Encoding

Figure 3-34 illustrates the channel’s response to
each type of command. Note that if CF contains a
reserved value (010 or 100), the channel’s
response is unpredictable.

The CPU can use the ‘‘update PSW”’ command
to alter the bus load limit and priority bits in the
PSW (see figure 3-17) without otherwise affecting
the channel. This command also allows the CPU
to control interrupts originating in the channel;
this topic is discussed in more detail later in this
section.

The two ‘‘start program’’ commands differ only
in their affect on the TP tag bit. If CF=001, the
channel sets the tag to 1 to indicate that the pro-
gram resides in the 170 space. If CF=011, the tag
is cleared to 0, and the program is assumed to be
in the system space. The channel converts the
doubleword parameter block pointer to a 20-bit
physical address and loads this into PP, It loads
the doubleword task block (channel program)
pointer into TP, updates the PSW as specified by
the ICF, B and P fields of the CCW and starts the
program with the instruction pointed to by TP.

The CPU may suspend a channel operation
(either program execution or DMA transfer) by
setting CF to 110. The channel saves its state (TP,
its tag bit, and PSW) in the first two words of the
parameter block (see figure 3-18 for format) and
clears its BUSY flag to OH. Note the following in
regard to a suspended operation:

*  The content of the doubleword pointer to the

beginning of the channel program is replaced
by the channel state save data. Therefore, a
suspended operation may be resumed, but
cannot be started from the beginning without
recreating the doubleword pointer.

e TP is the only register saved by this
operation. If another channel program is
started. on this channel, the other registers,
including PP, are subject to being over-
written. In general, suspend is used to tem-
porarily halt a channel, not to “interrupt”’ it
with another program. Section 3.10 provides
an example of a program that can be used to
save another program’s registers.
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¢ Suspending a DMA transfer does not affect
any 170 devices (an 1/0 device will act as
though the transfer is proceeding). The CPU
must provide for conditions that may arise if,
for example, a device requests a DMA
transfer, but the channel does not
acknowledge the request because it has been
suspended. Similarly, an I/O device may be
in a different condition when the operation is
resumed.

A suspended operation may be resumed by setting
CF to 101. This command causes the channel to
reload TP, its tag bit, and the PSW from the first
two words of PB. Resuming an operation that has
not been suspended will give unpredictable results
since the first two words of PB will not contain
the required channel state data. A resume com-
mand does not affect any channel registers other
than TP.

The CPU may abort a channel operation by
issuing a ‘‘halt”’ command (CF=111). The chan-
nel clears its BUSY flag to OH and then idles.
Again, the CPU must be prepared for the effect
aborting a DMA transfer may have on an 170
device. :

DRQ (DMA Request)

The synchronizing device in a DMA transfer uses
the DRQ line to indicate when it is ready to send
or receive the next byte or word. The channel
recognizes a signal on this line only during a
DMA transfers, i.e., after the instruction follow-
ing XFER has been executed and before a ter-
mination condition has occurred. The channels
have separate DMA request lines (DRQ1 and
DRQ2).

EXT (External Terminate)

An external device (typically the synchronizing
device) can terminate a DMA transfer by signal-
ing on this line. Each channel has its own external
terminate line (EXT1 and EXT2). The channel
stops the transfer as soon as the current fetch or
store cycle is completed. An external terminate in
an unsynchronized transfer could result in a loss
of data, although this would not be a typical use
of EXT. In a synchronized transfer, the syn-
chronizing device will normally issue EXT instead

of DRQ following the last transfer cycle. If EXT
is activated during a transfer cycle, a fetched byte
may not be stored as explained in section 3.4.

A channel does not recognize EXT if it is not per-
forming a DMA transfer. If EXT1 and EXT2 are
activated simultaneously, EXT1 is recognized
first.

Interrupts

Each channel has a separate system interrupt line
(SINTR! and SINTR2). A channel program may
generate a CPU interrupt request by executing a
SINTR instruction. Whether this instruction
actually activates the SINTR line, however,
depends upon the state of the interrupt control bit
(bit 3 of the PSW; see figure 3-17). If this bit is
set, interrupts from the channel are enabled, and
execution of the SINTR instruction activates
SINTR. If the interrupt control bit is cleared, the
SINTR instruction has no effect; interrupts from
the channel are disabled.

The CPU can aiter a channel’s interrupt control
bit by sending any command to the channel with
the value of ICF (interrupt control field) in the
CCW set to 10 (enable) or 11 (disable)., Thus, the
CPU can prevent interrupts from either channel.

Once activated, SINTR remains active until the
CPU sends a channel command with ICF set to 01
(interrupt acknowledge). When the channel
receives this command, it clears the interrupt ser-
vice bit in the PSW (figure 3-17) and removes the
interrupt request. Disabling interrupts also clears
the interrupt service bit and lowers SINTR.

Status Lines

The IOP emits signals on the S0-S2 status lines to
indicate to external devices the type of bus cycle
the processor is starting. Table 3-12 shows the
signals that are output for each type of cycle.
These status lines are connected to an §288 Bus
Controller. The bus controller decodes these lines
and outputs the signals that control components
attached to the bus. The IOP indicates ‘‘instruc-
tion fetch’” on these lines when it is reading and
writing memory operands as well as when it is fet-
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ched instructions. In the remote configuration, an
8289 Bus Arbiter monitors the S0-S2 status lines
to determine when a system bus access is required.

Table 3-12. Status Signals S0-S2

AR Type of Bus Cycle

0 | Instruction fetch from 1/O space
1 | Datafetch from |/O space

0 | Datastoretol/O space
1

0

(not used)
instruction fetch from system ‘
space
0| 1 | Datafetch from system space
1| 11 0.] Datastore to system space v
11111

Passive; no bus cycle run

Status lines S3-S6 indicate whether the bus cycleis
DMA or non-DMA, and which channel is run-
ning the cycle (see table 3-13). Note that when the
IOP is not running a bus cycle (e.g., when it is idle
or when it is executing an internal cycle that does
not use the bus), the status lines reflect the last
bus cycle run. ‘

Table 3-13. Status Signals S3-S6

S6(S5|S4|S3 Bus Cycle

1110 0 | DMAcycleonchannel1
111]0}1 | DMAcycleonchannel2
1{1}1]0 [ Non-DMAcycle onchannel1
11111 | Non-DMAcycle onchannel?2

3.7 Instruction Set

This section divides the IOP’s 53 instructions into
five functional categories:

1. data transfer,

2. arithmetic,

3. logic and bit manipulation,
4. . program transfer,

5. processor control.

The - description- of each instruction in these
categories explains how the instruction operates
and how it may.be used in channel programs.
Instructions that perform essentially the.same
operation (e.g., ADD. and ADDB, which add
words and bytes respectively), are described
together. A reference table at the end.of the sec-
tion lists every .instruction alphabetically and pro-
vides execution time, encoded length, and sample
ASM-89 coding for each permissable. operand
combination. For information on how the 8089
machine instructions are encoded in memory, see
section 4.3.

In reading this section, it is important to recall
that the instruction set does not. differentiate
between memory. ‘addresses and 1/0 :device
addresses. Instructions that are described as
accepting byte and word memory operands may
also be used to read and write I/0 devices.

Data Transfer Instructions

These instructions move data between memory
and channel registers. Traditional byte and word
moves (including memory-to-memory) are
available, as are special instructions that load
addresses into pointer registers and update tag
bits in the process.

MOV destination, source -

MOV transfers a byté or word.from the source to
the destination. Four instructions are provided:

MOV Move Word Variable,
MOVB Move Byte Variable,
MOVI Move Word Immediate,

MOVBI Move Byte Immediate.

Figure 3-35 shows how these instructions affect
register: operands. Notice that when a pointer
register is specified-as the destination of a MOV,
its: tag bit-is unconditionally set-to 1. MOV
instructions are therefore used to load 1/0 space
addresses into pointer registers+
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Register is Destination

Tag 19 15 7 0
Byte -
L L
Operation L1JLS_S_S.Sl8SSSSSSSlRRRRRRRﬂ
Word
A I—'Il"
Operation L.l SSSSIRRRRRRRRIRRRRRRRFT'

I

bitisignored

— X wnwm:nmd
il

IH

bit is unconditionally set

Register is Source

Tag 19 15 7 0

r 'Il-—_
DGPOXXX XXX XXX XX[TTTTTTTT

Lr...IE(XXXlTTTTTTTTlTTTTTTTTl

= bit is transferred to destination operand
bitis replaced by source operand
bit is sign extension of high-order bit transferred

Figure 3-35. Register Operands in MOV Instructions

MOVP destination, source

MOVP (move pointer) transfers a physical
address variable between a pointer register and
memory. If the source is a pointer register, its
content and tag bit are converted to a physical
address pointer (see figure 3-23). If the sourceis a
memory location, the three bytes are converted to
a 20-bit physical address and a tag value, and are
loaded into the pointer register and its tag bit.
MOVP is typically used to save and restore
pointer registers.

LPD destination, source

LPD (load pointer with doubleword) converts a
doubleword pointer (see figure 3-22) to a 20-bit
physical address and loads it into the destination,
which must be a pointer register. The pointer
register’s tag bit is unconditionally cleared to 0,

indicating a system address. Two instructions are

provided:

LPD Load Pointer With Doubleword
Variable

LPDI Load Pointer With Doubleword
Immediate

An 8086 or 8088 can pass any address in its
megabyte memory space to a channel program in
the form of a doubleword pointer. The channel
program can access the location by using LPD to
load the location address into a pointer register.

Arithmetic Instructions

The arithmetic instructions interpret all operands
as unsigned binary numbers of 8, 16 or 20 bits.
Signed values may be represented in standard
two’s complement notation with the high-order
bit representing the sign (0=positive, 1=negative).
The processor, however, has no way of detecting
an overflow into a sign bit so this possibility must

be provided for in the user’s software.

The 8089 performs arithmetic operations to 20
significant bits as follows. Byte and word
operands are sign-extended to 20 bits (e.g., bit 7
of a byte operand is propagated through bits 8-19
of an internal register). Sign extension does not
affect the magnitude of the operand. The opera-
tion is then performed, and the 20-bit result is
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returned to the destination operand. High-order
bits are truncated as necessary to fit the result in
the available space. A carry out of, or borrow
into, the high-order bit of the result is not

detected. However, if the destination is a register

that is larger than the source operand, carries will
be reflected in the upper register bits, up to the
size of the register.

Figure 3-36 shows how the arithmetic instructions
treat registers when they are specified as source
and destination operands.

ADD destination, source

The sum of the two operands replaces the destina-
tion operand. Four addition instructions are
provided:

INC destination

The destination is incremented by 1. Two instruc-
tions are available:

INC
INCB

Increment Word
Increment Byte

DEC destination

The destination is decremented by 1. Word and
byte instructions are provided:

Decrement Word
Decrement Byte

DEC
DECB

Logical and Bit Manipulation

Instructions
ADD Add Word Variable )
ADDB Add Byte Variable The logical instructions include the boolean
ADDI Add Word Immediate operators AND, OR and NOT. Two bit manipu-
ADDBI Add Byte Immediate lation instructions are provided for setting or
Register is Destination Register is Source
Tag 19 15 7 0 Tag 19 15 7 0
Byte i Ml

Operation | X} RRRR[RRRRRRRRA[RRRRRRRR | L><_|Lxxx|><xxxxxxx|F’PPPPPPP|
operaton X [RRAR[RARRRRRRRIRRRARRAR| x| xxxx[prrrrrrrlrrPPPPPP]

P (T Lt 22 ,

X =

bit is ignored in operation

R = bitis replaced by operation result
P = bit participates in operation

Figure 3-36. Register Operands in Arithmetic Instructions
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clearing a single bit in memory or in an I/0 device
register. As shown in figure 3-37, the logical
operations always leave the upper four bits of
20-bit destination registers undefined. These bits
should not be assumed to contain reliable values
or the same values from one operation to the
next. Notice also that when a register is specified
as the destination of a byte operation, bits 8-15
are overwritten by bit 7 of the result. Bits 8-15 can
be preserved in AND and OR instructions by
using word operations in which the upper byte of
the source operand is FFH or 00H, respectively.

AND destination, source

The two operands are logically ANDed and the
result replaces the destination operand. A bit in
the result is set if the bits in the corresponding
positions of the operands are both set, otherwise
the result bit .is cleared. The following AND
instructions are available:

AND | Logical AND Word Variable
ANDB Logical AND Byte Variable
ANDI Logical AND Word Immediate
ANDBI Logical AND Byte Immediate

AND is useful when more than one bit of a device
register must be cleared while leaving the remain-
ing bits intact. For example, ANDing an 8-bit
register with EEH only clears bits 0.and 4.

OR destination, source

The two operands are logically ORed, and the
result replaces the destination operand. A bit in
the result is set if either or both of the correspond-
ing bits of the operands are set; if both operand
bits are cleared, the result bit is cleared. Four
types of OR instructions are provided:

OR Logical OR Word Variable
ORB Logical OR Byte Variable
ORI Logical OR Word Immediate
ORBI Logical OR Byte Immediate

OR can be used to selectively set multiple bits in a
device register. For example, ORing an 8-bit
register with 30H sets bits 4 and 5, but does not
affect the other bits.

Register is Destination

Tag 19 15 7
Byte

Register is Source

Tag 19 15 7 0

Operation r)ZILUUUUISSSSSSSS'RRRRRRRRl

L

Fdly

L XXXlXXXXXXXXIPPPPPPPPl

Word

L [ty
Operation | X]|U U EUIRRRRRRRRIRRRRRRRR'

_' XXX|PPPPPPPP|PPPPPPPPJ

T W IWC X
[]

= bitisignored in operation

bit is undefined following operation

bit participates in operation and is replaced by result
bit is sign-extension of high-order result bit

= bit participates in operation, but is unchanged

Figure 3-37. Register Operands in Logical Instructions

Mnemonics © Intel, 1979



8089 INPUT/OUTPUT PROCESSOR

NOT destination/destination, source

NOT inverts the bits of an operand. If a single
operand is coded, the inverted result replaces the
original value. If two operands are coded, the
inverted bits of the source replace the destination
value (which must be a register), but the source
retains its original value. In addition to these two
operand forms, separate mnemonics are provided
for word and byte values:

NOT
NOTB

Logical NOT Word
Logical NOT Byte

NOT followed by INC will negate (create the
two’s complement of) a positive number.

SETB destination, bit-select

The Dbit-select operand specifies one bit in the
destination, which must be a memory byte, that is
unconditionally set to 1. A bit-select value of 0
specifies the low-order bit of the destination while
the high-order bit is set if bit-select is 7. SETB is
handy for setting a single b1t in an 8-bit device
register.

CLR destination, bit-select

CLR operates exactly like SETB except that the
selected bit is unconditionally cleared to 0.

Program Transfer Instructions

Register TP controls the sequence in which chan-
nel program instructions are executed. As each
instruction is executed, the length of the instruc-
tion is added to TP so that it.points to the next
sequential instruction. The program transfer
instructions can alter this sequential execution by
adding a signed displacement value to TP. The
displacement is contained in the program transfer
instruction and may be either 8 or 16 bits long.
The displacement is encoded in two’s complement
notation, and the high-order bit indicates the sign
(O=positive displacement, 1=negative "displace-
ment), An 8-bit displacement may cause a
transfer to a location in the range —128 through
+127 bytes from the end of the transfer instruc-
tion, while a 16-bit displacement can transfer to

any location within —32,768 through +32,767
bytes. An instruction containing an 8-bit displace-
ment is called a short transfer and an instruction
containing a. 16-bit displacement is calied a long
transfer.

The program transfer instructions have alternate
mnemonics. If the mnemonic begins with. the let-
ter ““L,”’ the transfer is long, and the distance to
the transfer target is expressed as a 16-bit
displacement regardless of how far away the
target is located. If the mnemonic does not begin
with “L,” the ASM-89 assembler may build a
short or long displacement according to rules
discussed in section 3.9.

The ‘‘self-relative’’ addressing technique used by
program transfer instructions has two important
consequences. First, it promotes position-
independent code, i.e., code that can be moved in
memory and still execute correctly. The only
restriction here is that the entire program must be
moved as a unit so that the distance between the
transfer instruction and its target does not
change. Second, the limited addressing range of
these instructions must be kept in mind when
designing large (over 32k bytes of code) channel
programs.

CALL/LCALL TPsave, target

CALL invokes an out-of-line routine, saving the
value of TP so that the subroutine can transfer
back to the instruction following the CALL. The
instruction stores TP and its tag bit in the TPsave
operand, which must be a physical address
variable, and then transfers to the target address
formed by adding the target operand’s displace-
ment to TP. The subroutine can return to the
instruction following the CALL by using a
MOVP instruction to load TPsave back into TP.

Notice that the 8089’s facilities for implementing
subroutines, or procedures, is less sophisticated
than its counterparts in the 8086/8088. The prin-
cipal difference is that the 8089 does not have a
built in stack mechanism. 8089 programs can
implement a stack using a base register as a stack
pointer. On the other hand, since channel pro-
grams are not subject to interrupts, a stack will
not be required for most channel programs.
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JMP/LIMP farget

JMP causes an unconditional transfer (jump) to
the target location. Since the task pointer is not
saved, no return to the instruction following the
JMP is implied.

JZ/LJIZ source, target

JZ (jump if zero) effects a transfer to the target
location if the source operand is zero; otherwise
the instruction following JZ is executed. Word
and byte values may be tested by alternate
instructions:

JZ/L)Z Jump/Long Jump if Word Zero
JZB/LJZB Jump/Long Jump if Byte Zero

If the source operand is a register, only the low-
order 16 bits are tested; any additional high-order
bits in the register are ignored. To test the low-
order byte of a register, clear bits 8-15 and then
use the word form of the instruction.

JNZ/LJINZ source, target

JNZ operates exactly like JZ except that control is
transferred to the target if the source operand
does not contain all 0-bits. Word and byte sources
may be tested using these mnemonics:

INZ/LINZ Jump/Long Jump if Word Not
Zero

JNZB/LJNZB Jump/Long Jump if Byte Not
Zero.

JMCE/LIJMCE - source, target

This instruction (jump if masked compare equal)
effects a transfer to the target location if the
source (a memory byte) is equal to the lower byte
in register MC as masked by the upper byte in
MC. Figure 3-15 illustrates how 0-bits in the
upper half of MC cause the corresponding bits in
the lower half of MC and the source operand to
compare equal, regardless of their actual values.
For example, if bits 8-15 of MC contain the value
01H, then the transfer will occur if bit 0 of the
source and register MC are equal. This instruction
is useful for testing multiple bits in 8-bit device
registers.

JMCNE/LJMCNE source, target

This instruction causes a jump to the target loca-
tion if the source is not equal to the mask/
compare value in MC. It otherwise operates iden-
tically to JMCE.

JBT/LIBT source, bit-select, target

JBT (jump if bit true) tests a single bit in the
source operand and jumps to the target if the bit
is a 1. The source must be a byte in memory or in
an 1/0 device register. The bit-select value may
range from 0 through 7, with 0 specifying the low-
order bit. This instruction may be used to test a
bit in an 8-bit device register. If the target is the
JBT instruction itself, the operation effectively
becomes ‘‘wait until bit is 0.”’

JNBT/LJNBT source, bit-select, target
This instruction operates exactly like JBT, except

that the transfer is made if the bit is not true, i.c.,
if the bit is 0.

Processor Control Instructions

‘These instructions enable channel programs to

control IOP hardware facilities such as the LOCK
and SINTRI1-2 pins, logical bus width selection,
and the initiation of a DMA transfer.

TSL destination, set-value, target

Figure 3-38 illustrates the operation of the TSL
(test and set while locked) instruction. TSL can be
used to implement a semaphore variable that
controls access to a shared resource. in a
multiprocessor system (see section 2.5). If the °
target operand specifies the address of the TSL
instruction, the instruction is repetively executed
until the semaphore (destination) is found to con-
tain zero. Thus the channel program does not
proceed until the resource is free.

WID source-width, dest-width

WID (set logical bus widths) alters bits 0 and 1 of
the PSW, thus specifying logical bus widths for a
DMA transfer. The operands may be specified as
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1

ACTIVATE
LOCK

FETCH
DESTINATION

ASSIG
SET-VAL UE TO
DESTINATION

STORE
DESTINATION

DE-ACTIVATE
LOCK

)

NEXT SEQUENTIAL INSTRUCTION

DE-ACTIVATE
LOGK

JUMPTO
TARGET .

Figure 3-38. Operation of TSL Instruction

8 or 16 (bits), with the restriction that the logical
width of a bus cannot exceed its physical width.
The logical bus widths are undefined following a
processor RESET; therefore the WID instruction
must be executed before the first transfer.
Thereafter the logical widths retain. their values
until - the next. WID instruction or processor
RESET.

XFER (no operands)

XFER (enter DMA transfer mode after following’

instruction) prepares the channel for a DMA
transfer operation. In a synchronized  transfer,

the instruction following XFER may ready the
synchronizing device (e.g., send a ‘‘start”” com-
mand or the last of a series of parameters). Any
instruction, including NOP and WID, may follow
XFER, except an instruction that alters GA, GB
or GC.

SINTR (no'operands)

This instruction sets'the interrupt service bit in the
PSW-and activates the channel’s SINTR line if
the interrupt control bit in the PSW is set. If the
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interrupt control bit is cleared (interrupts from
this channel are disabled), the interrupt service bit
is set, but SINTR1-2 is not activated. A channel
program may use this instruction to interrupt a
CPU.

NOP (nooperands)

This instruction consumes clock cycles but per-
forms no operation. As such, it is useful in timing
loops.

HLT (nooperands)

This instruction concludes a channel program.
The channel clears its BUSY flag and then idles.

Instruction Set Reference Information

Table 3-16 lists ecvery 8089 instruction
alphabetically by its ASM-89 mnemonic. The
ASM-89 coding format is shown (see table 3-14
for an explanation of operand identifiers) along

with the instruction name. For every combination
of operand types (see table 3-15 for key), the
instruction’s execution time and its length in
bytes, and a coding example are provided.

The instruction timing figures are the number of
clock periods required to execute the instruction
with the given combination of operands. At
5 MHz, one clock period is 200 ns; at 8 MHz a
clock period is 125 ns. Two timings are provided
when an instruction operates on a memory word.
The first (lower) figure indicates execution time
when the word is aligned on an even address and
is accessed over a 16-bit bus. The second figure is
for odd-addressed words on 16-bit buses and any
word accessed via an 8-bit bus.

Instruction fetch time is shown in table 3-17 and
should be added to the execution times shown in
table 3-16 to determine how long a sequence of
instructions will take to run. (Section 3.2 explains
the effect of the instruction queue on 16-bit
instruction fetches.) External delays such as bus
arbitration, wait states and activity on the other
channel will increase the elapsed time over the
figures shown in tables 3-16- and 3-17. These
delays are application dependent.

Table 3-14. Key to ASM-89 Operand Identifiers

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data operated on
arithmetic, by the instruction, and which receives (is replaced by) the result
bit manipulation of the operation. ‘
source data transfer, A register, memory location, or immediate value that is used in
arithmetic, the operation, but is not altered by the instruction.
bit manipulation
target program transfer | Location to which control is to be transferred.
TPsave program transfer | A 24-bit memory location where the address’of the next sequen-
tial instruction is to be saved.
bit-select bit manipulation Specification. of a bit location within a byte; 0=least-significant
(rightmost) bit, 7=most-significant (leftmost) bit.
set-value TSL Value to which destination is set if it is found 0.
source-width WID Logica! width of source bus.
dest-width WID Logical width of destination bus.
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Table 3-15. Key to Operand Types

_IDENTIFIER ‘ , ' EXPLANATION

(no operands) No operands are written

register - Any genefal register

ptr-reg A pointer register

immeds . A constantin the range 0-FFH

im‘med16 '} ‘A constantin the range 0-FFFFH.

myem8 o An 8-bit memory location (byte)

mem1i6 A 16-bit memory location (word)
‘ mer'h24' A 24-bit memory location (physical address pointer)

mem32 A 32-bit membry location (doubleword pointer)

label |- Alabel within —32,768 to +32,767 bytes of the end of the instruction
_ short-label A label within —128 to +127 bytes of the end of the instruction

0-7 A constant in the range: 0-7

8/16 - | Theconstant8orthe constant 16

Table 3-16. Instruction Set Reference Data

ADD destination, source Add Word Variable :
Operands Clocks Bytes Coding Example
register, mem16 11115 . 23 - | ADD BC, [GA].LENGTH
mem16, register 16/26 Lo 2-3 ADD [GB],GC .
ADDB ‘ destinatidn,’source ‘| Add Byte Variable .
Operands Clocks Bytes Coding Example
register, mem8 , 11 2-3 ADDB GG, [GA].N_CHARS
mem8, register ) 16 2-3 ADDB [PP].ERRORS, MC:
ADDB| destination, source Add Byte Immediate
Operands - -} . Clocks ~ Bytes Coding Example
register, immed8 '3 3 ADDBI MC,10
_mem8, immed8 16 3-4 ADDBI [PP+!X+].RECORDS, 2CH
ADDI destination, source _ ‘ Add Word Immediate :
Operands Clocks Bytes Coding Example
register, immed16 3 4 ADDI GB, 0C25BH
mem16, immed16 | .. 16126 4-5 ADDI [GB].POINTER, 5899
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Table 3-16. Instruction Set Reference Data (Cont’d.)

AN D destination, source Logical AND Wérd Variable

Operands Clocks Bytes Coding Example
register, mem16 v 11/15 2-3 AND MC, [GA].FLAG_WORD
mem16, register 16/26 2-3 AND [GC].STATUS, BC
ANDB destination, source Logical AND Byte Variable

Operands Clocks Bytes . Coding Example
register, mem8 11 2-3 AND BC, [GC] o
mem8, register 16 2-3 AND [GA+IX].RESULT, GA
AN DBI destination, source Logical AND Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 GA, 011000008
mem8, immed8 16 3-4 [GC+IX], 2CH
ANDI -destination, source Logical AND Word Immediaté

Operands Clocks Bytes Coding Example
register, immed16 3 4 IX, 0H
mem16, immed16 16/26 4-5 [GB+IX].TAB, 40H
CALL Tpsave, target Call

Operands Clocks Bytes Coding Example
mem?24, label 17123 3-5 CALL[GC+MLSAVE,GET_NEXT
CLR destination, bit select Clear Bit To Zero

Operands Clocks Bytes Coding Example
mems, 0-7 - 16 2-3 CLR [GA], 3 ‘
DEC destination Decrement Word By 1

Operands Clocks Bytes Coding Example
register 3 2 a
mem16 16/26 2-3 DEC [PP].RETRY
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Table 3-16. Instruction Set Reference Data (Cont’d.)

D ECB destination

Decrement Byte By 1

Operands Clocks Bytes Coding Example
mem8 16 2-3 DECB [GA+IX+].TAB
HLT (no operands) Halt Channel Program

Operands Clocks Bytes Coding Example
(no operands) 11 2 HLT
INC destination Increment Word by 1
: Operands - Clocks Bytes Coding Exampie
register 3 2 INC GA ‘
mem16 16/26 2-3 INC [GA].COUNT
INCB destination Increment Byte by 1

Operands Clocks Bytes Coding Example
mems3 16 2-3 INCB [GB].POINTER
J BT source, bit-select, target Jump if Bit True (1)

Operands Clocks Bytes Coding Example
mem8, 0-7, labe! 14 3-5 JBT [GA].RESULT_REG, 3, DATA_VALID
JMCE source, target Jump if Masked Compare Equal

Operands Clocks - Bytes Coding Example
mem8, label 14 3-5 JMCE [GB].FLAG, STOP_SEARCH
J MC NE source, target Jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example
mem8, label 14 3-5 JMCNE [GB+IX], NEXT_ITEM
JMP target Jump Unconditionally .

Operands Clocks Bytes Coding Example
label 3 3-4 JMP READ_SECTOR
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Table 3-16. Instruction Set Reference Data (Cont’d.)

J N BT source, bit-select, target Jump if Bit Not True (0}
Operands Clocks Bytes Coding Example
“|mem8, 0-7, label 14 3-5 JNBT [GC], 3, RE_READ
JNZ source, target Jump if Word Not Zero

Operands Clocks Bytes Coding Example
register, label 5 3-4 JNZ BC, WRITE__LINE .
mem16, label 12/16 3-5 JNZ [PP].NUM__CHARS, PUT__BYTE
JNZB source, target Jump if Byte Not Zero

Operands Clocks Bytes Coding Example
mem8, label 12 3-5 JNZB [GA], MORE_DATA
JZ source, target Jump if Word is Zero

Operands Clocks Bytes Coding Example
register, label 5 3-4 JZ BC, NEXT_LINE
mem16, label 12/16 3-5 JZ [GC+IX].INDEX, BUF_EMPTY
JZB source, target Jump if Byte Zero

) Operands Clocks Bytes Coding Example
mem§, label 12 3-5 JZB [PP].LINES__LEFT, RETURN
LCALL TPsave, target Long Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 4-5 LCALL [GC].RETURN__SAVE, INIT_8279
LJBT source, bit-select, target Long Jump if Bit True (1)

Oberands Clocks Bytes ' Coding Example : -
mem8, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK
LIMCE. source, target Long jump if Masked Compare Equal

Operands Clocks Bytes Coding Example
mem8, label 14 4-5 LJMCE [GB], BYTE__FOUND

Mnemonics @ Intel, 1979
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Table 3-16. Instruction Set Reference Data (Cont’d.)

LJ M CNE source, target Long jump if Masked Compare Not Equal
Operands Clocks Bytes Coding Example
mems, label 14 4-5 LJMCNE [GC+IX+], SCAN_NEXT
LJ M P target Long Jump Unconditional
Operands Clocks Bytes Coding Example
label 3 4 LJMP GET_CURSOR
LJ NBT source, bit-select, target Long Jump if Bit Not True (0)
Operands -Clocks Bytes Coding Example
mem8, 0-7, label 14 4-5 LJNBT [GC], 6, CRCC_ERROR
LJNZ source, target Long Jump if Word Not Zero
Operands Clocks Bytes Coding Example
register, label 5 4 LIJNZ BC, PARTIAL__XMIT
mem16, label 12/16 4-5 LIJNZ [GA+IX].N__LEFT, PUT_DATA
LIJNZB source, target Long Jump if Byte Not Zero
Operands Clocks Bytes Coding Example
mem8, label 12 4-5 LINZB [GB+IX+].ITEM, BUMP__COUNT
LJZ source, target Long Jump if Word Zero
Operands Clocks Bytes Coding Example
register, label 5 4 . LJZ IX, FIRST_ELEMENT
mem16, label 12/16 . 4-5 LJZ [GB].XMIT_COUNT, NO_DATA
LJZB source, target Long Jump if Byte Zero
' Operands Clocks Bytes Coding Example
mems, label - .12 4-5 LJZB [GA], RETURN__LINE
LPD destination, source Load Pointer With Doubleword Variable
Operands Clocks Bytes . Coding Example
ptr-reg, mem32 20/28* 2-3 LPD GA, [PP].BUF_START

*20 clocks if operand is on even address; 28 if on.odd address
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Table 3-16. Instruction Set Reference Data (Cont’d.)

LPDI destination, source Load Pointer With Doubleword Immediate
Operands Clocks Bytes Coding Example
ptr-reg, immed32 12/16* 6 LPD! GB, DISK_ADDRESS

*12 clocks if instruction is on even address; 16 if on-odd address

MOV destination, source Move Word

Operands Clocks Bytes Coding Example
register, mem16 8/12 2-3 MOV IX, [GC]
mem16, register 10/16 2-3 MOV [GA].COUNT, BC
mem16, mem16 18/28 4-8 MOV [GA].READING, [GB]
MOVB destination, source Move Byte

Operands Clocks Bytes Coding Example
register, mem$8 8 2-3 MOVB BC, [PP].TRAN_COUNT
mem§8, register 10 2-3 MOVB [PP].RETURN__CODE, GC
mems, mem8 18 4-6 MOVB [GB+IX+], [GA+IX+]
MOVBI destination, source Move Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 MOVBI MC, ‘A’
mem8, immed8 12 3-4 MOVBI [PP].RESULT, 0
Movi destination, source Move Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 MOVI BC, 0
mem16, immed16 12/18 4-5 MOVI [GB], OFFFFH
MOVP destination, source Move Pointer

Operands Clocks Bytes Coding Example
ptr-reg, mem24 19/27* 2-3 MOVP TP, [GC+iX]
mema24, ptr-reg 16/22* 2-3 MOVP [GB].SAVE_ADDR, GC

*First figure is for operand on even address; second

is for odd-addressed operand.

NOP (no operands) - No Operation
Operands Clocks Bytes Coding Example
(no operands) 4 2 NOP
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Table 3-16. Instruction Set Reference Data (Cont’d.)

NOT destination/destination, source

Logical NOT Word

Operands Ciocks Bytes Coding Example
register 3 2 NOT MC
mem16 16/26 2-3 NOT [GA].PARM
register, mem16 11/15 2-3 NOT BC, [GA+IX].LINES__LEFT
NOTB destination/destination, source | Logical NOT Byte

Operands Clocks Bytes Coding Example
mem8 16 2-3 NOTB [GA].PARM__REG:
register, mem8 11 2-3 NOTB IX, [GB].STATUS
OR destination, source Logical OR Word

Operands Clocks Bytes Coding Example
register, mem16 11/15 23 OR MC, [GC].MASK
mem16, register 16/26 2-3 OR [GC], BC
ORB destination, source Logical OR Byte

Operands Clocks Bytes Coding Example
register, mem8 LAl 2-3 ORB . iX, [PP].POINTER
mem8, register 16 2-3 ORB [GA+IX+],GB
ORBl destination, source Logical OR Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 ORBI IX, 00010001B
mem3, immed8 16 3-4 ORB! [GB].COMMAND, 0CH
ORI destination, source Logical OR Word Immediate

Operands Clocks " Bytes Coding Example
register, immed16 3 4 ORI MG, OFFODH
mem16,immed16 16/26 4-5 ORI [GA], 1000H
SETB destination, bit-select SetBitto1

Operands Clocks Bytes Coding Example
mem8, 0-7 16 2-3 SETB [GA].PARM__REG, 2
SINTR  (no operands) Set Interrupt Service Bit _

Operands Clocks Bytes Coding Example
(nooperands) 4 2 SINTR ‘
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Table 3-16. Instruction Set Reference Data (Cont’d.)

TSL déstination, set-value, target

Test and Set While Locked

Operands Clocks

Bytes Coding Example

mem8, immed8, short-label 14/16*

4-5 TSL [GA].FLAG, OFFH, NOT__READY

*14 clocks if destination # 0; 16 clocks if destination =0

WID source-width, dest-width

Set Logical Bus Widths

Operands Clocks Bytes Coding Example
8/16,8/16 4 2 WID 8,8
XFER (no operands) Enter DMA Transfer Mode After Next Instruction
Operands Clocks Bytes Coding Example
{no operands) 4 2 XFER
Table 3-17. Instruction Fetch Timings nel processes different types of operands and how
(Clock Periods) it calculates addresses using its addressing modes.
Section 3.9 describes the ASM-89 conventions
BUS WIDTH that programmers use to specify these o d
INSTRUCTION and ar:idrgessing modes pectly Tiese operanes
LENGTH 8 16 '
(BYTES) ) @ ‘
Register and immediate Operands
2 14 7 11
3 18 14 1 Registers may be specified as source or destina-
4 22 14 15 tion operands in many instructions. Instructions
5 26 18 15 that operate on registers are generally both

(1) First byte of instruction is on an even
address.

(2) First byte of instruction is on an odd address.
Add 3 clocks if first byte is notin queue (e.g.,
first instruction followirig program transfer).

3.8 Addressing Modes

8089 instruction operands may reside in registers,
in the instruction itself or in the system or 1/0
address spaces. Operands in the system and 1/0
spaces may be either memory locations or 1/0
device registers and may be addressed in four dif-
ferent ways. This section describes how the chan-

shorter and faster than instructions that specify
immediate or memory operands.

Immediate operands are data contained in
instructions rather than in registers or in memory.
The data may be either 8 or 16 bits in length. The
limitations of immediate operands are that they
may only serve as source operands and that they
are constant values.

Memory Addressing Modes

Whereas the channel has direct access to register
and immediate operands, operands in the system
and 1/0 space must be transferred to or from the
IOP over the bus. To do this, the IOP must

_ calculate the address of the operand, called its
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effective address (EA). The programmer may
specify that an operand’s address be calculated in
any of four different ways; these are the 8089’s
memory addressing modes. :

The Effective Address

An operand in the system space has a 20-bit effec-
tive address, and an operand in the I/O space has
a 16-bit effective address. These addresses are
unsigned numbers that represent the distance (in
bytes) of the low-order byte of the operand from
the beginning of the address space. Since the 8089
does not “‘see’’ the segmented structure of the
system space that it'may share with -an 8086 or
8088, 8089 effective addresses are equivalent to
8086/8088.physical addresses.

All memory addressing modes use the content of
one of the pointer registers, and the state of that
register’s tag bit determines whether the operand
lies in the system.or the I/O space. If the operand
is in the 1/0 space_(tag = 1), bits 16-19 of the
pointer . register - are ignored in .the effective
address calculation. Section 4.3 describes the two
fields (AA and MM) in the encoded machine
instruction that specify addressing mode and base
(pointer) register. -

Based Addressing

In based addressing (figure 3-39), the effective
address is taken directly from the content of GA,
GB, GC or PP. Using this addressing mode, one

" instruction may access different locations if the

register is updated before the instruction executes.
LPD, MOV, MOVP or arithmetic instructions
might be used to change the value of the base
register.

Offset Addressing

In this mode (figure 3-40) an 8 b1t unsigned value
contained in the instruction is added to the con-
tent of a base register to form the effective
address. The offset mode provides a convenient
way to address elements in  structures (a
parameter block is a typical example of a struc-
ture). As shown in figure 3-41, a base register can
be pointed at the base (first element) in the stric-
ture, and then different offsets can be used to
access the elements within the structure. By
changing the base address, the same structure can
be relocated elsewhere in memory.

Indexed Addressing

An indexed address is formed by adding the con-
tent of register IX (interpreted as an unsigned
quantity) to a base register as shown ‘in figure
3-42. Indexed addressing is often used to access

rOO

R/B/P.WB AA W

OPCODE MM

- MACHINE INSTRUCTION FORMAT

GA

OR
GB

EA’

OR
GC

- OR
PP .

Figure 3-39. Based Addressing
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‘ rm

R/B/P WB AA W} OPCODE MM " OFFSET MACHINE INSTRUCTION FORMAT

GA

GB
- OR e P
GC
——— OR
‘ PP ‘
‘ EA

Figure 3-40. Offset Addressing

OFFSET

o n
6 HIGH ADDRESSES
‘ . e +6{ ERROR | LINEGT
+4 BUFF_PTR

+2JPOSITION] CURSOR

— 1 BASE REGISTER

r—-—>+0 END__BUS

LOW ADDRESSES
S [ )

EA

Figure ‘3-4 1. Accessirig a Structure with Offset Addressing

array elements (see figure 3-43). A base register Indexed Auto-Increment Addressing
locates the beginning of the array and the value in
IX selects one element, i.c., it acts as the array

subscript. The ith element of a byte array is In this variation of indexed addressing, the effec-
selected when IX contains (/ —1)."To access the tive address is formed by summing IX and a base
ith element of a word array, IX should contain register, and then IX is incremented automat-
W -1)*2). ‘ . ‘ ically. (See figure 3-44.) The addition takes place
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after the EA is calculated. IX is incremented by 1 mode is very useful for ‘‘stepping through” suc-
for a byte operation, by 2 for a word operation cessive elements of an array (e.g., a program loop
and by 3 for a MOVP instruction. This addressing that sums an array).

rﬂl

R/B/P WB AA W] OPCODE MM MACHINE INSTRUCTION FORMAT

GA

GB
OR ——— | X
GC

PP

EA

Figure 3-42. Indexed Addressing

N ) q
1X ‘T HIGH ADDRESSES

8 ARRAY (9)

ARRAY (8)4

ARRAY @

I
~—] BASEREGISTER ARRAY (6) -

ARRAY (5)

ARRAY (3)

ARRAY (2)

ARRAY (1)

-
I

I

: EA ARRAY (4)
|

|

I

|

!

I

|

e

R S N, — ] ARRAY (0)

| «—— 1 WORD —»]
o A
LOW ADDRESSES

Figure 3-43. Accessing a Word Array with Indexed Addressing
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rﬁ

R/B/P WB AA W

OPCODE MM

MACHINE INSTRUCTION FORMAT

GA
OR
GB
> OR —i- A e X
GC
oR ?
PP
|
|
|
EA |
| . T
| ‘
X 4—@4— DELTA

Figure 3-44. Indexed Auto-Increment Addressing

3.9 Programming Facilities

The compatibility of the 8089 with the 8086 and
8088 extends beyond the hardware interface.
Comparing figure 3-45, with figure 2-45, one can
see that, except for the translate step, the software
development process is identical for both
8086/8088 and 8089 programs. The ASM-89
assembler produces a relocatable object module

that is compatible with the 8086 family software

development utilities LIB-86, LINK-86, LOC-86
and OH-86, described in section 2.9. All of these
development tools run on an Intellec® 800 or
Series 11 microcomputer development system.

This section surveys the facilities of the ASM-89
assembler and discusses how LINK-86 and
LOC-86 can be used in 8089 software develop-
ment. For a complete description of the 8089
assembly language, consult 8089 Assembly
Language User’s Guide, Order No. 9800938,
available from Intel’s Literature Department.

ASM-89

The ASM-89 assembler reads a disk file contain-
ing 8089 assembly language statements, translates
these statements into 8089 machine instructions,
and writes the result into a second disk file. The
assembly input is called a source module, and the
principal output is a relocatable object module.
The assembler also produces a file that lists the
module and flags any errors detected during the
assembly.

Statements

Statements are the building blocks of ASM-89
programs. Figure 3-46 shows several examples of
ASM-89 statements. The ASM-89 assembler gives
programmers considerable flexibility in format-
ting program statements. Variable names and
labels (identifiers) may be up to 31 characters
long, the underscore (__) character may be used
to improve the readability of longer names (e.g.,
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WAIT_UNTIL__READY). The component and multiple identifiers within the operand field.
parts of statements (fields) need not be located at Long statements may be continued onto the next
particular ‘‘columns’’ of the statement. Any link by coding an ampersand (&) as the first
number of blank characters may separate fields - character of the continued line.

{FROM PL/M-86 & ASM-88 TRANSLATORS)

[ OBJECT ¢
\ MOBULES
N =

B ———
EDIT TRANSLATE LINK LOCATE

isis- SOURCE
TEXT > ASMs8
EDITOR MODULE

UPDATE
LIBRARIES Lie-s

OBJECT
MODULE
LIBRARIES

Figure 3-45. 8089 Software Development Process

LOAD

AND
EXECUTE
RELOC ABSOLUTE
UNK-88 |—{ OBJECT LOC-86 OBJECT EXECUTION
MODULE MODULE HARDWARE

RELOC
OBJECT
'\ MODULE

; THIS STATEMENT CONTAINS A COMMENT FIELD éN LY

ADDI BC,5 ; TYPICAL ASM89 INSTRUCTION
ADD!1 BC, 5 ; NO “COLUMN” REQUIREMENTS

MOV [GA].STATUS, ‘

& 6 , ~ ; ACONTINUED STATEMENT

SOURCE EQU GA ; ASIMPLE ASM89 DIRECTIVE

LINE__BUFFER_ADDRESS DD ; ALONG IDENTIFIER

Figure 3-46. ASM-89 Statements
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A statement whose first non-blank character is a
semicolon is a comment statement. Comments
have no affect on program execution and, in fact,
are ignored by the ASM-89 assembler. Never-
theless, carefully selected comments are included
in alt well written ASM-89 programs. They sum-
marize, annotate and clarify the logic of the pro-
gram where the instructions are too
“‘microscopic’’ to make the operation of the pro-
gram self-evident.

An ASM-89 instruction statement (figure 3-47)
directs the assembler to build an 8089 machine
instruction. The optional label field assigns a
symbolic identifier to the address where the
instruction will be stored in memory. A labelled
instruction can be the target of a program
transfer; the transferring instruction specifies the
label for its target operand. In figure 3-47 the
labelled instruction conditionally transfers to
itself; the program will loop on this one instruc-

tion as long as bit 3 of the byte addressed by
[GA].STATUS is not true. The mnemonic field of
an instruction statement specifies the type of 8089
machine instruction that the assembler is to build.

The operand field may contain no operands or
one or more operands as required by the instruc-
tion. Multiple operands are separated by commas
and, optionally, by blanks. Any instruction state-
ment may contain a comment field (comment
fields are initiated by a semicolon).

An ASM-89 directive statement (figure 3-48) does
not produce an 8089 machine instruction. Rather,
a directive gives the assembler information to use
during the assembly. For example, the DS (define
storage) directive in figure 3-48 tells the assembler
to reserve 80 bytes of storage and to assign a sym-
bolic identifier (INPUT__BUFFER) to the first
(lowest-addressed) byte of this area. The ASM-89
assembler accepts 14 directives; the more com-
monly used directives are discussed in this section.

|DEMO:| | JNBT | | [GA].STATUS,3,DEMO}

] ;WAIT UNTIL READY |

COMMENT (OPTIONAL)

OPERANDS (REQUIRED/PROHIBITED)

MNEMONIC (REQUIRED)

LABEL (OPTIONAL)

Figure 3-47. ASM-89 Instruction Format

| 'NPUT_BUFFER: | 80

23l

| ;TERMINAL LINE STORED HERE ]

—— COMMENT (OPTIONAL)

OPERANDS (REQUIRED/PROHIBITED)

MNEMONIC (REQUIRED)

LABEL/NAME (REQUIRED/PROHIBITED)

Figure 3-48. ASM-89 Directive Format

3-65

Mnemonics © Intel, 1979



8089 INPUT/OUTPUT PROCESSOR

The first field in a directive may be a label or a
name; individual directives may. require or pro-
hibit names, while labels are optional for direc-
tives that accept them, A label ends in a colon like
an instruction statement label. However, a direc-
tive label cannot be specified as the target of a
program transfer. A name does not have a colon.
The second field is the directive mnemonic, and
the assembler distinguishes between instructions
and directives by  this - field. - Any -operands
required by the directive are written next; multiple
operands are separated by commas and, option-
ally, by blanks. A comment may be included in
any directive by begmnmg the text w1th a
semicolon.

Constants

Binary, decimal, octal and hexadecimal numeric
constants (figure 3-49) may be written in ASM-89
instructions and directives. The assembler can
add and subtract constants at assembly time.
Numeric constants, including the results of
arithmetic operations, must be representable in 16
bits. Positive numbers cannot exceed 65,535
(decimal); negative numbers, which the assembler
represents in two’s complement notation, cannot
be ‘‘more negative’’ than ~32,768 (decimal).

Character constants are enclosed in single quote
marks as shown in figure 3-49. Strings of
characters up to 255 bytes long may be written
when initializing storage. Instruction operands,
however, can only be one or two characters long
(for byte and word instructions respectively).

As an aid to program clarity, The EQU (equate)
directive may be used to give names to constants
(e.g., DISK__STATUS EQU 0FF20H).

Defining Data

Four ASM-89 directives reserve space for memory
variables in the ASM-89 program (see figure
3-50). The DB, DW and DD directives allocate
units of bytes, words and doublewords, respec-
tively, initialize the locations, and optionally label
them so that they may be referred to by name in
instruction statements. The label of a storage
directive ‘always refers to the first (lowest-
addressed) byte of the area reserved by the
dlrectlve

The DB and DW directives may be used to define
byte- and word-constant scalars (individual data
items) and arrays (sequences of the same type of
item). For example, a character string constant
could be defined as a byte array:

SIGN_ON_MSG: DB ‘PLEASE ENTER PASSWORD’

The DD directive is typically used to define the
address of a location in the system space, i.e., a
doubleword pointer variable. The address may be
loaded into a pointer register with the LPD
instruction.

The DS directive reserves, and optionally names,
storage in units of bytes, but does not initialize
any of the reserved bytes. DS is typically used for
RAM-based variables such as buffers. As'there is
no special directive for defining a physical address
pointer, DS is typically used to reserve the three
bytes used by the MOVP instruction,

MOVBI  GA, ‘A’
MOVBI  GA,41H
MOVBI GA, 85

MOVBI  GA, 65D
MOVBI- - GA,101Q
MOVBI = GA, 1010
MOVBI  GA, 01000001B

; CHARACTER

; HEXADECIMAL
DECIMAL

DECIMAL ALTERNATIVE
OCTAL

; OCTAL ALTERNATIVE
; BINARY

s NEXTTWO STATEMENTS ARE EQUIVALENT AND
;  ILLUSTRATE TWO’S COMPLEMENT REPRESENTATION
;- OF NEGATIVE NUMBERS

MOVBI GA,-5
MOVBI  GA,11111011B

Figure 3-49. ASM89 Constants
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; ASM89 DIRECTIVE ; MEMORY CONTENT (HEX)

ALPHA: DB - 01
BB L2 : FE (TWO’S COMPLEMENT)
DB ‘A, ‘B’ L 4142
BETA: DW 1 £ 0100
DW -5 : FAFF
DW  ‘AB’ L 4241
DW 400,500  : 2410F401
DW  400H, 500H : 0004 0005

gamma: DW BETA ; OFFSET OF BETA ABOVE, .

; FROM BEGINNING OF PROGRAM

DELTA DD GAMMA
ZETA: DS 80

; ADDRESS (SEGMENT & OFFSET)
; OF GAMMA
; 80 BYTES, UNINITIALIZED

Figure 3-50. ASM-89 Storage Directives

Structures

An ASM-89 structure is a map or template that
gives names and relative locations to a collection
of related variables that are called structure
elements or members. Defining a structure,
however, does not allocate storage. The structuré
is, in effect, overlaid on a particular area of
memory when one of its clements is used as an
instruction operand. Figure 3-51 shows how a
structure representing a parameter block could be
defined and then used in a channel program. The

assembler uses the structure element name to pro-
duce an offset value (structures are used with the
offset addressing mode). Compared to ‘‘hard- .
coded’’ offsets, structures improve program clar-
ity and simplify maintenance. If the layout of a
memory block changes, only the structure defini-
tion must be modified. When the program is
reassembled, all symbolic references to the struc-
ture are automatically adjusted. When multiple
areas of memory are laid out identically, a single
structure can be used to address any area by
changing the content of the pointer (base) register
that specifies the structure’s ‘‘starting address.”’

MEMORY MAP

OFFSETS_* « HIGHER ADDRESSES

+10 BUFFER_LEN

+8 BUFFER_START

+6

+4 |} COMMAND RESULT

+2 .
TP_RESERVED
PP— — »+0

J~ LOWERADDRESSES J»

USING “HARD-CODED” OFFSETS

LPD GA, [PP.6
MOVBI  [PP].5,0

STRUCTURE DEFINITION

PARM__BLOCK STRUC

TP_RESERVED: DS 4
COMMAND: DS 1
RESULT: DS 1
BUFFER_START: DS 4
BUFFER__LEN: DS 2
PARM_BLOCK ENDS

USING STRUCTURE ELEMENT NAMES

LPD GA, [PP].BUFFER_START
MOVBI [PP].RESULT,0

Figure 3-51. ASM-89 Structure Definition and Use
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Addressing Modes

Table 3-18 summarizes the notation a program-
mer uses to specify how the effective address of a

memory operand is to be computed. Examples of’

typical ASM-89 coding for each addressing mode,

as well as register and immediate operands, are -
provided in figure 3-52._ Notice that a bracketed -

reference to a register indicates that the content of

the register is to be used to form the effective
of a "memory: operand, ‘while an -
unbracketed register reference specifies that the ‘

address

register itself is the operand.

The following examples summarize how the

memory addressing modes can be used to access
simple variables; structures and arrays.

e If GA contains the address of a memory
o o‘perand then [GA] refers to that operand.

L If. GA contains the base address’ of a
‘structure, then [GA].DATA refers to the
DATA element (field) in that structure. If
DATA is six bytes from the begmmng of the
structure, then [GA].6 refers to the same
location. T

o If GA contams the starting address of an

. r-array, then [GA+IX] addresses the array ele-

ment indexed by IX. For example, if IX con-

tains the value 4H, the effective address

* refers to the fifth element of a byte array,.or

the third element of a word array. [GA+IX+]

. selects the same element and addmonally
auto-increments 1X by 1 (byte operation), 2

(word operation) or 3 (MOVP instruction) in

anticipation of accessing the next array

Note that any pointer register could have been
substituted for GA in thep'reviOus examples.

Table 3-18. ASM-89Memory Addressing
' Mode Notation

Notation Addressing Mode

Based

Offset

Indexed

Indexed Post Auto-increment

[ptr-reg]
[ptr-reg].offset
[ptr-reg + 1X]
[ptr-reg + 1X +]

GA, GB,GCor PP
8-bit signed value; may be struc-
ture element

ptr-reg
offset ~

|IEl

Program Transfer Targets

As discussed. in. section 3.7, program transfer
instructions operate. by adding a signed byte or
word displacement to the task pointer. Table 3-19
shows how the ASM-89 assembler determines the
sign and size of the drsplacement value it places in
a program transfer machine instruction. In the
table, the terms “backward” and “forward”
refer to the location of -a label specified as a
transfer target relative to the transfer instruction.

‘‘Backward’’ means the label physrcally precedes
the instruction in the source module, and ‘‘for-

~ ward”’ means the label follows the instruction in

the source text. The distances are from the end of
the transfer instruction; the distance to the
instruction immediately following the transfer is

element. 0 bytes.
ADDI GA 5 ; REGISTER, IMMEDIATE :
ADD ~ GG, [GB] ; REGISTER, MEMORY (BASED)
ADDBI [PP],10 : MEMORY (BASED), IMMEDIATE
ADDB IX, [GB].5 ; REGISTER, MEMORY (OFFSET)
ADDB BC, [GC].COUNT ; REGISTER, MEMORY (OFFSET)
ADD [GC+1X], BC ; MEMORY (INDEXED),"REGISTER

ADDI  [GA+IX+],5
ADDB  ..[PP).ERROR, [GA]

; MEMORY (INDEXED AUTO-INCREMENT), IMMED
;:MEMORY (OFFSET), MEMORY (BASED)

‘Figure 3-52. ASM-89 Operand Coding Examples
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Two important points can be drawn from table
3-19. First, a target must lie within 32k bytes of a
transfer instruction; this should not prove restric-
tive except in very large programs. Second, one
byte can be saved in the assembled instruction by
writing the short mnemonic when the target is
known to be within —128 through +127 assembled
bytes of the transfer.

It is also important to note that a program
transfer target must reside in the same module as
the transferring instruction, i.e., the target
address must be known at assembly time.

Procedures

An ASM-89 program may invoke an out-of-line
procedure (subroutine) with the CALL/LCALL
instruction. The first instruction . operand
specifies a memory location where the content of
TP will be stored as a physical address pointer
before control is transferred to the procedure.
The procedure may return to the instruction
following the CALL/LCALL by using the
MOVP instruction to restore TP from the save
area. Figure 3-53 illustrates one approach to pro-
cedure linkage.

A channel program may use the first two words of
its parameter block (pointed to by PP) as a task
pointer save area. However, this is not recom-
mended if there is any chance that the CPU will

" .The END directive,

issue a “‘suspend’’ command to the channel; this
command stores the current value of TP in the
same location, possibly overwriting a return
address.

As in any program transfer, the target of a
CALL/LCALL instruction must be contained in
the same module and: within 32k bytes of the
mstruct10n

Segment Control

The relocatable object module produced by the
ASM-89 assembler consists of a single logical seg-
ment. (A segment is a storage unit up to 64k bytes
long; for:a mor¢ complete description, refer to
sections 2.3 and 2.7.) The ASM-89 SEGMENT
and ENDS directives name the segment as shown
in figure 3-54. Typically, all iﬁstructions and most
directives are coded in between these directives.
‘which. terminates the
assembly, is an exception.

The LOC-86 utility can assign this logical scgment
to any memory address that is a physical scgment
boundary (i.e., whose low-order four bits are
0000). In a ROM-based system, variable data
(which must be in RAM) can be ‘“‘clustered”
together at one ‘‘end’’ of the program as shown in
figure 3-55. The ORG directive can then be used
to force assembly of the variables to start at a
given offset from the beginning of the segment
(2,000 hexadecimal bytes in figure 3-55). As the

Table 3-19. Program Transfer Displacement

Target Location
MnFe ::;nlc Direction vDi_s?a‘nce_ Désig:‘acBe;: ee: t

Backward <128 -

Forward <127 : -+ 01

Short Backward '€32,768 - 2
(e.q., JMP) Forward <32,767 Error
C Backward >32,768 Error
Forward >32,767 Error

Backward <128 - 2

. Forward <127 + 2
Long Backward £32,768 Tl e
(e.g., LUMP)- Forward €32,767 + 2
Backward - : >32,768 - Error

Forward >32,767 Error

:3-69
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CALLSAVE: DS 3
. SET UP TP SAVE AREA

MOVI

CALLIT

‘LCALL [GC],DEMO

HLT
- DEFINE THE PROCEDURE.
DEMO:

; TP SAVE AREA

NOTE: EXAMPLE ASSUMES PROGRAM
ISIN1/O SPACE. USE LPDI
IF IN SYSTEM SPACE.
-GC, CALLSAVE

: LOAD ADDRESS TOGC

; LOGICAL END OF PROGRAM

: PROCEDURE INSTRUCTIONS GO HERE.
NOTE PROCEDURE MUST NOT UPDATE GC.
; ASIT POINTS TO THE RETURN ADDRESS..

, RETURN TO CALLER,
MOVP. TP, [GC]

Figure 3-53. ASM-89 Procedure Example

CHANNEL1

SEGMENT

: START OF SEGMENT

ASM89 SOURCE STATEMENTS

CHANNEL1  ENDS

END

: END OF SEGMENT
. END OF ASSEMBLY

Figure 3-54. ASM-89 SEGMENT and ENDS Directives

figure shows, the segment can then be located so
that instructions and constants fall into the ROM
portion of memory, while the variable part of the
segment is located in RAM. The entire segment,
including any ‘‘unused’’ portions, of course, can-
not exceed 64k bytes.

Intermodule Communication

An ASM-89 module can make some of its
addresses available to other modules by defining
symbols with the PUBLIC directive. At a

minimum, a channel program must make the

- address of its first instruction available to the

CPU module that starts the channel program.
Figure 3-56 shows an ASM-89 module that con-
tains - three channel programs labelled READ,
WRITE and DELETE. The example shows how a

" PL/M-86 program and an ASM-86 program

could define these ‘“‘entry points’’ as EXTER-
NAL and EXTRN symbols respectively. When
the modules are linked together, LINK-86 will
match the externals with the publics, thus pro-
viding the CPU programs with the addresses they
need.

Mnemonics © Intel, 1979
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DEMO: SEGMENT
;CONSTANT DATA

HIGHER ADDRESSES

: ‘€ o
:INSTRUCTIONS (AVAILABL £}
' ORG 2000H : VARIABLES
;VARIABLE DATA 2000H _ Ram _
. (UNUSED) Ri)M
DEMOENDS I ~-—=——"
END INSTRUCTIONS
CONSTANTS
DEMO SEGMENT
LOCATED HERE >a000my ]
' (AVAILABLE)
be! )
LOWER ADDRESSES

Figure 3-55. Using the ASM-89 ORG Directive

ASM-88 MODULE DEFINES THREE PUBLIC SYMBOLS

PUBLIC READ, WRITE, DELETE

READ: ; ASM89 INSTRUCTIONS FOR “READ” OPERATION
HLT

WRITE: ; ASM89 INSTRUCTIONS FOR “WRITE’’ OPERATION
HLT

DELETE: ; ASM89INSTRUCTIONS FOR “DELETE’ OPERATION

HLT

Figure 3-56. ASM-89 PUBLIC Directive:

Mnemonics @ Intel, 1979
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PL/M-86 MODULE USES “WRITE” SYMBOL

DECLARE

(READ,WRITE,DELETE) POINTER EXTERNAL,;

DECLARE PARM$BLOCK STRUCTURE

(TP$START
BUFFERSADDR
BUFFERSLEN

POINTER,
POINTER,
WORD);

/*SET UP “WRITE”” CHANNEL OPERATION*/
PARMSBLOCK. TP$START = WRITE;

ASM-86

MODULE USES ““READ’’ SYMBOL

EXTRN READ,WRITE,DELETE
READ_ PTR DD READ
WRITE_PTR DD WRITE
DELETE_ PTR DD DELETE
: PARM__BLOCK

EVEN
TP_START DD ?

BUFFER__ADDRDD ?
BUFFER_LEN DW?

; FORCE TO EVEN ADDRESS

: SET UP “READ” CHANNEL OPERATION

MOV AX, WORD PTR READ__PTR
MOV WORD PTRTP__START, AX
MOV AX, WORD PTR READ__PTR

; 1ST WORD
; 2ND WORD

MOV WORD PTRTP__START + 2, AX

Figure 3-56. ASM-89 PUBLIC Directive (Cont’d.)

Conversely, an ASM-89 module can obtain the
address of a public symbol in another module by
defining it with the EXTRN directive. An external
symbol, however, can only appear as the initial
value operand of a DD directive (see figure 3-57).
This effectively means that an ASM-89 program’s

use of external symbols is limited to obtaining the
addresses of data located in the system space.
Another way of doing this, which may be
preferable in many cases, is to have the CPU pro-
gram place system space addresses in the
parameter block.

Mnemonics © Intel, 1979
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PL/M-86 PROGRAM DECLARES PUBLIC SYMBOL ““BUFFER”’

DECLARE BUFFER (80) BYTE PUBL|C;

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL “‘BUFFER’’

EXTRN BUFFER
BUF_ADDRESS DD BUFFER

LPD GA, BUF_ADDRESS ; POINT TO SYSTEM BUFFER

Figure 3-57. ASM-89 EXTRN Directive

Sample Program C noultkeema

Figure 3-58 diagrams the logic of a simple
ASM-89 program; the code is shown in figure engpae
3-59. The program reads one physical record (sec- ronoua
tor) from a diskette drive controlled by an 8271 [

Floppy Disk Controller. No particular system gacean
configuration is implied by the program, except oo
that the 8271 resides in the IOP’s I/0 space. - ‘ |

PERFORM
TRANSFER

ERRORS

Hardware address decoding logic is assumed to be
set up as follows:

* reading location FFOOH selects the 8271
status register,

e writing location FFOOH selects the 8271 -
command register,

s reading location FFO1H selects the 8271 °

result register . |

e writing location FFOIH selects the 8271 R
parameter register '

¢ decoding the address FF04H provides the é

8271 DACK (DMA acknowledge) signal. Figure 3-58. ASM-89 Sample Program Flow
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The program uses structures to address - the
parameter block and the 8271 registers. Register
PP contains the address of the parameter block,
and the program loads GC with FFOOH to point

to the 8271 registers. The program’s entry point"

(the label START) is defined as a PUBLIC sym-
bol so that the CPU program can place its address
in the parameter block when it starts the program.

-Register IX is used as a retry counter. If the
transfer is not completed successfully (bit 3 of the
8271 result register # 0), the program retries the
transfer up to 10 times.

Since the 8271 automatically requests a DMA
transfer upon receipt of the last parameter, this
parameter is sent immediately following the
XFER command.

8089 ASSEMBLER

ISIS-IT 8089 ASSEMBLER V1.0 ASSEMBLY OF
OBJECT MODULE PLACED IN :FO:FLOPPY.OBJ
ASSEMBLER INVOKED BY ASM89 FLOPPY.A89

MODULE FLOPPY

1
0000 2 FLOPPY SEGMENT
3 pRex
4 ;x%*% 8089 PROGRAM TO READ SECTOR FROM FLOPPY DISK
5 s KE .
6" . )
7 ;%%% LAY OUT PARAMETER BLOCK.
8 PARM BLOCK STRUC
0000 9 RESERVED TP: D3 4
0004 10 BUFF PTR: DS 4
0008 11 TRACK: DS 1
0009 ' 12 “SECTOR:’ LS 1
0004 13 RETURN CODE: DS 1
000B 14 PARM BLOCK ENDS
15
16 ;*%*[AY QUT 8271 DEVICE REGISTERS.
17 FLOPPY REGS STRUC
0000 18 COMMAND STAT: D3 1
0001 19 PARM RESULT: DS 1
0002 20 FLOPPY REGS ENDS
21
22 ;***8271 ADDRESSES. ; ,
FFOO0 23 FLOPPY REG ADDR EQU OFF 00H ;LOW-ADDRESSED REGISTER
FFOY4 24 DACK 8271 EQU OFF 04H ;DMA ACKNOWLEDGE
25 ; . .
26 ;%***MAKE PROGRAM ENTRY POINT ADDRESS*
27 AVAILABLE TO OTHER MODULES.
28 PUBLIC START
29 :
30 ;*%**CLEAR RETURN CODE IN PARAMETER BLOCK.
0000 OA4F OA 00 31 START: MOVBI [PP].RETURN CODE, O
32
33 ;***INITIALIZE RETRY COUNT.
0004 B130 0AOO 34 MOVI 1X,10
35
36 ;*%*POINT GC AT LOW-ORDER 8271 REGISTER.
0008 5130 OOFF 37 MOVI GC,FLOPPY REG ADDR
38
39 ;***SEND COMMAND SEQUENCE TO 8271, HOLDING FINAL PARM.
4O ;#=®yATT UNTIL 8271 IS NOT BUSY. . .
o0e6cC EABA 00 FC 41 RETRY: JNBT [GCJ).COMMAND STAT,7,RETRY
42 ;*%%*SEND "READ SECTOR, DRIVE O" COMMAND.
0010 OA4E 00 12 43 MOVBI {GC].COMMAND STAT,012H
: . 4y ;*%*SEND TRACK ADDRESS PARAMETER. o
0014 0293 08 02CE 01 45 MOVB [GCJ.PARM RESULT,[PP).TRACK
46
47 ;%%#*¥[LOAD CHANNEL CONTROL REGISTER SPECIFYING:
48 ; FROM PORT TO MEMORY, :
49 SYNCHRONIZE ON SOURCE,
50 ; GA POINTS TO SOURCE,
51 3 TERMINATE ON EXT, .
52 ; TERMINATION OFFSET = 0.
0014 D130 2088 53 MOVI CC,08820H
5

Figure 3-59. ASM-89 Sample Program

Mnemonics ©:Intel, 1979’
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G01E

0020
10023

0027

002B

002D

0033

0037

0039

003¢C

0040

0044

0048

004E

0050
0052

AQ00

238B
1130

AABA

6000

0293

6ABE

A03C

A840

EABA

OAYE

8ABA

0292

4000

2048

DEST BUS = 16.
8,16

; #*®POINT GB AT DESTINATION, GA AT SOURCE

GB,[PP].BUFFﬁPTR
GA, DACK_8271

; #%*INSURE THAT 8271 IS READY FOR LAST PARAMETER.

[GC).COMMAND STAT,5,WAIT1

08 ;®#®*3TART DMA BY SENDING FINAL PARAMETER TO B271.

[GC).PARM_RESULT,(PP).SECTOR

; *#*PROGRAM RESUMES HERE FOLLOWING EXT.

;##*TF TRANSFER IS OK THEN EXIT, 'ELSE TRY AGAIN.

[GCJ. PARM RESULT, 3, EXIT
IX
IX,RETRY
[GCl.COMMAND_STAT, 7, EXIT
COMMAND TO 8271.

[GC J.COMMAND STAT, 02CH

[GC|.COMMAND STAT, 4,WAIT?

; #%¥%pOST RESULT IN PARAMETER BLOCK FOR CPU.

[PP1.RETURN_CODE,[GC].PARM_RESULT

55 ;*#*SET SOURCE BUS = 8,
56 WID
57
58
o4 59 LPD
O4FF 60 MOVI
61
b2
00 FC 63 WAIT1: JINBT
64
65 ;***PREPARE FOR DMA.
66 XFER
67
09 02CE 01 69 MOVB
70
7
72
73
01 05 74
75
76 ;¥¥#DECREMENT RETRY COUNT.
77 DEC
78 ’
79 ;#%#TRY AGAIN IF COUNT NOT EXHAUSTED.
DO 80 JINZ
81
g2 ;**R*YAIT UNTIL 8271 IS NOT BUSY.
00 FC 83 EXIT: JNBT
84
85 ;#*%SEND “READ RESULT"
00 2C 86 MOVBI
87
88 ;*#*WAIT FOR RESULT.
00 FC 89 WAITZ. JNBT
90
91
01 02CF 0A 92 MOVB
93
94 ;#*%INTERRUPT CPU.
95 SINTR
96
Y7 ;#*#STOP EXECUTION.
98 HLT
99
100 FLOPPY ENDS
101 END

SYMBOL TABLE

ASSEMBLY COMPLETE;

0004
0000
FFoY
003C
0000
0000
FF0O
0000
0001
0000
000C
000A
0009
0000
0008
0027
0044

SYM
SYM
STM
SYM
SYM
STR
ST
STR
SYM
SYM
SYM
SYM
SYM
PUB
SYM
SYM
STM

NAME

BUFF_PTR
COMMEND STAT
DACK 8271

EXIT™

FLOPPY

FLOPPY REGS
FLOPPY REG_ADDR
PARM_BLOCK™
PARM RESULT
RESERVED TP
RETRY

RETURN CODE
SECTOR

START

TRACK

WAIT1

WAIT2

NO ERRORS FOUND

Figure 3-59. ASM-89 Sample Program (Cont’d.)
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Linking and Locating ASM-89 Modules

The LINK-86 utility program .combines miultiple
relocatable object modules into a
relocatable module. The input modules may con-
sist of modules produced by any of the 8086 fam-
ily language translators: ASM-89, ASM-86, or

PL/M-86. LINK-86’s principal function is to

satisfy external references made in the modules.
Any symbol that is defined with the EXTRN
directive in ASM-89 or ASM-86 or is declared
EXTERNAL: . in. ' PL/M-86 is
reference, i.e., a reference to an address con-
tained in another module. Whenever LINK-86
encounters an external reference, it searches the
other modules for a PUBLIC symbol of the same
name. If it finds the matching symbol, it replaces
the external reference with the address of the
object. ‘ C

The most common occurrence of an external
reference in a system that employs one or more
8089s is the channel program address. In order

single

external symbol (see figure 3-56), LINK-86 will
obtain the address from the ASM-89 channel pro-
gram when the two are linked together. (The
ASM-89 program must, of course, define ‘the
symbol in a PUBLIC directive.)

Other external references may arise when one
module uses data (e.g., a buffer) that is contained
in another module, and (in PL/M-86 and

" ASM-86" modules) when one. module executes

an external .:

another module, typically by a CALL statement
or instruction.

When an 8089 module (or -modules) is to be
located in the system space, it may be linked
together with PL/M-86 or ASM-86 modules as
described above and shown in figure 3-60.
LINK-86 resolves external references and com-
bines. thé input modules into a single relocatable
object module. This module" can-be input to
LOC-86.(LOC-86 assigns final absolute memory
addresses to all of the instructions and data). This

.. absolute object module may, in turn, be pro-

for a CPU program to start a channel program, it- .

must ensure that the address of the first channel

program instruction is contained in the first two-

words of the parameter block. Since the channel
program is assembled separately, the translator
that processes the CPU program will not typically
know its address. If this address is defined as an

cessed by the OH-86 utility- to translate -the
module into the hexadecimal format. This format
makes the module readable (the records are writ-
ten in ASCII characters) and is required by some
PROM programmers and RAM loaders. Intel’s
Universal PROM Programmer (UPP) and iSBC
957™ Execution Package (loader) use the hexa-
decimal format. .

HELOC
FROM
R OBJECT
PL/M-B8 MOBULES i

L.
RELOC
FROM
OBJECT
ASM-36 MODULES
—
RELOC
FROM
AsHs "\ MOoLe Z

LINK-86

RELOC
OBJECT
MODULE

LOC-86

ABSOLUTE
EX

. _H
OBJECT
MODULE,

OH-88 |

ABSOLUTE
OBJECT
MODULE

TOSYSTEM |
SPACE

Figure 3-60. Creating.a Single Absolute Object Module
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If the 8089 code is to reside in its I/0 space, a dif- segment conflict messages from LOC-86. It
ferent technique is required since separate requuires, however, that modules in the two spaces
absolute object modules must be produced for the not use the EXTRN/PUBLIC mechanism to refer
system and /0 spaces. Figure 3-61 shows how to to each other. Modules inthe same space can
link and locate when there are external references define external and public symbols, however.
between 1/0 space modules and system space : s
modules. External references from I/0 space modules to
sysstem space modules can’ be eliminated if the
The normal link and locate sequence is followed = CIlJ programs pass all system space addresses in
and culminates in the production of an absolute parameter blocks. In other words, a channel pro-
module in hexadecimal format. Since the records grann can obtain any address in the system space if
in this file are human-readable, the file can be the: address is in the parameter block. Using this
edited using the ISIS-II text editor. The editing appi-oach allows the system space addresses to be
task involves finding the 8089 1/0 space records changed during execution. If the addresses are
in the file, writing them to one file, and then - constant values, they may also. be altered as
writing the 8086/8088 records (destined for the sysitem development proceeds without relmklng
system space)-to another file. MCS-86 Absolute the channel programs. :

Object File Formats, Order No. 9800921,
available from Intel’s Literature Department,

describes the records in absolute (including hexa- Ex ternal references from system space modules to
decimal) object modules. ad.dresses in the 1/0 space may be climinated by
assig ning these addresses values that are known at
When using the previous method, it is likely that assernbly or compilation time. Figure 3-63
1.OC-86 will issue messages warning that illust rates how the ASM-89 ORG directive can be
segments overlap. For example, the 8089 code used to force the first instruction (entry point) of
would typically be located starting at absolute a chzinpel program to an absolute address. In the
location OH of the 1/0 space. However, the case of the example, ‘one module contains two
8086/8088 interrupt pointer table occupies these entrys points labelled “READ’’ and “WRITE.”
low memory addresses in the system space. Since Assugming the module is located at absolute
LOC-86 has no way to know that the segment will addr ess OH in the 1/0 space, the channel pro-
ultimately be located in different address spaces, gramis will begin at 200H and 600H respectively.
it will warn of the conflict; the warning may be In thie example, these values have been chosen
ignored. arbit rarily; in a typical application they would be
, . basec] on the length of the programs and the loca-
An alternative to linking the modules together tion (of RAM and ROM areas. By starting the pro-
and then separating them is to link system space gram:s at fixed addresses that are known to the
modules separately from I/0O space modules as CPU programs that activate them, the channel
shown in figure 3-62. This approach avoids the progirams can be reassembled without needing to
manual edit of the absolute object module and the relinlk the CPU programs.

FROM RELOC
.s6—{ OBJECT
PL/M-86 MODULES
L
RELOC RELOC ABSOLUTE
FROM OBJECT. unkgs —={ oBJECT LOC-86 oaJecv 0 H-86
ASM-85 MODULES| MODULE \ -
| N
FROM ___, | RELOC i ) :
OBJECT —~
AsM-g9 “™|  OBJECT S )

Figure 3-61. Creating Separate Absolute ObJect Modu] es—External References in Relocatable
Modules. .

ABSOLUTE
EX

H
OBJECT
MODULE

ABSOLUTE
HEX 10170
SPACE

OBJECT
MODULE

TO SYSTEM
SPACE

ABSOLUTE ]
WMOBULE ebioR
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FROM RELOC i ‘ 7 ]
- 0BJECT
PL/M:36 MODULES . )
ABSOLUTE
ABSOLUTE
LINK-86 OBJEC T LOC-86 OBJEGT OH-86 oaHJEE - TOSS;,\;SCTEEM
MODULE MODULE MODULE .
RELOC '
FROM
OBJECT
ASM-86 MODULES (

. ABSOLUTE
RELOC: ABSOLUTE '
FROM SELoc unk-ge f—={ oBIECT Loc-8s OBJECT OH-86 OB er oo
AsM-89 ARG MODUL E MODULE j oL

Figure 3-62. Creating Separate Absolute (_J»bJect Modules—No External References in Relocatable
Modules

ASM-89 ENTRY POIN'T DEFINITIONS

" ORG 200H
READ:

~ ; INSTRUCTIONS FCIR **READ"' CHANNEL PROGRAM

ORG 600H
WRITE:

5 INSTRUCTIONS F(OR “WRITE”” CHANNEL PROGRAM

ASM-86 DEFINITIOM OF ENTRY POINT ADDRESSES

READ__ADDR [DD 200H
WRITE_ADDR [)D 600H

PL/M-86 DECLARATION OF ENTRY POINT ADDRESSES

DECLARE READSADDR POINTER,
DECLARE WRITE$ADDR POINTER,;
READ$ADDR = 200H ;

WRITESADDR = 600!H

Figure 3-63. Usin, g, Absolute Entry Point Addresses
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3.10 Programming Guidelines
and Examples

This section provides two types of 8089 program-
ming information. A series of general guidelines,
which apply to system and program design, is
presented first. These guidelines are followed by
specific coding examples that illustrate program-
ming techniques that may be applied to many dif-
ferent types of applications.

Programming Guidelines

The practices in this section are recommended to
simplify system development and, particularly,
for system maintenance and enhancement. Soft-
ware that is designed in accordance with these
guidelines will be adaptable to the changing
environment in which most systems operate,
and will be in the best position to take
advantage of new Intel hardware and software
products.

Segments

Although the IOP does not “‘see’’ the segmented
organization of system memory, it should respect
this logical structure. The IOP should only
address the system space through pointers passed
by the CPU in the parameter block. It should not
perform arithmetic on these addresses or other-
wise manipulate them except for the automatic
incrementing that occurs during DMA transfers.
It is the responsibility of the CPU to pass
addresses such that transfer operations do not
cross segment boundaries.

Self-Modifying Code

Programs that alter their own instructions are dif-
ficult to understand and modify, and preclude
placing the code in ROM. They may also inhibit
compatibility with future Intel hardware and soft-
ware products.

Note also that when the 8089 is on a 16-bit bus, its
instruction fetch qucue can interfere with the
attempt of one instruction to modify the next
sequential instruction. Although the instruction
may be changed in memory, its unmodified first
byte will be fetched from the queue rather than

memory if it is on an odd address. The processor
will thus execute a partially-modified instruction
with unpredictable results.

1/0 System Design

Section 2.10 notes that I/O systems should be
designed hierarchically. Application programs
““see’’ only the topmost level of the structure; all
details pertaining to the physical characteristics
and operation of I/0 devices are relegated to
lower levels. Figure 3-64 shows how this design
approach might be employed in a system that uses
an 8089 to perform I/0. The same concept can be
expanded to larger systems with multiple IOPs.

The application system is clearly separated from
the I/0 system. No application programs per-
form 1/0; instead they send an 1/0 request to the
170 supervisor. (In systems with file-oriented
1/0, the request might be sent to a file system that
would then invoke the I/0 supervisor.) The I/0
request should be expressed in terms of a logical
block of data—a record, a line, a message, etc. It
should also be devoid of any device-dependent
information such as device address, sector size,
etc.

The 170 supervisor transforms the application
program’s request for service into a parameter
block and dispatches a channel program to carry
out the operation. The 1/0 supervisor controls
the channels; therefore, it knows the cor-
respondence between channels and 1/0 devices,
the locations of CBs and channel programs, and
the format of all of the parameter blocks. The
1/0 supervisor also coordinates channel
“‘events,”” monitoring BUSY flags and respond-
ing to channel-generated interrupt requests. The
1/0 supervisor does not, however, communicate
with I70 devices that are controlled by the chan-
nels. If the CPU performs some 170 itself (this
should be restricted to devices other than those
run by the channels), the 1/0 supervisor invokes
the equivalent of a channel program in the CPU
to do the physical 1/0. Note that although the
170 supervisor is drawn as a single box in figure
3-64, it is likely to be structured as a hierarchy
itself, with separate modules performing its many
functions.

The software interface between the CPU’s 1/0
supervisor and an IOP channel program should
be completely and explicitly defined in the
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1
|
| }
APPLICATION APPLICATION APPLICATION
APPLICATION! MODULE MODULE MODULE
YSTEM . |
|
|
‘ CPU DOMAIN
—— =Ty
|
|
|
| 1/0
| SUPERVISOR
|
b——_-r e ___
|
|
|
: CPU/IOP INTERFACE
|
|
e o
I
| |
| | CHANNEL
1 | SUPERVISOR
| |
| |
1/0 SYSTEM | |
| |
| |
| |
| ‘ : v
' CHANNEL I‘ CHANNEL] | cHANNELY | CHANNEL
| : FUNCTION | FuncTion| JFuncTion] - [FuncTion
| B
| IOP DOMAIN :
|
| |
1 |
| |
| |
| |
| DEVICE | DEVICE
| CONTROLLER | CONTROLLER
| 1
| |
| |
] |
| |
] |
| -
' |
: CHANNEL 1 | CHANNEL 2

Figure 3-64. 8089-Based 1/0 System Design
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parameter block. For example, the I/0 supervisor
should pass the addresses of all system memory
areas that the channel program will use. The
channel program should not be written so that it
“knows’’ any of these addresses, even if they are
constants. Concentrating the interface into one
place like this makes the system easier to under-
stand and reduces the likelihood of an undesirable
side effect if it is modified. It also generalizes the
design so that it may be used in other application
systems.

Figure 3-64 shows a simple channel program run-
ning on channel 1 and a more complex program
running on channel 2. Channel 1’s program per-
forms a single function and is therefore designed
as a simple program. The program on channel 2
performs three functions (e.g., “‘read,” ‘‘write,”
““delete’’) and is structured to separate its func-
tions. The functions might be implemented as
procedures called by the ‘‘channel supervisor’’
depending on the content of the parameter block.
Notice that to the I/0 supervisor, both programs
appear alike; in particular, both have a single
entry point.

In some channel programs, different functions
will need different information passed to them in
the parameter block. Figure 3-65 shows one
technique that accommodates different formats
while still allowing the channel supervisor to
determine which procedure to call from the PB.
The parameter block is divided into fixed and
variable portions, and a function code in the fixed
area indicates the type of operation that is to be
performed. Part of the fixed area has been set
aside so that additional parameters can be added
in the future.

Programming Examples

The first example in this section illustrates how a
CPU can initialize a group of I0Ps and then
dispatch channel programs. This code is written
in PL/M-86.

The remaining examples, written in ASM-89,
demonstrate the 8089 instruction set and address-
ing modes in various commonly-encountered pro-
gramming situations. These include:

* memory-to-memory transfers

*  saving and restoring registers

0
TP/CHANNEL STATE
SAVE AREA 2
FIXED FUNCTION
FORMAT FIXED PARM1 CODE 4
FIXED PARM2 6
FIXED PARM3 8
A 10
RESERVED FOR
FUTURE USE
12
VARIABLE
FORMAT

VARIABLE PARAMETER
FORMAT AND SIZE X
GOVERNED BY e
FUNCTION CODE 9

7

Figure 3-65. Variable Format Parameter Block

Initialization and Dispatch

The PL/M-86 code in figure 3-66 initializes two
IOPs and dispatches two channel programs on
one of the IOPs. The same general technique can
be used to initialize any number of IOPs. The
hypothetical system that this code runs on is con-
figured as follows:

* 8086 CPU (16-bit system bus);

e two remote IOPs share an 8-bit local I70 bus
via the request/grant lines operating in
mode 1;

¢ 8089 channel attentions are mapped into four
port addresses in the CPU’s I/0 space;

* channel programs reside in the 8089 I1/0
space;

s one 8089 controls a CRT terminal, one
channel running the display, the other scan-

ning the keyboard and building input
messages;

* the function of the second 8089 is not defined
in the example.
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The code declares one CB (channel control block)
for each 8089. The CBs are declared as two-
element arrays, each element defining the struc-
ture of one channel’s portion of the CB. The SCB
(system .configuration block) and SCP (system
configuration pointer) are also declared as struc-
tures. The SCP is located at its dedicated system
space address of FFFF6H. The other structures
are not located at specific addresses since they are
all linked together by a chain of pointers
“‘anchored’’ at the SCP. '

Two simple parameter blocks define messages to
be transmitted between the PL/M-86 program
and the CRT. Each PB contains a pointer to the
beginning of the message area and the length of
the message. In the case of the keyboard (input)
message, the channel program builds the message
in the buffer pointed to by the pointer in the PB
and returns the length of the message in the PB.

The code initializes one IOP at a time since the
chain of control blocks read by the IOP during
initialization must remain static until the process
is complete. To initialize the first IOP, the code
fills in the SYSBUS and SOC fields and links the
blocks to each -other using the PL/M-86 @
(address) operator. It sets channel 1’s BUSY flag
to FFH so that it can monitor the flag to deter-
mine when the initialization has been completed
(the IOP clears the flag to OH when it has
finished). Channel 2’s BUSY flag is cleared,
although this could just as well have been done
after .the initialization (the IOP does not alter
channel 2’s BUSY flag during initialization). The
code starts the IOP by issuing a channel attention
to channel 1 to-indicate that the 1IOP is a bus
master. PL/M-86’s OUT function is used to select
the port address to which the IOP’s CA and SEL
lines have been mapped. The data placed on the
bus (OH) is ignored by the IOP. It then waits until
the IOP clears the channel 1 BUSY flag.

The second IOP is initialized in the same manner,
first changing the pointer in the SCB to point to
the second IOP’s channel control block. If this

IOP were on a different I/0 bus, the SOC field
would have been altered if a different
request/grant mode were being used or if the IOP
had a 16-bit 1/0 bus. The second IOP is a slave so
its initialization is started by issuing a CA to chan-
nel 2 rather than channel 1.

After both IOPs are ready, the code dispatches
two channel programs (not coded in the example);
one program is dispatched to each channel of one
of the IOPs. To avoid external references, the
system has been set up so that the PL/M-86 code
“‘knows’’ the starting addresses of these channel
programs (200H and 600H). The code uses the
PL/M-86 LOCKSET function to:

¢ lock the system bus;

¢ read the BUSY flag;

* setthe BUSY flag to FFH if it is clear;
* * unlock the system bus.

This operation continues until the BUSY flag is
found to be clear (indicating that the channel is
available). Setting the flag immediately to FFH
prevents another processor (or another task in
this program activated as a result of an interrupt)
from using the channel. The code fills in the
parameter block with the address and length of
the message to be displayed, sets the CCW and
then links the channel program (task block) start
address to the parameter block -and links the
parameter block to the CB. The channel is-dis-
patched with the OUT function that effects a
channel attention for channel 1.

A similar procedure is followed to start channel 2
scanning the terminal keyboard. In this case, the
code allows channel 2 to generate an interrupt
request (which it might do to signal that a message
has. been assembled). An interrupt procedure
would then handle the interrupt request.

/*ASSIGN NAMES TO CONSTANTS*/

DECLARE CHANNEL$BUSY LITERALLY ‘0FFH’;
DECLARE CHANNELS$CLEAR LITERALLY ‘OH’;
DECLARE CR /*CARR. RET.*/ LITERALLY “ODH’;
DECLARE "LF /*LINE FEED*/ LITERALLY ‘0AH’;
DECLARE DISPLAY$TB LITERALLY ©200H’; .
DECLARE KEYBD$TB LITERALLY ‘600H’;

Figure 3-66. Initialization and Dispatch Example
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DECLARE /*IOP CHANNEL ATTENTION ADDRESSES*/

IOP$SASCHA LITERALLY ‘OFFEOH’,
IOP$ASCH2 LITERALLY ‘OFFE1H’,
IOP$B3CH1 LITERALLY ‘OFFE2H’,
IOP$BSCH2 LITERALLY ‘OFFE3H’;
DECLARE /*CHANNEL CONTROL BLOCK FOR IOP$A)

CB$A(2) STRUCTURE

(BUSY BYTE,

CCW BYTE,

PBSPTR POINTER,

RESERVED WORD);
DECLARE /*CHANNEL CONTROL BLOCK FORIOP$B*/

CB$B(2) STRUCTURE
(BUSY BYTE,

CCW BYTE,
PBSPTR POINTER,

RESERVED WORD),
DECLARE /* SYSS(':I'EM CONFIGURATION BLOCK*/

STRUCTURE

{80OC BYTE,

RESERVED BYTE,

CB$PTR POINTER);
DECLARE /*SYSTEM CONFIGURATION POINTER*/

SCP STRUCTURE

(SYSBUS BYTE, .

SCB$PTR POINTER) AT (OFFFF6H);
DECLARE MESSAGE$PB STRUCTURE

(TB$PTR POINTER,

MSG$PTR POINTER,

MSGSLENGTH WORD);

DECLARE KEYBD$PB STRUCTUE
(TP$PTR POINTER,
BUFF_PTR  POINTER,
MSG$SIZE WORD):

DECLARE SIGN$SON BYTE (*) DATA
(CR, LF, ‘PLEASE ENTER USER ID’);

DECLARE KEYBD$BUFF BYTE (256);
/*

*‘/*INITIALIZE IOP$A, THEN IOP$B

/*PREPARE CONTROL BLOCKS FOR IOP$A*/
SCP.SCB$PTR = @ SCB;

SCP.SYSBUS =01H; /*16-BIT SYSTEM BUS*/
SCB.SOC = 02H; /*RQ/GT MODE1, 8-BIT 1/0 BUS*/
SCB.CB$PTR = @ CB3$A(0);

CB$A(0).BUSY = CHANNELS$BUSY

CB$A(1).BUSY = CHANNELSCLEAR;

Figure 3-66. Initialization and Dispatch Example (Cont’d.)
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/*ISSUE CA FOR CHANNEL1 INDICATING IOP 1S MASTER /
OUT (IOP$SASCH1) =

[*WAIT UNTIL FINISHED*/
DO \éVI\IlﬂéLE CB$A(0).BUSY = CHANNEL$BUSY

/* PREPARE CONTROL BLOCKS FOR IOP$B /
SCB.CB$PTR = @ CB3$B(0);

CB$B(0).BUSY = CHANNELS$BUSY;
CB$B(1).BUSY=CHANNEL$CLEAR'

/*ISSUE CA FOR CHANNEL2 INDICATING SLAVE STATUS /
ouT (IOP$B$CH2)

[*WAIT UNTIL 10OP IS READY*/
DO \éV'\Il-gLE CB$B(0).BUSY = CHANNEL$BUSY;

/*
*SEND SIGN ON MESSAGE TO CRT CONTROLLED
*BY CHANNEL 1 OF IOP$A

)
[*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY*/
DO \IIEV'\ll‘II:I)LE LOCKSET (@CB$A(0).BUSY, CHANNEL$BUSY);

I*SET CCW AS FOLLOWS:
PRIORITY =1, |
*  NOBUSLOAD LIMIT,
* - DISABLE INTERRUPTS,
*  START CHANNEL PROGRAM |N 1/O SPACE*/
CB$A(0).CCW = 10011001B;

/*LINK MESSAGE PARAMETER BLOCK TO CB*/
CB$A(0).PBSPTR = @ MESSAGES$PB;

/*FILL IN PARAMETER BLOCK*/
MESSAGE$PB.TBSPTR =DISPLAYS$TB,
MESSAGE$PB.MSG$PTR = @SIGNSON;
MESSAGESPB. MSBSLENGTH = LENGTH (SIGNSON):;

/*DISPATCH THE CHANNEL*/
OUT (IOP$A$CH1) = 0H;
™ :
*DISPATCH CHANNEL 2 OF IOPSA TO
*CONTINUOUSLY SCAN KEYBOARD, INTERRUF’TING
*WHEN A COMPLETE MESSAGE IS READY -
i)
/*WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY* I
DOé/\ll\ll-IIDILE LOCKSET (@ CB$A(1) BUSY, CHANNEL$BUSY)

Figure 3-66. Initialization and Dispatch. Example (Cont’d.)

3-84



8089 INPUT/OUTPUT PROCESSOR

[*SET CCW AS FOLLOWS:

* PRIORITY =0

* BUS LOAD LIMIT,

*  ENABLE INTERRUPTS,

*  START CHANNEL PROGRAM IN |/O SPACE*/
CB$A(1).CCW = 00110001B;
/*LINK KEYBOARD PARAMETER BLOCK TO CB*/
CB$A(1).PB$PTR = @ KEYBD$PB;
I*FILL IN PARAMETER BLOCK* |
KEYBD$PB.TBSPTR = KEYBDSTB;
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF;

KEYBD$PB.MSGS$SIZE =

OH;

[*DISPATCH THE CHANNEL*/

OUT (IOP$ASCH2) = OH;

Figure 3-66. Initialization and Dispatch Example (Cont’d.)

Memory-to-Memory Transfer

Figure 3-67 shows a channel program that per-
forms a memory-to-memory block transfer in
seven instructions. The program moves up to 64k
bytes between any two locations in the system
space. A 16-bit system bus is assumed, and the
CPU is assumed to be monitoring the channel’s
BUSY flag to determine when the program has
finished. - - '

To attain maximum transfer speed, the program
locks the bus during each transfer cycle. This
ensures that another processor does not acquire
the bus in the interval between the DMA fetch
and store operations. By setting this channel’s
priority bit in the CCW to 1 and the other chan-
nel’s to 0, the CPU could effectively prevent the
other channel from running during the transfer.
Byte count termination is selected so that the
transfer will stop when the number of bytes
specified by the CPU has been moved. Since there
is only a single termination condition, a termina-
tion offset of 0 is specified. The transfer begins
after the WID instruction, and the HLT instruc-
tion is executed immediately upon termination.

Saving and Restoring Registers

A CPU program can ‘‘interrupt’’ a channel pro-
gram by issuing a ‘‘suspend’’ channel command.

The channel responds to this command by saving
the task pointer and PSW in the first two words
of the parameter block. The suspended program
can be restarted by issuing a ‘‘resume’’ command
that loads TP and the PSW from the save area.

If the CPU wants to execute another channel pro-
gram between the suspend and resume opera-
tions, the suspended program’s registers will

* usually have to be saved first. If the ““interrupt-

ing”” program ‘knows’’ that the registers must be
saved, it can perform. the operation and also
restore the registers before it halts.

A more general solution is shown in figure 3-68.
This is a program that does nothing but save the
contents of the channel registers. The registers are
saved in the parameter block because PP is the
only register that is known to point to an available
area of memory. A similar program could be writ-
ten to restore registers from the same parameter
block.

Using this approach, the CPU would ““interrupt”’
arunning program as follows:

‘s suspend the running program,

¢ run the register save program,

*  runthe “‘interrupting’’ program,
* run the register restore program,
* resume the suspended program.
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MEMEXAMP SEGMENT
;**MEMORY-TO-MEMORY TRANSFER PROGRAM**
PB STRUC

TP__RESERVED: DS 4

FROM__ADDR: DS 4

TO__ADDR: DS 4

SIZE: DS 2

PB ENDS

;POINT GA AT SOURCE, GB AT DESTINATION
LPD GA, PP} .FROM__ADDR

LPD GB, [PP].TO__ADDR
:LOAD BYTE COUNT INTO BC. S
MOV BC, [PP].SIZE
;LOAD CC SPECIFYING:
MEMORY TO MEMORY,
NO TRANSLATE,

UNSYNCHRONIZED,

GA POINTS TO SOURCE,

LOCK BUS DURING TRANSFER,

NO CHAINING,

TERMINATING ON BYTE COUNT,OFFSET = 0.
MOV ' C, 0C208H

;PREPARE CHANNEI;(EE)E TRANSFER.

-SET LOGICAL BUS WIDTH.
WD 16,16

;STOP EXECUTION AFTER DMA.
MEMEXAMP ENDS
‘ o END

Figure 3-67. Memory-to-Memory Transfer Example

SAVEREGS SEGMENT

;SAVE ANOTHER CHANNEL’S REGISTERS IN PB

PB STRUC

TP__ RESERVED DS 4

GA_SAVE: - DS 3

GB__SAVE: DS 3

GC_SAVE: DS 3

IX_SAVE: _ DS 2

BC__SAVE: DS 2

MC__SAVE: DS 2

‘CC__SAVE: DS 2

PB ENDS
MOVP PP].GA_SAVE, GA
MOVP PP].GB__SAVE, GB
MOVP PP1.GC_SAVE, GC
MOV PP].IX__SAVE, IX
MOV PP].BC_SAVE, BC
MOV PP].MC__SAVE, MC
MOV PP].CC_SAVE, CC

c HLT SR :
SAVEREGS ENDS
‘ ‘ END

Figure 3-68. Register Save Example

Mnemonics © intel, 1979
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CHAPTER 4
HARDWARE REFERENCE INFORMATION

4.1 Introduction

This chapter presents specific hardware informa-
tion regarding the operation and functions of the
8086 family processors: the 8086 and 8088 Central
Processing Units (CPUs) and the 8089 1/0 Pro-
cessor (IOP). Abbreviated descriptions of the
8086 family support circuits and their circuit
functions appear where appropriate within the
processor ‘descriptions. For more. specific
information on any of the 8086 family support
circuits, refer to the corresponding data sheets in
Appendix B.

4.2 8086 and 8088 CPUs

The 8086 and 8088 CPUs are characterized by a
20-bit (1 megabyte) address bus and an identical
instruction/function format, and differ essential-
ly from one another by their respective data bus
widths (the 8086 uses a 16-bit data bus, and the
8088 uses an 8-bit data bus). Except where
expressly noted, the ensuing descriptions are
applicable to both CPUs.

Both the 8086 and 8088 feature a combined or
“time-multiplexed”’ address and data bus that
permits a number of the pins to serve dual func-
tions and consequently allows the complete CPU
to be incorporated into a single, 40-pin package.
As explained later in this chapter, a number of the
CPU’s control pins are defined according to the
strapping of a single input pin (the MN/MX pin).
In the ““minimum mode,’’ the CPU is configured
for small, single-processor systems, and the CPU
itself provides all control signals. In the ‘‘max-
imum mode,” an Intel® 8288 Bus Controller,
rather than the CPU, provides the control signal
outputs and allows a number of the pins pre-
viously delegated to these control functions to be
redefined in order to support multiprocessing
applications. Figures 4-1 and 4-2 describe the pin
assignments and signal definitions for the 8086
and 8088, respectively.

CPU Architecture

As shown in figures 4-3 and 4-4, both CPUs
incorporate two separate processing units: the
Execution Unit or ““EU”’ and the Bus Interface

Unit or *“‘BIU.”” The EU for each processor is
identical. The BIU for the 8086 incorporates a 16-
bit data bus and a 6-byte instruction queue
whereas the 8088 incorporates an 8-bit data bus
and a 4-byte instruction queue.

The EU is responsible for the execution of all
instructions, for providing data and addresses to
the BIU, and for manipulating the general
registers and the flag register. Except for a few
control pins, the EU is completely isolated from
the “‘outside world.”” The BIU is responsible for
executing all external bus cycles and consists of
the segment and communications registers, the
instruction pointer and the instruction object
code queue. The BIU combines segment and off-
set values in its dedicated adder to derive 20-bit
addresses, transfers data to and from the EU on
the ALU data bus and loads or ‘‘prefetches”
instructions into the queue from which they are
fetched by the EU.

The EU, when it is ready to execute an instruc-
tion, fetches the instruction object code byte from
the BIU’s instruction queue and then executes the
instruction. If the queue is empty when the EU is
ready to fetch an instruction byte, the EU waits
for the instruction byte to be fetched. In the
course of instruction execution, if a memory loca-
tion or I/0 port must be accessed, the EU
requests the BIU to perform the required bus
cycle.

The two processing sections of the CPU operate
independently. In the 8086 CPU, when two or
more bytes of the 6-byte instruction queue are
empty and the EU does not require the BIU to
perform a bus cycle, the BIU executes instruction
fetch cycles to refill the queue. In the 8088 CPU,
when one byte of the 4-byte instruction queue is
empty, the BIU executes an instruction fetch
cycle. Note that the 8086 CPU, since it has a 16-
bit data bus, can access two instruction object
code bytes in a single bus cycle, while the 8088
CPU, since it has an 8-bit data bus, accesses one
instruction object code byte per bus cycle. If the
EU issues a request for bus access while the BIU is
in the process of an instruction fetch bus cycle,
the BIU completes the cycle before honoring the
EU’s request.
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Common Signals

Name Function Type
. Bidirectional,
AD15-ADO Aeress/Data Bus 3-State
A19/S6- OQutput,
A16/S3 Address/Status 3-.State
BOE Bus High Enable/ Output,
BHE/S7 Status 3-State
Y Minimum/Maximum
MIN/MX Mode Control Input
ar Output,
RD Read Control 3.State
TEST Wait On Test Control Input
READY Wait State Control Input
RESET System Reset Input
‘ Non-Maskable
NMI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
\ele +5V Input
GND Ground

Minimum Mode Signals (MN/MX =V¢c)

Name Function Type

HOLD Hold Request . Input
‘HLDA Hold Acknowledge Qutput
wE ; ' Output,
WR Write Control 3.State
M/i0 Memory/tO Control 8}3&:‘8’
= Data Transmit/ Qutput,
DT/R Receive 3-State
SEN Output,
DEN Data Enable 3-State

Address Latch

ALE Enable Output

INTA Interrupt Acknowledge Output

Maximum Mode Signals (MN/MX = GND)

Name Function Type
RQ/GTT, 0 | ReguestiGrant Bus | gigjrectional
§2-50 Bus Cycle Status g_ljstt’:;‘:é'

QS1, QS0 Instruction Queue - Output

Status

Figure 4-1. 8086 Pin Definitions

GND []
Ap1a[]
ab13 [
ap12 [
ap1 [
ap1o [
Aps [
D8 []
Ap7 [
“aps [
AD5 []
aba [
Ap3 [
apz [
AD1 ]
ADO
NI I:
INTR ]
ck-[]
GND [

N =

8086

CPU

24
23
22

21

] AD1s
[] At6/83
] a17/54
[ Ats/ss
[] A19/s6
7] BAE/S?
] MN/X
[ 5

[] HoLD
] HLDA
] WR

[ ] m/i5
] oT/R
] BEN
] ALE

[ ] iNTA

[ ] TEST
[ ] READY
RESET

jVCC

(RG/GT0)
(RQ/GTT)
(LOCK)
(52)

(6]

(50)

(Qso)

(Qs1)

MAXIMUM MODE PIN FUNCTIONS (e.g.,LOCK)
ARE SHOWN IN PARENTHESES
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Common Signals

Name Function Type
Bidirectional,
AD7-ADO Address/Data Bus 3.State
Output,
A15-A8 Address Bus 3-State
A19/S6- Output,
A16/S3 Address/Status 3.State
Vv Minimum/Maximum }
MN/MX Mode Control Input
== Output,
RD Read Control 3.State
TEST Wait On Test Control Input
READY Wait State Control Input
RESET System Reset Input
Non-Maskable
NMI Interrupt Request Input
INTR Interrupt Request Input
CLK System Clock Input
Vee +5V Input
GND Ground
Minimum Mode Signals (MN/MX=Vgc)
Name Function Type
HOLD Hold Request Input
HLDA Hold Acknowledge Output
e . Output,
WR Write Control 3.State
VI Output,
10/M 10/Memory Control 3.State
= Data Transmit/ Qutput,
DT/R Receive 3-State
BENT Output,
DEN Data Enable 3-State
Address Latch
ALE Enable Output
INTA Interrupt Acknowledge Output
Output,
SS0 S0 Status 3.State
Maximum Mode Signals (MN/MX = GND)
Name Function Type
oa/=T1 » | Request/Grant Bus T
RQ/GT1, 0 Access Control Bidirectional
TArRK Bus Priority Lock Output,
LOCK * Control 3-State
52-50 Bus Cycle Status g_ust&‘;é‘
Instruction Queue
QS1, QS0 Status Output

GgnD [ U 40
a1afg2 39
a3} s 8
az[]a 37
a1n[]s 36
an[Je 35
a7 34
as[]e 33
an7[]9 32
aps 110 Bcopsg 31
aps [ © a0

-~ apa[J42 29
apa[}13 28
ap2[1a 27
ap1[]1s 26
apo[1e 25
v 7 . 24
INTR[J18 23
CLK D 19 22

- aNp[J20 21

vee
] ats
] A16/53
] A17/s4
[1 a18/s5
;] A19/S6

[]ss0
[] Mn/wR
175

[ JHOLD
[ HLDA
) wa

[ 10/8
[ 101/R
] 6EN
F] ALE
] iNTA
] TEsT
] READY
] RESET

(HIGH)

(RG/GT0)
(RG/GTY)
(LOCK)
§2)

(5]

{80)
(QS0)
{QS1)

MAXIMUM MODE PIN FUNCTIONS (e.g.,LOCK)
ARE SHOWN IN PARENTHESES

Figure 4-2. 8088 Pin Definitions
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ADDRESS BUS

(20 BITS)
AH AL |
BH BL | :
CH cL
~
oH oL
GENERAL
REGISTERS - 4 DATABUS
I qeBivs) P
BP
. 4
o .
cs
s. |
DS
| ss
. ES
¢ l N P . ) .
I 4 INTERNAL
— COMMUNICATIONS — .
ALU DATA BUS REGISTERS BUS 8086
- - . CONTROL BUS
-~ (16 BITS) | ; ) LoGIC
[ TEMPORARY REGISTERS ]‘_‘ l
w ‘L | . '
INSTRUCTION
QUEUE -
f——
! 4
AL < 12 3]a|ss |4
[}
[ H
[ |
11 1
I FLAGS ]4— . .
€ XECUTION UNIT I 8US INTERFACE UNIT
(EU) ®IU), - -

Figure 4-3. 80816 Elementary Block Diagram -

ADDRESS BUS.

l FLAGS I‘—
I 2]
Figure 4-4. 80{38 Elementary Block Diagram
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AH AL ,
BH BL
cH ct s
.
OH .
GENERAL o " :
REGISTERS sp ' DATA BUS '
o {8 BITS)
P R N
: -
ol
cs
s e
s
I s
ES
| . 3 P
4 INTERNAL
. |— . commuRicaTions —| :
~ ALUDATABUS - - .| i .*...REGISTERS . BUS LR
" ~ CONTROL 068
P N - (16 BITS) l - . . Logic BUS |
~ b 4
] TEMPORARY REGISTERS I« ’
|
~ - | : l
INSTRUCTION
JRE— . QUEUE
L:':)NE;JHOL Q’ﬁ ! 1 s |4
g 2
A <. YSTEM 8 BITS) \ |
| i l :
|
1 ] .
I I . :

KEGUTION UNIT - BUS INTERFACE UNIT -
(EU) {BIU)
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Bus Operation

To explain the operation of the time-multiplexed
bus, the BIU’s bus cycle must be examined.
Essentially, a bus cycle is an asynchronous event
in which the address of an I/0 peripheral or
memory location is presented, followed by either
a read control signal (to capture or ‘‘read’’ the
data from the addressed device) or a write control
signal and the associated data (to transmit or
““write”’ the data to the ‘addressed device). The
selected device (memory or 1/ O Dperipheral)
accepts the data on the bus during a write cycle or
places the requested data on the bus during a read
cycle. On termination of the cycle, the device
latches the data written or removes the data read.

As shown in figure 4-5, all bus cycles consist of a
minimum of four clock cycles or ““T-states’’ iden-
tified as Ty, Ty, T3 and T4. The CPU places the
address of the memory location or'1/0 device on
the bus during state Ty. During & write bus cycle
the CPU places the data on the bus from state Ty
until state T4. During a read bus cycle, the CPU
accepts the data presént on the bus in states T

and Ty, and the multiplexed address/data bus is
floated in state T, to allow the CPU to change
from the write mode (output address) to the read
mode (input data). :

It is important to note that the BIU executes a bus
cycle only when a bus cycle is requested by the EU
as part of instruction execution or when it must
fill the instruction queue. Consequently, .clock
periods in which there is no BIU activity can
occur between bus cycles. These inactive: clock
periods are referred to as idle states (Tp): While
idle clock states result from several conditions
(e.g., bus access granted to a coprocessor), as an
example, consider the case of the execution of a
‘“‘long’’ instruction. In:the following example, an
8-bit register multiply (MUL) instruction (which
requires between 70 and 77 clock. cycles) is exe-
cuted by the 8086. Assuming that the multiplica-
tion routine is entered as a result of a program
jump (which causes the instruction queué to be
reinitialized when the jump is executed) and, as
will be explained later in this chapter, that the
object code bytes are aligned on even-byte bound-
aries, the BIU’s bus cycle sequence would appear
as shown in flgure 4-6..

. j#————————BUS CYCLE
T | T2 I T3 I T4 |

BUS CYCLE 1

T1|Tz|Ta|Ta

DATA

XADDRESSX BUFFER X

DATA

X

x ADDRESS'X BUFFER X

Figure 4-5. Typical BIU Bus Cycles

| BUS CYCLE }

BUS CYCLE~——

raorn A
I\ I \ I kW]
= O R ) wi

T1|1'2|T3|T4

1+ 2 4 | 6.
EU AS A RESULT OF THE JMP
ACTIVITY INSTRUCTION, THE EU
REINITIALIZES THE QUEUE
DURING EXECUTION OF
THE JUMP.

SINCE THE QUEVE IS

EMPTY, THE BIU FETCHES |COD!
TWO OBJECT CODE BYTES AGAIN CONTAINS FOUR
{THE MUL INSTRUCTION) INIBYTES.

ONE BUS CYCLE AND
COMPLETES A-SECOND
BUS CYCLE. THE QUEUE
CONTAINS FOUR BYTES.

BlU
ACTIVITY

T1|T2|T31T4

E IDLE CLOCK CYCLES BUS CYCLE:
T1|T||T|| |T||T| TI|T2|1‘3|T4
VAVAVAVAVAVAVAVAVAVAVAW

EU FETCHES THE FIRST TWC BYTES FROM THE QUEUE (THE MUL INSTRUCTION) AND
COMPLETES INSTRUCTION EXECUTION IN 70 TO 77 CLOCK CYCLE:!

BIU FETCHES TWO OBJECT| BIU FETCHES TWG MORE

JECT CODE BYTES.
QUEUE IS NOW FULL {SIX
BYTES).

8 | 10
EU FETCHES THE NEXT

BEGINS EXECUTING THE
NEXT INSTRUCTION.
BIU IS IDLE FOR 62-69 CLOCK CYCLES
WHILE THE EU COMPLETES EXECUTION OF
THE MUL INSTRUCTION.

BIU FETCHES TWOQ OBJECT
CODE BYTES TO REFILL
THE QUEUE. THE QUEUE IS
AGAIN FULL.

- Figure 4-6. BIU Idle States.
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In addition to the idle state previously described,
both the 8086 .and 8088 CPUs include -a
mechanism for inserting additional T-states in the
bus cycle to compensate for devices (memory or
1/0) that cannot transfer data at the maximum
rate. These extra T-states are called wait states
(Tw) and, when required, are inserted between
states T3 and T4. During a wait state, the data on
the bus remains unchanged. When the device can
complete the transfer (present or accept the data),
it signals the CPU to exit the wait state and to
enter state T4.

As shown in the following timing diagrams, the
actual bus cycle timing differs between a read and
a write bus cycle and varies between the two
CPUs. Note that-the timing diagrams illustrated
are -for the minimum mode. (Maximum mode
timing is described later in this chapter.)

Referring to figures 4-7 and 4-8, the 8086 CPU
places .a 20-bit address on the multiplexed
address/data bus during state Ty. During state
Ty, the CPU removes the address from the bus
and either three-states (floats) the lower 16
address/data lines in preparation for a read cycle
(figure 4-7) or places write data on these lines

(figure 4-8). At this time, bus cycle status is
available on the address/status lines. During state
T3, bus cycle status is maintained on the
address/status lines and either the write data is
maintained or read data is sampled on the lower
16 address/data lines. The bus cycle is terminated
in state T4 (control lines are disabled and the
addressed device deselects from the bus).

The 8088 CPU, like the 8086, places a 20-bit
address on the multiplexed address/data bus dur-
ing state T| as shown in figures 4-9 and 4-10.
Unlike the 8086, the 8088 maintains the address
on the address lines (A15-Ag) for the entire bus
cycle. During state Ty, the CPU removes the
address on the address/data lines (AD7-ADg) and
either floats these lines in preparation for a read
cycle. (figure 4-9) or places write data.on these
lines (figure 4-10). At this time, bus cycle status is
available on the address/status lines. During state
T3, bus cycle status is maintained on the
address/status lines and either write data is main-
tained or ,read data is sampled on the
address/data lines. The bus cycle is terminated in
state T4 (control lines are disabled and. the
addressed device deselects from the bus).

T2

ONE BUS CYCLE

L

]/

\’

H ADDRESS, BAE OUT

A19/S6-A18/S3
ano BRE/S7 STATUS OUT
AD15-ADg ADDRESS OUT DATA IN

LOW = /0 READ, HIGH =MEMORY READ

a

L

Figure 4-7. 8086 Read Bus Cycle
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ONE BUS CYCLE

w_ [ L\

A19/56-A16/S3 =oE
'anD BREIST HADDRESS, BHE QUT X STATUS OUT
AD15-ADg )—( ADDRESS OUT X DATA OUT

LOW = I/O WRITE, HIGH = MEMORY WRITE

\

Figure 4-8. 8086 Write Bus Cycle

A majority of system memories and peripherals
require a stable address for the duration of the
bus cycle (certain MCS-85™ components can
operate with a multiplexed address/data bus).
During state Ty of every bus cycle, the ALE
(Address Latch Enable) control signal is output
(either directly from the microprocessor in the
minimum mode or indirectly through an 8288 Bus
Controller in the maximum mode) to permit the
address to be latched (the .address is valid on the
trailing-edge of ALE). This ‘‘demultiplexing’’ of
the address/data bus can be done remotely at
each device in the system or locally at the CPU
and distributed throughout the system as a
separate address bus. For optimum system per-
formance and for compatibility with multi-
processor systems or with the Intel Multibus
architecture, the locally-demultiplexed address
bus is recommended. To latch the address, Intel®
8282 (non-inverting) or 8283 (inverting) Octal
Latches are offered as part of the 8086 product
family and are implemented as shown in figure
4-11. These circuits, in addition to providing the
desired latch function, provide increased current
drive capability and capacitive load immunity.

The data bus cannot be demultiplexed due to the
timing differences between read and write cycles
and the various read response times among
peripherals and memories. Consequently, the
multiplexed data bus either can be buffered or
used directly. When memory and 1/0 peripherals
are connected directly to an unbuffered bus, it is
essential that during a read cycle, a device is
prevented from corrupting the address present on
the bus during state T;. To ensure that the
address is not corrupted, a device’s output drivers
should be enabled by an output enable function
(rather than the device’s chip select function) con-
trolled by the CPU’s read signal. (The MCS-86
family processors guarantee that the read signal
will not be valid until after the address has been
latched by ALE.) Many Intel peripheral,
ROM/EPROM, and RAM circuits provide an
output enable function to allow interface to an
unbuffered multiplexed address/data bus. The
alternative of using a buffered data bus should be
considered since it simplifies the interfacing
requirements and offers both increased drive cur-
rent capability and capacitive load immunity. The
Intel® 8286 (non-inverting) and 8287 (inverting)

-4-7
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ONE BUS CYCLE

L] | T2 | T3

| | |
«_/ ./ S
A19/56-A16/53 )——( ADDRESS OUT x STATUS OUT

A15-Ag H ADDRESS OUT

10/M X LOW =MEMORY READ, HIGH =1!0 READ x
™ \ /
- ———
DTIR \ 1
- — L -———
————— -
BEN 1 \
[REpE—— —_———

Figure 4-9, 8088 Read Bus Cycle

ONE BUS CYCLE

| ®

« U U U

A19/Sg-A16/S3 ADDRESS oUT x STATUS OUT

TIT

Ais-Ag ADDRESS OUT . )—
AD7-ADD. ADDRESS OUT X DATA OUT )——-—
. ALE __/—_\ :
1014 x LOW =MEMORY WRITE, HIGH = /0 WRITE X )
WR : \ , :
= - 1 ===
/] i \
o [ S,
T
DEN 1 .
[REp—

Figure 4-10. 8088 Write Bus Cycle
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Octal Bus Transceivers, shown in figure 4-12, are
expressly designed to buffer the data bus. These
transceivers use the CPU’s DEN (Data Enable)
and DT/R (Data Transmit/Receive) control
signals to enable and control the direction of data
on the bus. These signals provide the proper tim-
ing relationship to guarantee isolation of the
address that is present on the multiplexed bus
during state Tj.

Except where noted, all subsequent discussions
and examples in this chapter assume a locally
demultiplexed address bus and a buffered data
bus. The resultant address and data buses from
the address latches and data transceivers to the
memory and 170 devices will be referred to collec-
tively as the “‘system”’ bus.

[
vee |—'| F‘l
MN/MX !
[—| CLK E :
___ 6284 WR
RES _CLOCK t—{ READY 1018 <
GENERATOR
[—={ RESET |
|
1: 8088
= CPU ALE sTB
ADDRESS ) ADDRESS BUS
A19-Atg 14 8282
ADDRESS 8283 l - l l l l l
Ats-Ag M o b 4
|4 SEL RD WR
AD7-AD0 4 ADDRESS/DATA -
7-AD0 @ 1 4 s H MEMORY 1/0 PERIPHERAL
i DATA DATA
= -~ P
. . _d

Figure 4-11. Minimum Mode 8088 Demultiplexed Address Bus

O
MN/MY
RD -
[—»| CLK
8284 WR
RES__CLOCK [—>| READY MG
GENERATOR
I —»| ResET I.J:
= 8 e sTB ET‘_ET
ADDRESS ADDRESS BUS
A1g-A16 8282 o —
OR
5AE 8283
_ ADy5-ADD ADDRESS/DATA \_._
DEN DT/R §E_ ~
= MEMORY 110 PERIPHERAL
| DATA DATA
DATA BUS
8286
OR
8287
OE
-

Figure 4-12. Minimum Mode 8086 Buffered Data Bus
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Clock Circuit

To establish the bus cycle time,; the CPU requires
an external clock signal. As an integral part of the
8086 family, Intel offers the 8284 -Clock
Generator/Driver for this purpose. In addition to
providing the primary (system) clock signal, this
device provides both the hardware reset interface
and the mechanism for the insertion of wait states
in the bus cycle.

The clock generator/driver requires an external
series-resonant crystal input (or external frequen-
cy source) at three times the required system clock
frequency (i.e., to operate the CPU at 5 MHz, a
15 MHz fundamental - frequency source is
required). The divided-by-three output (CLK)
from the 8284 is routed directly to the CPU’s
CLX input. The clock generator/driver provides a
second clock output called PCLK (Peripheral
Clock) at one half the frequency of the CLK out-
put and a buffered TTL level' OSC (oscillator)
output at the applied crystal input frequency.
These outputs are available for use by.system
devices.

The 8284°s hardware reset function is accom-
pllshed with an internal Schmitt trigger citcuit
that is activated by the RES (Reset) input. When
this input is pulled low (i.e., a contact closure to
ground), the RESET output is activated syn-
chronously with the CLK signal. This signal must
be active for four clock cycles and causes the CPU
to fetch and execute the instruction at location
FFFFOH. An external RC circuit is connected to
the RES input to provide the power-on reset func-
tion (on power-on, the RES input must be active
for 50 microseconds). The RESET output is
coupled directly to the RESET input of the CPU
as well as being available to system peripherals as
the system reset signal.

The insertion of wait states in the CPU’s bus cycle
is accomplished by deactivating one of the 8284’s
RDY inputs (RDY1 or RDY2). Either of these
inputs, when enabled by its corresponding AEN1
or AEN2 input, can be deactivated directly by a
peripheral device when it must extend the CPU’s
bus cycle (when it is not ready to present or accept
data) or by a ‘‘wait state generator’’ circuit (a
logic circuit that holds the RDY input inactive for
a given number of clock cycles).

The READY output, which is synchronized to the
CLK signal is coupled directly to the CPU’s
READY input. As shown in figure 4-13, when the
addressed device needs to insert one or more wait
states in a bus cycle, it deactivates the 8284’s RDY
input prior to the end of state Ty which causes the
READY output to be deactivated at the end of
state T. The resultant wait state (TW) is inserted
between states Ty and T,4. To exit the wait state,

‘the device activates the 8284’s RDY input which

causes the READY input to the CPU to go active
at the end of the current wait state and allows the
CPU to enter state T4.

Minimum/Maximum Mode

A unique feature of the 8086 and 8088 CPUs is
the ability of ‘a user to define a subset of the
CPU’s control signal outputs in order to tailor the
CPU to its intended system environment. This
“‘system tailoring’’ is accomplished by the strap-
ping of the CPU’s MN/MX (minimum/max-
imum) input pin. Table 4-1 defines the 8086 and
8088. pin. assignments in both the minimum and
maximum modes.

T1

CLK

READY OUTPUT

ONE BUS CYCLE

T3 | W l T

RDY INPUT —W

. Figure 4-13, Wait State Timing
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Table 4-1. Minimum/Maximum Mode Pin Assignments

8086 8088
Mode Mode

Pin Pin

Minimum Maximum Minimum Maximum
31 HOLD RO/GTO 31 HOLD RQ/GTO
30 HLDA RQ/GT1 30 HLDA RQI/GT1
29 WR LOCK 29 WR LOCK
28 M/ §2 28 I0/M 52
27 DT/R 51 27 DT/R 5
26 DEN S0 26 DEN S0
25 ALE QSso 25 ALE QS0
24 INTA Qs1 24 INTA Qst

34 $S0 High State
Minimum Mode 8-bit device, compatibility with existing

In the minimum mode (MN/MX pin strapped to
+5V), the CPU supports small, single-processor
systems that consist of a few devices and that use
the system bus rather than support the
Multibus™ architecture. In the minimum mode,
the CPU itself generates all bus control
signals (DT/R, DEN, ALE and either M/IO or
[0/M) and the command output signal (RD, WR
or INTA), and provides a mechanism for
requesting bus access (HOLD/HLDA) that is
compatible with bus master type controllers (e.g.,
the Intel® 8237 and 8257 DMA Controllers).

In the minimum mode, when a bus master
requires bus access, it activates the HOLD input
to the CPU (through its request logic). The CPU,
in response to the ‘‘hold’’ request, activates
HLDA as an acknowledgement to the bus master
requesting the bus and simultaneously floats the
system bus and control lines. Since a bus request

MCS-85™ gsystems and specific MCS-85T™ family
devices (e.g., the Intel® 8155/56).

Maximum Mode

In the maximum mode (MN/F/IT( pin strapped to
ground), an Intel® 8288 Bus Controller is added

to provide a sophisticated bus control function

is asynchronous, the CPU samples the HOLD

input on the positive transition of each CLK
signal and, as shown in figure 4-14, activates
HLDA at the end of either the current bus cycle
_(if a bus cycle is in progress) or idle clock period.
The hold state is maintained until the bus master
inactivates the HOLD input at which time the
CPU regains control of the system bus. Note that
during a “‘hold”’ state, the CPU will continue to
execute instructions until a bus cycle is required.

Note that in the minimum mode, the I/O-memory
control line for the 8088 CPU is the converse of
the corresponding control line for the 8086 CPU
(M/I0 on the 8086 and I0/M on the 8088). This
was done to provide the 8088 CPU, since it is an

and compatibility with the Multibus architecture
(combining an Intel® 8289 Arbiter with the 8288
permits the CPU to support multiple processors
on the system bus). As shown in figure 4-15, the
bus controller, rather than the CPU, provides all
bus control and command outputs, and allows the
pins previously delegated to these functions to be
redefined to support multiprocessing functions.

§2,51and SO

Referring to figure 4-15, the 8288 Bus Controller
uses the S2, S1 and SO status bit outputs from the
CPU (and the 8089 IOP) to generate all bus con-
trol and command output signals required for a
bus cycle. The status bit outputs are decoded as
outlined in table 4-2. (For a detailed description
of the operation of the 8288 Bus Controller, refer
to the associated data sheet in Appendix B.)

The 8088 CPU, in the minimum mode, provides
an SSO status output. This output is equivalent to
SO in the maximum mode and can be decoded
with DT/R and IQO/M (inverted), which are
equivalent to S1 and'S2 respectively, to provide
the same CPU cycle status information defined in
table 4-2. This type of decoding could be used ina
minimum mode 8088-based system to allow

" dynamic RAM refresh during passive CPU cycles.
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CLK

HOLD ’

l' T4ORT| | K

HLDA
Figure 4-14. HOLD/HLDA Timing
Vee ot : .
' I_‘D}—| — : L 8288
= CLK BUS
- N ] CONTROLLER
8284 CLK 5 S0 INTA
RES . READY = 5 5 RADE
CLOCK RESET 3 5
I - | GENERATOR 2 2 gwic
DEN
= oA [ORC
’ ALE OWE
8088
CPU
1 Lelste e
SN : .|.. aDDRESS 8282 ADDRESS BUS .
: ' UA19-A8 ﬂ OR
e B ADDRESS/DATA
AD7-ADg
. : . _L . MEMORY 110 PERIPHERAL
- DATA DATA
¥ : . DATA BUS
. 8286 '
OF OR
D o1 OF oo

" Figure 4-15. Elementary Maximum Mode System

Table 4-2. Status Bit Decoding

.- Status Inputs

" 8288 Command

N JENENE CPU Cycle
s2 S S0 o
-0 0 .0 . Interrupt Acknowledge "~ _INTA
20 0 A Read 1/O Port ‘ ~_IORC__.
0. 1 0 Write I/O Port IOWC, AIOWC’
L0 A 1 Halt o None,
o1 .0 -0 Instruction Fetch. . “MRDC
1 0 A Read Memory ; MRDC .
1. 1 0 . Write Memory MWTC, AMWG
A 1 A Passive None

4-12




HARDWARE REFERENCE INFORMATION

RQ/GT1, RQ/GTO

The Request/Grant signal lines (RQ/GTO0 and
RQ/GT1) provide the CPU’s bus access
mechanism in the maximum mode (replacing the
HOLD/HLDA function available in the
minimum mode) and are designed expressly for
multiprocessor applications using the 8089 I/0
Processor in its local mode or other processors
that can support this function. These lines are
unique in that the request/grant function is

accomplished over a single line (RQ/GTO
or  RQ/GTI) rather than the two-line
HOLD/HLDA function.

As shown in figure 4-16, the request/grant
sequence is a three-phase cycle: request, grant and
release. The sequence is initiated by another pro-
cessor on the system bus when it outputs a pulse
~on one of the RQ/GT lines to request bus access
(request phase). In response, the CPU outputs a
pulse (on the same line) at the end of either the
current bus cycle (if a bus cycle is in progress) or
idle clock period to indicate to the requesting pro-
cessor that it has floated the system bus and that it
will logically disconnect.from the bus controller
on the next clock cycle (grant phase) and enter a

“hold’’ state. Note that the CPU’s execution unit
(EU) continues to execute the instructions .in the
queue until an instruction requiring bus access is
encountered or until the queue is empty. In the
third (release) phase, the requesting processor
again outputs a pulse on the RQ/GT line. This
pulse alerts the CPU that the processor is ready to
release the bus. The CPU regains bus access on its
next clock cycle. Note that the exchange of pulses
is synchronized and, accordingly, both the CPU
and requesting processor must be referenced to
the same clock signal.

The request/grant lines. -are prioritized - with
RQ/GTO takmg precedence over RQ/GTI. If a
request arrives_on both lines simultaneously, the
processor on RQ/GTO is granted the bus (the
request on RQ/GT! is granted when the bus is
released by the first processor following a one or
two clock channel transfer delay) -Both. RQ/GT
lines (and the HOLD line in minimum mode) have
a higher pr1or1ty thana pendmg mterrupt

Request/ grant latency (the time mterval between
the receipt of a request pulse and the return of a
grant pulse) for several conditions is given in table

T4ORT| |

COPROCESSOR REQUESTS
BUS ACCESS

CPU GRANTS BUS
TO COPROCESSOR

COPROCESSOR RELEASES '
BUS !

Figure 4-16. Request/Grant Timing

Table 4-3. Request/Grant Latency

" Request/Grant Dela
Operating Condition 8086 9 ):3088
' ‘Norm_al Instruction Processing—LOCK inactive 3-6(10*) clocks 3-10 clocks
mCycle Ekecuting—m active 15 clocks 15elocks
,Locked XCHG Instruction Processing—ﬁC—Kyactive 24-31 (39*) clocks 24-39 clocks

*The number of clocks in parentheses applies when the instruction being executed references a wbrd

operand at an odd address boundary.
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Table 4-11. Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field; described in this chapter.

R/M Register/Memory field; described in this chapter.

SR Segment register code: 00=ES, 01=CS, 10=SS, 11=DS.

W,§,D0,V,Z Single-bitinstruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use. ‘

DATA-LO Low-order byte of 16-bit immediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
indicates if present.

(DISP-HI) High-order byte of optional 16-bit unsigned displacement;‘ MOD
indicates if present.

IP-LO Low-order byte of new IP value.

IP-HI High-order byte of new IP value

CS-LO Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP=INC-HI High-order byte of signed 16-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (offset) of memory operand; EA not
calculated. ‘

ADDR-HI High-order byte of direct address (offset) of memory operand; EA not
calculated.

_ Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits of ESC opcode.

REG8 8-bit general register operand.

REG16 16-bit general register operand.

MEMS8 8-bit memory operand (any addressing mode).

MEM16 16-bit memory operand (any addressing mode).

IMMEDS8 8-bit immediate operand.

IMMED16 16-bit immediate operand.

SEGREG Segment register operand.

DEST-STR8 Byte string addressed by DI.

4-21
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Table 4-11. Key to Machine Instruction Encoding and Decoding (Cont’d.)

IDENTIFIER EXPLANATION
SRC-STR8 Byte string addressed by Sl.
DEST-STR16 Word string addressed by DI.
SRC-STR16 Word string addressed by SI.
SHORT-LABEL Label within £127 bytes of instruction.
NEAR-PROC Procedure in current code segment.
FAR-PROC Procedure in another code segment.
NEAR-LABEL Label in current code segment but farther than —128 to +127 bytes
from instruction.
FAR-LABEL Label in another code segment.
SOURCE-TABLE XLAT translation table addressed by BX.
OPCODE ESC opcode operand.
SOURCE ESC register or memory operand.
Table 4-12. 8086 Instruction Encoding
DATA TRANSFER
MOV = Move: 76543210 766543210 76543210 76543210 76543210 76543210

Register/memory to/from register
Immediate to register/memory
Immediate to register

. Memory to accumulator
Accumulator to memory
Register/memory to segment register

" Segment register to register/memory

PUSH = Push:
Register/memory
Register

Segment register

POP = Pop:
Register/memory
Register

. Segment register

100010dw |mod reg r/m {DISP-LO) (DISP-HI)

110001 1w |mod C OO0 rim (DISP-LO} (DISP-HJ) data J dataifw=1 J
1011 wreg data dataifw=1

1010000 w addr-lo addr-hi

1010001 w addr-lo addr-hi

10001110 |mod 0 SR r/m (DISP-LOY (DISP-HI)

10001100 | mod 0 SR rim (DISP-LO) (DISP-HI}

11111111 |mod 110 rim I (DISP-LO}Y J {DISP-H!)

01010 reg

000reg110

10001111

({DISP-LO) l (DISP-HI) I

mod 0 0 0 f/m

01011 reg

000reg 111

Mnemonics © Intel, 1978
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DATA TRANSFER (Cont’d.)
XCHG = Exchange:
Register/memory with reglster

Repgister with accumulator

IN = Input from:
Flxed port

Variable port

OUT = Output to:

Fixed port

Variable port

XLAT = Translate byte to AL
LEA = Load EA to register
LDS = Load pointer to DS
LES = Load pointerto ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags

POPF = Pop flags

ARITHMETIC

ADD = Add:

Reg/memory with register to either
Immediate to register/memory

Immediate to accumulator

ADC = Add with carry:
Reg/memory with register to either
Immediate to register/memory

Immediate to accumulator

INC = Increment:
Register/memory
Register

AAA = ASCI| adjust for add

DAA = Decimal adjust for add

Table 4-12. 8086 Instruction Encoding (Cont’d.)

76543210 76543210 78543210 76543210 76543210 76543210
1000011 w/| mod reg rli (DISP-LO)J (DISP-HI)

1001 0 reg

1110010w DATA-8

111 0‘1 10w

111001 1w DATA-8—|

111011 1w

11010111

10001101 ] mod reg rim (DISP-LO} (DISP-HI)

11000101 | mod reg rim (DISP-LO) (DISP-HI)

11000100} mod reg rim {DISP-LO} (DISP-HI)

10011119

10011110

10011100

10011101

000000dw ] mod reg rim {DISP-LO) (DISP-HI)

100000sw|med 000 r/m (DISP-LO) (DISP-HI) data data If s: w=01
0000010w data dataif w=1

000100dw | mod reg rim {DISP-LO) (DISP-HI)

100000sw|mod 010 rim {DISP-L.O) © (DISP-H) data data if s; w=01
0001010w data data if w=1

111111 1w |mod 000 r/m (DISP-LO) J (DISP-HI) J

01000 reg

00110111

00100111

4-23 Mnemonics © Intel, 1978
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

ARITHMETIC (Cont’d.)

SUB = Subtract: 76543210 76543210 76543210 78543210 76543210 76543210
Reg/memory and register to either 001010dw |mod reg rim {DISP-LO) {DISP-HI)

Immediate from register/memory 100000sw {mod 1 0 1 rim (DISP-LO) (DISP-HI) data I data Iis:w=l)1‘|
Immediate from accumulator 0010110w data dataifw=1

SBB = Subtract with borrow:

Reg/memory and reglster to either 000110dw |mod reg rim (DISP-LO) (DISP-HI)
Immediate from register/memory 100000sw | mod 011 r/th (DISP-LO} {DISP-H1) data | data Ifs:w=01‘|
Immediate from accumulator 0001110w data data !f w=1

DEC Decrement:

Register/memory 17111111 w | mod 0 01 rlmi 7 (DISP—LO)” , (DISP-H1) |
Register ) 01001 reg

NEG Change sign 1111011w jmod 01 1 rim | T (DISP-LO) | {DISP-HI) |
CMP = Compare:

Register/memory and register 001110dw | mod reg rim {DISP-LO) {DISP-HI)
Immediate with register/memory 100000sw |[mod 111 rim (DISP-LO) {DISP-HI) data | datalfs:wjl
Immediate with accumulator 0011110w data

AAS ASCI adjust for subtract 00111114

DAS Decimal adjust for subtract 00101111

MUL Muttiply (unsigned) 1111011w|[mod 100 r/m {DISP-LO) (DISP-H1)}

IMUL Integer multiply (slgned) ) 1111011 w|mod1 01 ¢/m {DISP-LO) (DISP-HI) -
AAM ASCIl adjust for multiply 111010100 |00001010 (DISP-LO) (DISP-HI)

DIV Divide (unslgned)' 111101 1wfmod 110 rim (DISP-LO) {DISP-HI}

IDIV Integer divide (signed) 1411041 w|mod 111 r/m {DISP-LO) B - (DISP-HI)

AAD ASCIl adjust for divide 1101010100001 010 (DISP-LO) {DISP-HI}

CBW Convert byte to word ‘10011000

CWD Convert word to double word 106011001

Loaic

NOT Invert 1111011 w |mod 010 rim (DISP-LO) (DISP-HI)
SHL/SAL Shift logical/arithmetic left 110100vw |mod 1 00 rim (DISP-LO} (DISP-HI) }
SHR Shift logical right 110100vw [mod 101 rim (DISP-LO} (DISP-HI)

SAR Shift arithmetic right 110100vw mod 111 rim {DISP-LO} (DISP-HI)

ROL Rotate left 110100vw [mod 000 r/m (DISP-LO) ) (DISP-HI}

Mnemonics © intel, 1978 4-24
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

LOGIC (Cont’d.) 76543210 76543210 76543210 76543210 76543210 76543210
ROR Rotate right 110100vw |mod ¢ 01 r/m {DISP-LO) (DISP-HI)

RCL Rotate through carry flag left 110100vw |mod 010 r/m {DISP-LO) (DISP-HI)

RCR Rotate through carry right 110100vw {mod 011 rim {DISP-1.O} (DISP-HI)

AND = And:

Reg/memory with register to either 001000dw |mod reg rim (DISP-LO) {DISP-HI)

immediate to register/memory 1000000w |mod 100 rim (DISP-LO) {DISP-H!) data data if w=1
Immediate to accumulator 0010010w data data if w=1

TEST = And function to tlags no result:

Register/memory and register 000100dw |mod reg rim (DISP-LO) {DISP-HI)

Immediate data and register/memory 1111011w |mod 000 rim (DISP-LO) (DISP-HI) data data if w=1
data and 1010100 w data

OR = Or:

Reg/memory and register to either 000010dw |mod reg rim (DISP-LO) ' (DISP-HI}

Immediate to register/memaory 10000Q0w |mod 00 1 rim (DISP-LO) {DISP-HI} data data if w=1

Immediate to accumulator 0000110w data data if w=1

XOR = Exclusive or:

Reg/memory and register to either 001100dw |mod reg ¢im (DISP-LO) (DISP-HI)
Immediate to register/memary 0011010w data (DISP-LO} - (DISP-HI} data data if w=1
Immediate to accumulator 0011010w data data if w=1

STRING MANIPULATION

REP=Repeat 1111001z
MOVS =Move byte/word 1010010 w
CMPS =Compare byte/word 1010011 w
SCAS=Scan byte/word 101011 1w
LODS==Load byte/wd to AL/AX 1010110w .
S$TDS =Stor byte/wd from AL/A 1010101 w
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Table 4-12. 8086 Instruction Encoding (Cont’d.)

CONTROL TRANSFER
CALL = Call: 76543210 76543210 76543210 76543210 76543210 76543210
Direct within segment 114101000 IP-INC-LO | IP-INC-HI
Indirect within segment 11111111 |mod 010 rim {DISP-LO) (DISP-HI) I Coro it
Directintersegment 10011010 IP-lo IP-hi
CS-lo CS-hi
Indirect intersegment F1 11111 ]mod 011 ¢/m {DISP-LO) (DISP-HI) I
JMP = Unconditional Jump:
Direct within segment 11101001 IP-INC-LO 1P-INC-HI
Direct within segment-short 11101011 IP-INC8
Indirect within segment 11111111 mod 100 rim (DISP-LO) (DISP-H1) J
Direct intersegment 11101010 IP-fo P-hi
CSto . C8-hi
indlrec( intersegment N 11111114 rﬁod 1 ‘0 1 vim {DISP-LO) (DISP-HI} I
RET = Return from CALL:
Within segment 11000011
Within seg adding immed to SP 11000010 data-lo, ) data-hi |
Intersegment 11001011
Intersegment adding immediate to SP 11001010 data-lo data-hi |
JE/JZ=Jump on equal/zero 01110100 IP-INC8
JL/INGE =Jump on less/not greater or squal 01111100 IP-INC8
JLE/JING =Jump on less or equal/not greater 0T111190 1P-INC8
JB/JINAE =Jump on below/notaboveorequal |01 11001 0 IP-INC8
JBE/JNA =Jurmpon below or equal/nofabove | 01110110 IP-INC8
JP/JPE=Jump on parity/parity even 01111010 IP-INC8
JO =Jump on overflow 01110000 IP-INC8
J8=Jump on sign 01111000 IP-INC8
JNE/JNZ =Jump on not equal/not zerd 01110101 IP-INC8
JNL/JGE=Jump on not less/greater or equal 01111101 IP-INC8
JNLE/JG =Jump on not less or equal/greater 01111111 IP-INC8
JNB/JAE = Jump on not below/above or equal 01110011 IP-INC8
JNBE/JA =Jump on not below or equal/above 01110111 IP-INCS
JNP/JPO = Jump on not par/par odd 01111011 IP-INCS
JNO =Jump on not overflow 01110001 IP-ING8
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CONTROL TRANSFER (Cont’d.)

RET = Return from CALL:

Table 4-12. 8086 Instruction Encoding (Cont’d.)

76543210 76643210 76543210 76543210 76543210 76543210

JNS =Jump on not sign 01111001 IP-INC8
LOOP=Loop CX times 11100010 IP-INC8
LOOPZ/LOOPE =Loop while zero/equal 1110000 IP-INC8
LOOPNZ/LOOPNE =Loop whlle notzerofequalf 11 1 0 0 0 00 1P-INC8
JCXZ=Jump on CX zero 11100011 IP-INC8
INT = Interrupt:

Type specified 11001101 DATA-8
Type3 11001100

INTO = Interrupt on overflow 11001110

JRET =Interrupt return 11001111

PROCESSOR CONTROL

CLC =Clear carry 11111000
CMC=Complement carry 11110101

STC=Setcarry

CLD =Clear direction
STD=Set direction
CLI=Clear interrupt
STl=Setinterrupt
HLT=Halt

WAIT =Wait

ESC=Escape (to external device)

LOCK =Bus lock prefix

SEGMENT =Override prefix

11111001

11111100

1101

1010

1011

11110100

10011011

11011 xxx jmodyyyr/im (DISP-LO}

{DISP-HI) J

111100600

001reg110

.. Table 4-13. Machine Instruction Decoding Guide

1ST BYTE :
HEX | BINARY | 2NDBYTE BYTES 3, 4,5, 6 ASM-86 INSTRUCTION FORMAT
00 | 0000 0000 |MODREG R/M | (DISP-LO),(DISP-HI) | ADD ~ REG8/MEMS,REGS
01 | 0000 0001 |MODREGR/M | (DISP-LO),(DISP-HI) | ADD  REG16/MEM16,REG16
02 | 0000 0010 |MODREG R/M | (DISP-LO),(DISP-HI) | ADD  REGS,REG8/MEMS
03 | 0000 0011 |MOD REG R/M | (DISP-LO),(DISP-HI) | ADD  REG16,REG16/MEM16
04 | 0000 0100 | DATA-8 ADD  AL,IMMEDS
05 | 0000 0101 | DATA-LO DATA-HI ADD  AX,MMED16
06 | 0000 0110 PUSH  ES
07_| 0000 o111 POP ES

427
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE ¥
HEX BINARY 2ND ‘BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
08 0000 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG8/MEMS8,REGS
09 0000 1001 { MOD REG R/M | (DISP-LO),(DISP-HI) | OR REG16/MEM16,REG16
0A 0000 1010 | MOD REG R/M | (DISP-LO),(DiISP-HI) OR REGS,REG8/MEMS8
0B 0000 1011 | MOD REG R/M [ (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16
0C 0000 1100 | DATA-8 OR . AL,IMMEDS8
0D 0000 1101 | DATA-LO DATA-HI OR AX,IMMED16
0E [0000 1110 . PUSH Cs
oF 0000 1111 (not used)
10 0001 0000 [ MOD REG R/M | (DISP-LO),(DISP-HI) ADC REGS8/MEMS8,REGS
11 0001 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC - REG16/MEM16,REG16
12 0001 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REGS,REG8/MEMS8
13 0001 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16
14 0001 0100 [ DATA-8 ADC AL,IMMED8
15 0001 0101 | DATA-LO DATA-HI ADC AX,IMMED16
16 0001 0110 PUSH SS
17 000t 0111 POP SS
18 0001 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG8/MEMS8,REGS
19 0001 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16
1A 0001 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG8,REGS8/MEMS,
1B 0001 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16
1C 0001 1100 | DATA-8 SBB AL,IMMED8 o
1D 0001 1101 | DATA-LO DATA-HI SBB AX,IMMED16
1E 0001 1110 PUSH DS
1F 0001 1111 POP DS
20 0010 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG8/MEM8,REGS
21 0010 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) AND’ REG16/MEM16,REG16
22 0010 0010 | MOD REG R/M [ (DISP-LO),(DISP-HI) AND REG8,REG8/MEMS
23 0010 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) | AND REG16,REG16/MEM16
24 0010 0100 | DATA-8 “AND AL,IMMEDS8
25 0010 0101 | DATA-LO DATA-HI AND AX,IMMED16
26 0010 0110 : ES: (segment override
prefix)
27 0010 0111 DAA
28 0010 1000 | MOD REG R/M | (DISP-L.O),(DISP-HI) SuB REG8/MEMS8,REGS
29 0010 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) SUB 'REG16/MEM16,REG16 '
2A 0010 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) SuUB REG8,REG8/MEM8
2B 0010 1011 | MOD REG R/M | (DISP-LO,(DISP-H!) sSuB REG16,REG16/MEM16
2C 0010 1100 | DATA-8' ‘ 'SUB “AL,IMMEDS
2D ] 0010 1101 | DATA-LO " { DATA-HI SuUB AX,IMMED16
2E -..{ 0010 1110 ; ; Cs: - (segment override
, prefix)
2F |0010 1M1 e , "DAS" - =
30 0011 0000 MODﬂREG R/M | (DISP-LO),(DISP-HI) *| XOR REG8/MEM8,REGS:
3 0011 0001 | MOD REG R/M*| (DISP-LO),(DISP-HI) ‘XOR REG16/MEM16,REG16
32 | 0011 0010 | MOD REG R/M | (DISP-LO),{DISP-HI) XOR REGS,REG8/MEMS:
33 0011 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16
34 0011 0100 | DATA-8 o XOR AL,IMMEDS :
35 0011 0101 | DATA-LO DATA-HI XOR "~ AX,IMMED16
36 0011 0110 E SS: (segment override
. - prefix) v
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE : L

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT .
37 0011 0110 AAA K
38 0011 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG8/MEMS8,REGS
39 0011 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16
3A 0011 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REGS8,REG8/MEMS
3B 0011 1011  MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16
3C 0011 1100 | DATA-8 CMP AL,IMMEDS8

3D 0011 1101 | DATA-LO DATA-HI CMP AX,IMMED16

3E 0011 1110 DS: (segment override

prefix)

3F 0011 1111 AAS :

40 0100 0000 INC AX

41 0100 0001 INC CX

42 0100 0010 INC DX

43 0100 0011 INC BX

44 0100 0100 INC Sp

45 0100 0101 INC BP-

46 0100 - 0110 INC Sl

47 0100 0111 INC DI

48 0100 1000 DEC AX

49 0100 1001 DEC CX

4A 0100 1010 DEC DX’

4B 0100 1011 DEC BX

4C 0100 1100 DEC SP

4D 0100 1101 DEC BP

4E 0100 1110 DEC Sl

4F 0100 1111 DEC DI

50 0101 0000 PUSH AX

51 0101 0001 PUSH CX

52 ‘0101 0010 "PUSH DX

53 0101 0011 PUSH BX

54 0101- 0100 PUSH SP -

55 0101 011 PUSH BP

56 0101: "0110 PUSH Sl

57 0101 0111 PUSH DI

58 0101~ 1000 POP “AX

59 0101 1001 POP CX

5A 0101 1010 POP DX

5B 0101 1011 " POP BX

5C 0101 1100 ~POP SP

5D 0101 1101 POP BP

5E 0101 1110 POP Sl

5F 0101 1111 - POP DI

60 | 0110 - 0000 (not used)

61 0110 0001 (not used)

62 0110 0010 (not used)

63 0110 0011 (not used)

64 0110 0100 - (notused)

65 0110 0101 (not used)

66 0110 0110 (not used)

67 0110 0111 (not used)
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE
HEX | BINARY “2ND.BYTE BYTES 3,4,5,6 - ASM-86 INSTRUCTION FORMAT
68 0110 1000 (not used)
69 0110 1001 (not used) -
6A 0110 1010 (not used)
68 0110 1011 - (not used)
6C 0110 1100 (not used)
6D 0110 1101 (not used)
6E 0110 1110 (not used)
6F 0110 1111 .. - (not used)
70 0111 0000 | IP-INC8 JO SHORT-LABEL
7 0111 0001 |IP-INC8 JNO SHORT-LABEL
72 0111 0010 | IP-INC8 JB/JNAE/ SHORT-LABEL
. JC o
73 0111 0011 |IP-INC8 JNB/JAE/ SHORT-LABEL
JNC
74 0111 0100 | IP-INC8 JEIJZ SHORT-LABEL
75 0111 0101 [IP-INC8 JNE/JNZ SHORT-LABEL
76 0111 0110 | IP-INC8 JBE/UNA SHORT-LABEL
77 0111 0111 | IP-INC8 JNBE/JA SHORT-LABEL
78 0111 1000 |IP-INC8 Js SHORT-LABEL
79 0111 1001 [IP-INC8 JNS SHORT-LABEL
7A 0111 1010 | IP-INC8 JP/JPE SHORT-LABEL
78 0111 1011 [IP-INC8 JNP/JPO SHORT-LABEL
7C 0111 1100 | IP-INC8 JL/JNGE SHORT-LABEL
7D 0111 1101 |IP-INC8 JNL/JGE SHORT-LABEL
7E 0111 1110 |IP-INC8 JLE/UJNG SHORT-LABEL
7F 0111 1111 [ IP-INC8 JNLE/JG SHORT-LABEL
80 1000 0000 | MODOOOR/M | (DISP-LO),(DISP-HI), ADD REG8/MEMS8,IMMEDS
DATA-8
80 1000 0000 [ MOD 001 R/M- | (DISP-LO),(DISP-HI), OR REG8/MEMS8,IMMEDS8
DATA-8 :
80 1000 0000 | MODO10R/M. | (DISP-LO),(DISP-HI), ADC REG8/MEMS,IMMEDS
: DATA-8
80 1000 0000 | MOD 011 R/M.. | (DISP-LO),(DISP-HI), SBB REG8/MEMS,IMMEDS
- DATA-8 ’
80 1000 0000 { MOD 100 R/M | (DISP-LO),(DISP-HI), AND REG8/MEMS,IMMEDS
- DATA-8 )
80 1000 0000 | MOD 101 R/M .| (DISP-LO),(DISP-HI)}, SUB REG8/MEMS8,IMMEDS
) DATA-8
80 1000 0000 | MOD110R/M | (DISP-LO),(DISP-HI), XOR REG8/MEMS8,IMMEDS
= DATA-8 .
80 1000 0000 [MOD 111 R/M (DISP-LO),(DISP-HI), CMP REG8/MEMS,IMMEDS
DATA-8 :
81 1000 0001 | MOD 000.R/M (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 | MOD 001 R/M (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16
: DATA-LO,DATA-HI .
81 1000 0001 [MOD010R/M (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16
DATA-LO,DATA-HI .
81 1000 0001 | MOD 011 R/M (DISP-LO),(DISP-H), SBB REG16/MEM16,IMMED16
DATA-LO,DATA-HI
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

81 1000 0001 | MOD 100 R/M [ (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16
DATA-LO,DATA-HI ‘

81 1000 0001 [ MOD 101 R/M | (DISP-LO),(DISP-HI), suB REG16/MEM16,IMMED16
DATA-LO,DATA-HI :

81 1000 0001 | MOD110R/M | (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16

. DATA-LO,DATA-HI
81 1000 0001 | MOD 111 R/M [ (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16
. DATA-LO,DATA-HI

82 1000 0010 | MOD 000 R/M- | (DISP-LO),(DISP-HI), ADD REG8/MEMS8,IMMEDS
DATA-8

82 1000 0010 { MOD 001 R/M . (not used)

82 1000 0010 | MODO10R/M | (DISP-LO),(DISP-HI), ADC REG8/MEMS8,IMMEDS8
DATA-8

82 1000 0010 [MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG8/MEMS8,IMMED8
DATA-8

82 1000 0010 [ MOD100R/M , (not used)

82 1000 0010 | MOD 101 R/M | (DISP-LO),(DISP-HY), suB REG8/MEMS8,IMMEDS
DATA-8

82 1000 0010 | MOD110R/M (not used)

82 1000 0010 [ MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG8/MEMS,IMMEDS
DATA-8

83 1000 0011 [ MODO000R/M | (DISP-L.O),(DISP-HI), ADD REG16/MEM16, IMMEDS8
DATA-SX

83 1000 0011 | MOD 001 R/M (not used)

83 1000 0011 [ MODO010R/M | (DISP-LO), (DISP-H!), ADC REG16/MEM16,IMMEDS8
DATA-SX

83 1000 0011 | MODO011 R/M | (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMEDS

: DATA-SX

83 1000 0011 { MOD100 R/M (not used)

83 1000 0011 [ MOD101 R/M | (DISP-LO),(DISP-HI), suB REG16/MEM16,IMMED8
DATA-SX

83 1000 0011 { MOD110R/M (not used)

83 1000 0011 | MOD111 R/M | (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMEDS
DATA-SX

84 1000 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG8/MEMB8,REG8

85 1000 0101 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16

86 1000 0110 [ MOD REG R/M ; (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEM8

87 1000 0111 } MOD REG R/M ] (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16

88 1000 1000 [ MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG8/MEMB8,REG8

89 1000 1001 [ MOD REG R/M | (DISP-LO),(DISP-HI) MoV REG16/MEM16/REG16

8A 1000 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG8,REG8/MEMS

8B 1000 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) MoV REG16,REG16/MEM16

8C 1000 1100 | MODOSRR/M | (DISP-LO),(DISP-HI) MoV REG16/MEM16,SEGREG

8C 1000 1100 [ MOD 1--R/M {not used)

8D 1000 1101 | MOD REG R/M | (DISP-LO),(DISP-HI) LEA REG16,MEM16

8E 1000 1110 { MODOSR R/M | (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16

8E 1000 1110 | MOD 1--R/M (not used)

8F 1000 1111 | MOD 000 R/M | (DISP-LO),(DISP-HI) POP REG16/MEM16

8F 1000 1111 | MOD 001 R/M (not used)

8F 1000 1111 | MOD 010 R/M (not used)
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE X
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
8F {1000 1111 | MOD 011 R/M (not used)
8F 1000 1111 |MOD100R/M (not used)
8F 11000 1111 |MOD101R/M (not used)
8F [1000 1111 |MOD110R/M (not used)
8F 1000 1111 |MOD 111 R/M (not used)
90 1001 0000 NOP (exchange AX,AX)
N 1001 0001 XCHG AX,CX s
92 1001 0010 XCHG AX,DX
93 1001 0011 XCHG AX,BX
94 1001 0100 XCHG AX,SP
95 1001 0101 XCHG: AX,BP
96 1001 0110 XCHG AX,SI
97 1001 0111 XCHG AX,DI
98 1001 1000 cBW ‘
99 1001 1001 CWD
9A |1001 1010 [ DISP-LO DISP-HLSEG-LO, CALL FAR_PROC
' SEG-HI .

9B |1001 1011 WAIT
9C {1001 1100 PUSHF
9D |1001 1101 POPF
9E 1001 1110 SAHF
9F - {1001 1111 : LAHF
A0 1010 0000 { ADDR-LO ADDR-HI MOV AL,MEM8
Al 1010 0001 | ADDR-LO ADDR-HI MOV AX,MEM16 -
A2 1010 0010 { ADDR-LO ADDR-HI MOV - MEMS,AL
A3 [1010 0011 | ADDR-LO ADDR-HI MOV MEM16,AL
A4 11010 0100 MOVS DEST-STR8,SRC-STR8
A5 |1010 0101 - MOVS DEST-STR16,SRC-STR16
A6 1010 0110 CMPS DEST-STR8,SRC-STR8
A7 11010 0111 : CMPS DEST-STR16,SRC-STR16 -
A8 |1010 1000 | DATA-8 TEST AL,IMMEDS
A9 1010 1001 | DATA-LO DATA-HI TEST AX,IMMED16
AA 1010 1010 STOS DEST-STR8
AB 1010 1011 STOS DEST-STR16
AC {1010 1100 LODS SRC-STR8
AD 1010 1101 LODS SRC-STR16
AE (1010 1110 SCAS DEST-STR8
AF | 1010 - 1111 : SCAS DEST-STR16
BO |1011 0000 | DATA-8 MOV AL,IMMEDS8
B1 1011 0001 | DATA-8 MOV CL,IMMEDS
B2 1011 0010 { DATA-8 MOV DL,IMMEDS8
B3 1011 1011 {DATA-8 MOV BL,IMMEDS"
B4 * |1011 0100 [ DATA-8 MOV AH,IMMEDS8"
B5 (1011 0101 jDATA-8 MOV CH,IMMED8
B6 1011 0110 | DATA-8 MOV DH,IMMEDS8
B7 (1011 0111 | DATA-8 MOV - BH,IMMEDS
B8 1011 1000 | DATA-LO DATA-HI MOV AX,IMMED16
B9 1011 1001 | DATA-LO DATA-HI MOV " CX,IMMED16
BA 1011 1010 | DATA-LO DATA-HI MOV DX,IMMED16
BB [1011 1011 |DATA-LO DATA-HI MOV BX,IMMED16
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1STBYTE

AEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BC 1011 1100 | DATA-LO DATA-HI MOV SP,IMMED16

BD 1011 1101 | DATA-LO DATA-HI MOV BP,IMMED16

BE 1011 1110 | DATA-LO DATA-HI MOV SI,IMMED16

BF 1011 1111 | DATA-LO DATA-HI MOV DI,IMMED16

Co 1100 0000 (not used)

Cc1 1100 0001 (not used)

C2 1100 0010 | DATA-L.O DATA-HI " RET IMMED16 (intraseg)
C3 1100 0011 RET (intrasegment)
C4 1100 0100 { MOD REG R/M | (DISP-LO),(DISP-HI) LES REG16,MEM16
C5 1100 0101 |[MOD REG R/M | (DISP-LO),(DISP-HI) LDS REG16,MEM16
Ccé 1100 0110 | MOD 000 R/M (DISP-LO),(DISP-HI), MOV MEMS8,IMMEDS

- DATA-8

Cé6 1100 0110 |MOD 001 R/M -(not used)

C6 1100 0110 [ MOD 010 R/M (not used)

3] 1100 0110 { MOD 011 R/M (not used)

Cé 1100 0110 | MOD 100 R/M (not used)

Cé 1100 0110 [MOD 101 R/M (not used)

C6 1100 0110 [MOD 110 R/M (not used)

C6 | 1100 0110 {MOD 111 R/M (not used)

c7 1100 0111 {MOD 000 R/M (DISP-LO),(DISP-HI), MOV MEM16,IMMED16

DATA-LO,DATA-HI

C7 1100 0111 {MOD 001 R/M (not used)

c7 1100 0111 {MOD 010 R/M (not used).

Cc7 1100 0111 [MOD 011 R/M (not used)

c7 1100 - 0111 {MOD 100 R/M (not used)

c7 1100 0111 |[MOD 101 R/M (not used)

Cc7 1100 0111 {MOD 110 R/M (not used)

Cc7 1100 0111 [MOD 111 R/M {not used

Cc8 1100 1000 : (not used)

C9 1100 1001 (not used)

CA 1100 1010 | DATA-LO DATA-HI RET IMMED16 (intersegment)
cB 1100 1011 RET (intersegment)
cC 1100 1100 INT 3

CcD 1100 1101 | DATA-8 INT IMMEDS8

CE 1100 1110 INTO

CF 1100 1111 IRET

Do 1101 0000 | MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG8/MEMS,1
DO 1101 0000 { MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG8/MEMS,1
DO 1101 0000 [MOD 010 R/M (DISP-LO),(DISP-HI) RCL REG8/MEMS,1
DO 1101 0000 { MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG8/MEMS,1
DO 1101 0000 | MOD 100 R/M (DISP-L0O),(DISP-HI) SAL/SHL REG8/MEMS,1
DO 1101 0000 | MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMS,1
DO 1101 0000 [ MOD 110 R/M (not used)

Do 1101 0000 [ MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG8/MEMS,1
D1 1101 0001 | MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,1
D1 1101 0001 { MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG16/MEM16,1
D1 1101 0001 [ MOD 010 R/M (DISP-LO),(DISP-HI) RCL REG16/MEM16,1
D1 1101 0001 | MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG16/MEM16,1
D1 1101 0001 | MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL. REG16/MEM16,1
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Table 4-13. Machine Instruction Decoding Guide (Cont’d:)

1STBYTE
HEX BINARY 1 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMA:\T
D1 1101 0001 | MOD 101 R/M |- (DISP-LO),(DISP-HI) SHR REG16/MEM16,1
D1 1101 0001 {MOD 110 R/M . (not used)
D1 1101 0001 {MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 | MOD QOO R/M | (DISP-LO),(DISP-H!) ROL REG8/MEMS8,CL
D2 1101 0010 |MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG8/MEMS,CL
D2 1101 0010 { MOD 010 R/M (DISP-LO),(DISP-HI) RCL REGB/MEMS,CL
D2 1101-. 0010 | MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG8/MEMS8,CL
D2 1101 0010 | MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS8,CL
D2 1101 0010 |[MOD 101 R/M | (DISP-LO),(DISP-HI) SHR REG8/MEMS,CL
D2 1101 0010 {MOD110R/M (not used) :
D2 1101 0010 ( MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG8/MEMS8,CL
D3 1101 0011 | MOD 000 R/M (DISP-L.0),(DISP-HI) ROL REG16/MEM16,CL
D3 1101 0011 | MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG16/MEM16,CL
D3 1101 0011 | MOD 010 R/M | (DISP-LO),(DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 |MOD 011 R/M | (DISP-LO),(DISP-HI) RCR -REG16/MEM16,CL
D3 1101 0011 | MOD 100 R/M .| (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM16,CL
D3 110t 0011 |[MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG16/MEM16,CL
D3 1101 0011 | MOD 110 R/M (not used) . :
D3 1101 0011 | MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG16/MEM16,CL
D4 1101 0100 { 00001010 ' AAM i
D5 1101 0101 | 00001010 AAD
D6 1101 0110 (not used)
D7 1101 0111 - XLAT "SOURCE-TABLE
D8 1101 1000 { MOD OO0 R/M - .
1IXXX |MOD YYY R/M | (DISP-LO), (DISP-HI) ESC " OPCODE,SQURCE
DF | 1101 1111 {MOD 111 R/M ‘ o ‘
EO 1110 0000 | IP-INC-8 LOOPNE/ SHORT-LABEL
LOOPNZ
E1 1110 0001 [ IP-INC-8 LOOPE/ SHORT-LABEL
LOOPZ
E2 1110 - 0010 | IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 |IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 | DATA-8 IN AL,IMMEDS
ES 1110 0101 | DATA-8 IN AX,IMMEDS -
E6 1110 0110 | DATA-8 ouT AL,JMMEDS
E7 1110 0111 | DATA-8 ouT AX,IMMEDS
E8 1110 1000 | IP-INC-LO IP-INC-HI CALL -.NEAR-PROC
E9 1110 1001 | IP-INC-LO IP-INC-HI - JMP NEAR-LABEL
EA | 1110 1010 |IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB 1110 1011 jIP-INC8 ' . JMP SHORT-LABEL
EC 1110 1100 IN AL,DX
ED 1110 1101 IN AX,DX
EE 1110 1110 ouT AL,DX
EF 1110 1111 ouT AX,DX
FO 1111 0000 - LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 REPNE/REPNZ
F3 1111 0011 ‘REP/REPE/REPZ
F4 1111 0100 HLT
F5 1111 0101 CMC

Mnemonics © Intel
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Table 4-13. Machine Instruction Decoding Guide (Cont’d.)

1ST BYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
Fé 1111 0110 |[MOD OO0 R/M | (DISP-LO),(DISP-HI), TEST REG8/MEM8,IMMEDS
DATA-8

F6 1111 0110 | MOD 001 R/M (not used)

F6 1111 0110 [MOD 010 R/M | (DISP-LO),(DISP-HI) NOT REG8/MEM3

Fé 1111 0110 | MOD 011 R/M. | (DISP-LO),(DISP-HI) NEG REG8/MEM8

F6 1111 0110 [MOD 100 R/M | (DISP-LO),(DISP-HI) MUL REG8/MEMS

F6 1111 0110 [MOD101 R/M | (DISP-LO),{DISP-HI) IMUL REG8/MEM8

Fé 1111 0110 | MOD 110 R/M (DISP-LO),(DISP-H1) DIV REG8/MEMS8

F6 1111, 0110 |MOD 111 R/M (DISP-LO),(DISP-HI) IDIV REG8/MEMS8 )
F7 1111 0111 | MOD 000 R/M (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16

DATA-LO,DATA-HI

F7 1111 0111 |MOD 001 R/M (not used)

F7 1111 0111 {MOD 010 R/M (DISP-LO),(DISP-HY) NOT REG16/MEM16

F7 1111 0111 | MOD 011 R/M (DISP-LO),(DISP-HI) NEG REG16/MEM16

F7 1111 0111 |MOD 100 R/M (DISP-LO),(DISP-HY) MUL REG16/MEM16

F7 1111 0111 [MOD 101 R/M | (DISP-LO),(DISP-H) IMUL REG16/MEM16

F7 1111 0111 [MOD110R/M | (DISP-LO),(DISP-HI) DIV REG16/MEM16

F7 1111 0111 |[MOD 111 R/M (DISP-LO),(DISP-HY) IDIV REG16/MEM16

F8 1111 1000 ' CLC

F9 1111 1001 STC

FA 1111 1010 cul

FB 1111 1011 STI

FC | 1111 1100 CLD

FD | 1111 1101 STD

FE 1111 1110 | MOD 000 R/M (DISP-LO),(DISP-HI) INC REG8/MEMS8

FE 1111 1110 {MOD 001 R/M (DISP-LO),(DISP-H1) DEC REG8/MEMS8

FE | 1111 1110 {MOD 010 R/M (notused) :

FE 1111 1110 |MOD 011 R/M (not used)

FE 1111 1110 | MOD 100 R/M (not used)

FE 1111 1110 |{MOD 101 R/M (not used)

FE | 1111 1110 [ MOD 110 R/M (not used)

FE 1111 1110 [ MOD 111 R/M (not used)

FF 1111 1111 | MOD 000 R/M (DISP-LO),(DISP-HI) INC MEM16

FF 1111 1111 | MOD 001 R/M (DISP-LO),(DISP-H1) DEGC MEM16

FF 1111 1111 |MOD 010 R/M (DISP-LO),(DISP-HY) CALL REG16/MEM16 (intra)
FF 1111 1111 |MOD 011 R/M (DISP-LO),(DISP-HI) CALL MEM186 (intersegment)
FF 1111 1111 |[MOD 100 R/M (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra)
FF 1111 1111 |[MOD 101 R/M (DISP-LO),(DISP-HI) JMP MEM16 (intersegment)
FF 1111 1111 | MOD 110 R/M (DISP-LO),(DISP-H) PUSH MEM16

FF 1111 1111 |[MOD 111 R/M (not used)
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Table 4-14. Machine Instruction Encoding Matrix

Lo . : i ,
Hi 0 1 2 3 4 5 6 T8 9 A B ] 0 3 F
0 ADD ADD ADD ADD - | ADD ADD PUSH POP |- OR OR OR OR OR OR PUSH
bfr/m | wihr/m | btr/m]| wtr/m:| b.ia w,ia ES ES” ibfr/m | wir/m | btr/m | wtrim b.i w.i CS
1 ADC ADC ADC -ADC - ADC ADC PUSH POP SBB sSBB seB SBB SBB S88 PUSH PopP
bir/m [ wir/im | btrim| wtr/m b.i w.i §S SS Ibfe/m jwfr/m| birim | whr/m b.i wi DS DS
2 AND AND AND AND AND AND SEG DAA suB suB /| sus SuB Sul suB SEG DAS
bir/m |whr/m | btr/m| wtr/m |- bi w.i =ES . bfr/m | wir/m | btr/m|wtrim| b w.i =CS
3 XOR XOR |- XOR XO0R XOR XOR SEG AAA | CMP | CMP. | CMP cmp CMP CMP SEG AAS
bir/m [whe/m | btr/m | wtr/m b.i w.i =8§ - bfr/m | wihrim| btr/m | wtr/m b.i Wi =08
4 INC INC INC INC INC INC INC INC DEC DEC DEC DEC DEC DEC DEC .| DEC
AX CX DX BX SP BP Sl sl AX cX DX 8X SP BP Sl Dt
§ | PUSH | PUSH | PUSH | PUSH- | PUSH | PUSH | PUSH | PUSH | POP POP POP POP POP POP POP POP
AX CX DX BX SP BP St DI Sl il

AX CX DX - BX © SP BP

7 B/ | ONB/ | JE/ | INE/ | JBE/ | JNBE/ B T BT VA TV T R
i R I T A I I S R S e I O 3 e I - R R S

8 | Immed | immed | ‘Immed | Immed | TEST TEST XCHG XCHG | MOV | MOV | MOV MoV MOV LEA MOV POP
brim | wr/m | br/im | ise/m.|or/m [ wr/m | bir/m | we/m {bfr/m | whi/m | btr/m | whi/m | snfrim srrim | r/m

8| XCHG | XCHG | XCHG | XCHG | XCHG | XCHG [ XCHG | XCHG CALL
AX oX DX 8x sp 8p St ) caw CwWD WAIT | PUSHF { .POPF SAHF LAHF

I.d
A MOV [ Mov | mov | mMov ' TEST | TEST :
L% (a0 ol AoV | Movs | Movs | cwps | cmps | TEST | TEST | sros | sTos | Lops | LoDS | SCAS: | scas
B| MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV | MOV |. MOV | MoV
i~ AL |i—CL|i—DL|i~BL |i~AH|i—~CH|i—-DH|i—8H|i—AX|i~CX|i~DX|i—-BX|i-5P|i-BP| i~S [i~0Dl
c RET, MOV | MoV RET, | RET | INT | INT
B s | RET | LES | LDS |\ Frm | win/m oSty | 1 | Types | (anyy | 'NTO | 'RET
p | Shik | Smit | Shmt | Shin ‘ ESC | ESC. | (ESC | ESC | ESC | ESC | ESC | EsC
b w | by | wy | AAM | ARD XLAT | 7p 1 2 3 4 5 § 7
E [LOOPNZ/| LO0PZ/ | (oo | soxz | W IN | OUT | OUT | CALL | JMP | JMP- | JMP | IN N | out| our
LOOPNE | LOOPE b W b w d d ld | sid | owb | ww | b | vw
F REP Grpt Grp 1 : Grp2 | Grp2
LOCK rep | RE M| omc | BT S eie | ste |Lou | osmo| oo | s | P2 B2

. where:

mod(Jr/m | 000 001 010 [TK] 100 ] 101 15 110 11
Immed ADD OR ADC | sBB | - AND . [SUB-|. XOR [ cMP
Shift ROL ROR RCL RCR | SHL/SAL | SHR - SAR
Grp 1 TEST — NOT | NEG | MUL [IMUL*[ DV oV ¥
Grp2 INC 0eC [ cALL [ CALL| JmP . | UmMP | PUSH -
id 1,id id .id
b = byte operation m = memory
d = direct r/m = EA is second byte
t = from CPU reg si = short intrasegment
i-= immediate sr = segment register
ia = immed. to accum. t = to CPU reg
id = indirect v = variable .
is = immed. byte, sign ext. w = word operation
| = long ie. intersegment Z = zero
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8086 Instruction Sequence

Figure 4-22 illustrates the internal operation and
bus activity that occur as an 8086 CPU executes a
sequence of instructions. This figure presents the
signals and timing relationships that are impor-
tant in understanding 8086 operation. The follow-
ing discussion is intended to help in the interpreta-
tion of the figure.

Figure 4-22 shows the repeated execution of an
instruction loop. This loop is defined in both
machine code and assembly language by figure
4-21. A loop was chosen both to demonstrate the
effects of a program jump on the queue and to
make the instruction sequence easy to follow. The
program sequence shown was selected for several
reasons. First, consisting of seven instructions
and 16 bytes, the sequence is typical of the tight
loops found in many application programs.
Second, this particular sequence contains several
short, fast-executing - instructions that
demonstrate both the effect of the queue on CPU
performance and the interaction between the exe-
cution unit (EU) fetching code from the queue
and the bus interface unit (BIU) filling the queue
and performing the requested bus cycles. Last,
for the purpose of this discussion, code, stack,
and memory data references were arranged to be
aligned on even word boundaries.

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, OF802H B802F8
PUSH AX 50 . .
MOV CX, BX 8BCB
MOV DX, CX 8BD1
ADD AX, [S1] 0304
ADD Si, 8086H 81C68680
JMP § 214 EBFQ

Figure 4-21. Instruction Loop Sequence

Figure 4-22 can be more easily interpreted- by
keeping the following guidelines in mind.

®  The queue status lines (QS0, QS1) are the key
indicators of EU activity.

e Status lines S2 through SO are the main
indicators of 8086/8088 bus activity.

e . Interaction of the BIU and EU is via the
queue for prefetched opcodes and via the EU
for requested bus cycles for data operands.

Keeping these guidelines in mind, the instruction
sequence depicted in figure 4-22 can be described
as follows. Starting the loop arbitrarily in clock
cycle 1 with the queue reinitialization that occurs
as part of the JMP instruction, JMP instruction
execution is completed by the EU, while the BIU
performs an opcode fetch to begin refilling the
queue. (Note that a shorthand notation has been
used in the figure to represent the two queue
status lines and the three status lines—active
periods on any of these lines are noted and the
binary value of the lines is indicated above each
active region.)

In clock cycle 8, the queue status lines indicate
that the first byte of the MOV immediate instruc-
tion has been removed from the queue (one clock
cycle after it was placed there by the BIU fetch)
and that execution of this instruction has begun.
The second byte of this instruction is taken from
the queue in clock cycle 10 and then, in clock
cycle 12, the EU pauses to wait one clock cycle for
the BIU’s second opcode fetch to be completed
and for the third byte of the MOV immediate
instruction to be available for execution
(remember the queue status lines indicate queue
activity that has occurred in the previous clock
cycle). ‘

Clock cycle 13 begins the execution of the PUSH
AX instruction, and in clock cycle 15, the BIU
begins the fourth opcode fetch. The BIU finishes
the fourth fetch in clock cycle 18 and prepares for
another fetch when it receives a request from the
EU for a memory write (the stack push). Instead
of completing the opcode fetch and forcing the
EU to wait four additional clock cycles, the BIU
immediately aborts the fetch cycle (resulting in
two idle clock cycles (Ty) in clock cycles 19 and
20) and performs the required memory write. This
interaction between the EU and BIU results in a
single clock extension to the execution time of the
PUSH' AX instruction, the maximum delay that
can occur in response to an EU bus cycle request.

Execution continues in clock cycle 24 with the
execution of - back-to-back, register-to-register
MOV instructions. The first of these instructions
takes full advantage of the prefetched opcode to
complete this operation in two clock cycles. The
second MOV instruction, however, depletes the
queue and requires two additional clock cycles
(clock cycles 28 and 29).
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Figure 4-22. Sample Instruction Sequence Execution

In clock cycle 30, the ADD memory indirect to
AX instruction begins. In the time required to
execute this instruction, the BIU completes two
opcode fetch cycles and a memory read and
begins a fourth opcode fetch cycle. Note that in
the case of the memory read, the EU’s request for
a bus cycle occurs at a point in the BIU fetch cycle
where it can be incorporated directly (idle states
are not required and no EU delay is imposed).

In clock cycle 44, the EU begins the ADD
immediate instruction, taking four bytes from the
queue and completing instruction execution in
four clock cycles. Also during this time, the BIU
senses a full queue in clock cycle 45 and enters a
series of bus idle states (five or six bytes constitute
-a full queue in the 8086; the BIU waits until it can
fetch a full word of opcode before accessing the
bus).

At clock cycle 47, the BIU again begins a bus
cycle sequence, one that is destined to be an
“overfetch’ since the EU is executing a JMP
instruction. As part of the JMP instruction, the
queue reinitialization (which began the instruc-
tion sequence) occurs.

The entire sequence of instructions has taken 55
clock cycles. Eighteen opcode bytes were fetched,
one word memory read occurred, and one word
stack write was performed.

This example was, by design, partially bus limited
and indicates the types of EU and BIU interaction
that can occur in this situation. Most application

code sequences, however, use a higher proportion
of more complex, longer-executing instructions
and addressing modes, and therefore tend to be
execution limited. In this case, less BIU-EU
interaction is required, the queue more often is
full, and more idle states occur on the bus.

The previous example sequence can be easily
extended to incorporate wait states in the bus
access cycles. In the case of a single wait state,
each bus cycle would be lengthened to five clock
cycles with a wait state (Ty) inserted between
every T3 and Ty state of the bus cycle. As a first
approximation, -the instruction sequence exection
time would appear to be lengthened by 10 clock
cycles, one cycle for each useful read or write bus
cycle that occurs. Actually, this approximation
for the number of wait states inserted is incorrect
since the queue can compensate for wait states by
making use of previously idle bus time. For the
example sequence, this compensation reduced the
actual execution time by one wait state, and the
sequence was completed in 64 clock cycles, one
less than the approximated 65 clock cycles.

4.3 8089 1/0 Processor

The Intel® 8089 1/Q Processor (IOP) combines
the functions of a DMA controller with the pro-
cessing capabilities of a microprocessor. In addi-
tion to the normal DMA function of transferring
data, the 8089 is capable of dynamically
translating and comparing the data as it is
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Figure 4-22. Sample Instruction Seqlience Execution’

transferred and of supporting a number of ter-
minate conditions including byte count expired,
data compare or miscompare and the occurrence
of an external event. The 8089 contains two
separate DMA channels, each with its own
register set. Depending on the established
priorities (both inherent and program deter-
mined), the two channels can alternate
(interleave) their respective operations.

Designed expressly to relieve the 8086 or. 8088
CPU of the overhead associated with I/0 opera-
tions, the 8089, when configured in the remote
mode, can perform a complete 1/0 task while the
CPU is performing data processing tasks. The
8089, when it has completed its I/0 task, can then
interrupt the CPU.

Transfer flexibility is an integral part of the
8089’s design. In addition to routine transfers
between an 1/0 peripheral and memory, transfers
can be performed between two I/0 devices or
between two areas of memory. Transfers between
dissimilar bus widths are automatically handled
by the 8089. When data is transferred from an
8-bit peripheral bus to a 16-bit memory bus, the
8089 reads two .bytes from the peripheral,
assembles the bytes into a 16-bit word and then
writes the single word to the addressed memory
location. Also, both 8- and 16-bit peripherals can
reside on the same (16-bit) bus; byte transfers are
performed with the 8-bit peripheral, and word
transfers are performed with the 16-bit
peripheral. o

System Configuration

The 8089 can be implemented in one of two
system configurations: a ‘‘local’’ mode in which
the 8089 shares the system bus with an 8086 or
8088 CPU and a ‘‘remote” mode in which the
8089 has exclusive access to its own dedicated bus
as well as access to the system bus. Note that in
either the local or remote mode, the 8089 can
address a full megabyte of system memory and
64Kk bytes of I/0 space.

Local Mode

In the local mode, the 8089 acts as a slave to an
8086 or 8088 CPU that is operating in the max-
imum mode. In this configuration, the 8089
shares the system address latches, data
transceivers and bus controller with the CPU as
shown in figure 4-23.

Since the IOP and CPU share the system bus,
either the IOP or the CPU will have access to the
bus at any one time. When one processor. is using
the bus, the other processor. floats ‘its
address/data and control lines.. Bus access
between the IOP and CPU is determined through
the request/grant function. Recalling the CPU’s
request/grant sequence, the IOP requests the bus
from the CPU, the CPU grants the bus to the
IOP, and the IOP relinquishes the bus to the CPU
when its operation is complete. Remember that
the CPU cannot request the bus from the IOP
(the CPU is only capable of granting the bus and
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Figure 4-23. Typical 8088/8089 Local Mode Configuration

must wait for the IOP to release the bus). Also,
since the request/grant pulse exchange must be
synchronized, both the CPU and IOP must be
referenced to the same clock signal.

The 8089 IOP, when used in the local mode, can
be added to an 8086 or 8088 maximum mode con-
figuration with little affect on component count
(channel attention decoding logic as required) and
offers the benefits of intelligent DMA
(scan/match, translate, variable termination con-
ditions), modular programming in a full
megabyte of memory address space and a set of
optimized I/0 instructions that are unavailable to
the 8086 and 8088 CPUs. The major disadvantage
to the local configuration is that since the system
bus is shared, bus contention always exists
between the CPU and IOP. The use of the bus
load limit field in the channel control word can
help reduce IOP bus access during task block pro-
gram execution (bus load limiting has no affect on
DMA transfers) -although, for 1/0 intensive
systems, the remote mode should be considered.

Remote Mode

The 8089, when ‘used in the ‘remote mode, pro-
vides a multiprocessor system with true parallel
processing. In this mode, the 8089 has a separate
(local) bus and memory for 1/0 peripheral com-
munications, and the system bus is completely
isolated from the I/0 peripheral(s). Accordingly,
170 transfers between an I/O peripheral and the
IOP’s local memory can occur simultaneously
with CPU operations on the system bus.

As shown in figure 4-24, to interface the 8089 to
the system bus, data transceivers and address
latches are used to separate the: IOP’s local bus
from the. system bus, an 8288 Bus Controller is
used to-generate the bus control signals for both
the local and system buses as well as to govern the
operation of the transceivers/latches, and an 8289
Bus Arbiter is used to control access to the system
bus (each processor in the system would have an
associated 8289 Bus Arbiter). To interface the
8089 to its local bus, another set of address
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Figure 4-24. Typical 8089 Remote Mode Configuration

latches is required (unless MCS-85™ multiplexed
address components are exclusively interfaced)
and, depending on the bus loading demands, one
(8-bit bus) or two (16-bit bus) data transceivers
would be used.

In the remote mode, the IOP’s local bus is treated
as I70 space (up to 64k bytes), and the system bus
is treated as memory space (1 megabyte). The
8288 Bus Controller’s I/0O command outputs con-
trol the local (I/0) bus, and its memory command
outputs control the system (memory) bus. The
8289 Bus Arbiter, which is operated in its IOB
(170 peripheral bus) mode, also decodes the
10P’s S2 through SO status outputs. In this mode,
the 8289 will not request the multimaster system
bus when the IOP indicates an operation on its
local bus. If the IOP’s bus arbiter currently has
access to the system bus, the CPU’s arbiter (or
any other arbiter in the system) can acquire use of
the system bus at this time (a bus arbiter main-
tains bus access until another arbiter requests the
bus).

Bus Operation

The 8089 utilizes the same bus structure as an
8086 or 8088 CPU that is configured in the max-
imum mode and performs a bus cycle only on de-
mand (e.g., to fetch an instruction during task
block execution or to perform a data transfer).
The bus cycle itself is identical to an 8086 or 8088
CPU’s bus cycle in that all cycles consist of four
T-states and use the same time-multiplexing
technique of the addressdata lines. As shown in
the following timing diagrams, the address (and
ALE signal) is output during state T for either a
read or write cycle. Depending on the type of
cycle indicated, the address/data lines are floated
during state Ty for a read cycle (figure 4-25) or
data is output on these lines during a write cycle
(figure 4-26). During state T3, write data is main-
tained or read data is sampled, and the busy cycle
is concluded in state Ty4.

Since the 8089 is capable of transferring data to or
from both 8-bit and 16-bit buses, when an 8-bit
physical bus is specified (bus width is specified
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Figure 4-25. Read Bus Cycle (8-Bit Bus)
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Figure 4-26. Write Bus Cycle (16-Bit Bus)
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during the initialization sequence), the address
present on the AD15 through AD8 address/data
lines is maintained for the entire bus cycle as
shown in figure 4-25 and, unless added drive
capability is required, the associated address latch
can be eliminated. An 8-bit data bus is compatible
with the 8088 CPU and with the MCS-85™
multiplexed - address peripherals (8155, 8185,
etc.).

The 8089 operates identically to the 8086 CPU
with respect to the use of the low- and high-order
halves of the data bus. Table 4-14 defines the data
bus use for the various combinations of bus width
and address boundary.

The S2 through SO status lines define the bus cycle
to be performed. These lines are used by an 8288
Bus Controller to generate all memory and 1/0
command and control signals, and are decoded
according to table 4-15.

Table 4-14. Data Bus Usage

Physical Bus Width?
Logica' Address
Bus Width' Boundary g 16
Byte Transfer Word Transfer
Even AD7-AD0=DATA | AD7-AD0=DATA NJA
(BHE not used) (BHE high)
8
AD7-AD0 = DATA AD15-AD8 = DATA
Odd (BHE not used) (BHE low) N/A
Even egal AD7-AD0 = DATA | AD15-ADO = DATA
9 (BHE high) (BFE low)
16
odd illegal AD‘?%BG\A%ATA N/A

Notes:

1. Logical bus width is specified by the WID instruction prior to the DMA transfer.
2. Physical bus width is specified when the 8089 is initialized. '

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans-
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the second byte is the high--
order byte on the low-order data bus (AD7-AD0). The 8089 automatically assembles the two bytes in

their proper order.

Table 4-15. Bus Cycle Decoding

Status Output . Bus Controller
% & | 50 Bus Cycle Indicated Command Output
0 0 0 Instruction fetch from 1/O space INTA

0 0 1 Dataread from |/O space __ I0RC

0 1 0 Data write to 1/O space IOWC, AIOWC

0 1 1 Not used None

1 0 0 Instruction fetch from system memory MRDC

1 0 1 Data read from system memory MRDC

1 1 0 Data write to system memory MWTC, AMWC

1 1 1 Passive ‘ None
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Note that the 8089 indicates an instruction fetch
from 1/0 space as a status of zero (S2, S1 and SO
equal 0): Since the 8288 Bus Controller decodes
an input status value of zero as ar interrupt
acknowledge bus cycle, the bus controller’s INTA
output must be OR’ed with its IORC output to
permit. fetching of task block instructions from
local *-8089 ‘memory-(remote - configuration) or
system I/0 -space- (local and remote
configurations). : o

The S2 through SO status lines become active in

state T4 if a subsequent bus cycle is to be per- :

~formed. These lines are set to the passive state (all
“‘ones”’) in the state immediately prior to state Ty
-of the current bus cycle (state T3 or Ty,) and are
floated when the 8089 does not have access to the
bus. . . . .

- The S6 through S3 status lines are multiplexed
‘with the high-order address bits (A19-A16) and,
“accordingly, become valid in state T, of the bus
cycle. The S4 and S3 status lines reflect.the type of

. bus cycle being performed on the corresponding .

: channel as indicated in table 4-16.

Table 4-16. Type of Cycle Decoding

Status Output ) -

sS4 S3 Type of_CycIke_

0o 0 | DMAonChannel1

0 1 DMA on Channel 2

1 0 Non-DMA'on Channel1
1 1 Non-DMA on Channel 2

The S6 and S5 status 'lines are always ““‘1”’ on the

8089. Since these lines are not both 1’ on the

other processors in the 8086 famlly (S6'is always
““0’> on the 8086 and 8088 CPUs), these status
lines can be used as a ‘‘signature’” in a
multiprocessor environment to identify the type
.of processor performing the bus cycle. ..

‘The 8089 includes the same provision as do the
8086 and 8088 CPUs for the insertion of wait
states (Ty) in a bus cycle when the associated
memory or 1/0 device cannot respond within the
‘alloted time interval or when, in the remote mode,
‘the 8089 must wait for access to the system bus.
An 8284 Clock Generator/Driver is used to. con-
‘trol the insertion of wait states which, when
;requlred are inserted between states T3 and Ty4.
‘The actual insertion of wait states is accomplished
by deactivating one of the 8284’s RDY inputs

(RDY1 or-RDY2). Either of these inputs, when
enabled by its corresponding. AENI1 or AEN2
input, can be deactivated directly by the memory
or I/0 device when it must extend the 8089’s bus
cycle (when the addressed: device:is not ready to
present or.accept data). The 8284’s READY out-
put, which is synchronized to:the CLK signal, is
directly connected to the 8089’s READY input:
As shown in figure 4-27, when the addressed
device requires one or more wait states to be
inserted into a bus cycle, it deactivates the 8284°s
RDY input prior to the end of state T5. The

. READY output from the 8284 is subsequently

deactivated at the end of state Ty which causes the
8089 to insert wait states following state T3. To
exit-the wait state, the device activates the 8284’s
RDY input which causes the READY input to the
8089 to go active on the next clock cycle and

. allows the 8089 to enter state Ty4.

| - ONE BUS CYCL !
T | T2 | T3 ™w W T4

CLK
TRIVCL® —| |

TRIVCL —»| fs— —| |+—TCLRIX"

RDY INPUT

READY
OUTPUT

READY NOT READY READY

*REFER TO THE 8284 CLOCK GENERATORIDHIVER DATA SHEET IN APPENDIX B FOR
TIMING INFORMATION

Figure 4-27. Walt State Timing

“Periods of inactivity canm occur between - bus

cycles. These inactive periods are referred to as
idle states (T) and, as with the 8086 and 8088

'CPUs, can result from the execution of a “‘long”’
. instruction or the loss of the bus to ano_ther_pro—

cessor during task block instruction execution.
Additionally, the 8089 can experience idle states
when it is in the DMA mode and it is waiting for a
DMA request from the addressed 1/0 device or
when the bus load limit (BLL) function is enabled
for a channel performing task block mstructlon
execution and the other channel is idle.

' Initialization

Initialization of the IOP is generally the respon-

- sibility of the host processor which,:as stated in
.Chapter 3, prepares the communications data

structure in shared memory. Initialization of the
1OP itself begins with the activation of its RESET

“input. This input (originating typically from an
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8284 Clock Generator/Driver) must be held active
for at least five clock cycles to allow the 8089’s
internal reset sequence to be completed. Note that
like the 8086 and 8088 CPUs, the RESET input
must be held active for at least 50 microseconds
when power is first applied. Following the reset
interval, the host processor signals the IOP to
begin its initialization sequence by activating the
8089’s CA (Channel Attention) input. The 8089
will not recognize a pulse at its CA input until one
clock cycle after the RESET input returns to an
inactive level. Note that the minimum width for a
CA pulse is one clock cycle and that this pulse
may go active prior to RESET returning to an
inactive level provided that the negative-going,
trailing-edge of the CA pulse does not occur prior
to one clock cycle after RESET goes inactive.
Figure 4-28 illustrates the timing for this portlon
of the initialization sequence.

MUST BE ACTIVE
RESET FOR FIVE CLOCK \

CYCLES
|<—1 CLK MIN ..|

J RNea
___________ ¥ — &m RECOGNIZED

Figure 4-28. RESET-CA Initialization Timing

Coincident with the trailing edge of the first
CA pulse following reset, the 8089 samples its
SEL (Select) input from the host processor to
determine master/slave  status for its
request/grant circuity. If: the SEL input is low,
the 8089 is designated a ‘‘master,”’ and if the SEL
input is high, the 8089 is designated a ‘‘slave.”’ As
a master, the 8089 assumes that it has ‘the bus
initially, and it will subsequently grant the bus to
a requesting-slave when the bus becomes available
(i.e., the 8089 will respond to a ‘‘request’’ pulse
on its RQ/GT line with a “‘grant’’ pulse). A single
8089 in the remote configuration (or one of two
8089s in a remote configuration)- would be
designated a master. As a slave, the 8089 can only
request the bus from a master processor (i.e., the
8089 initiates the request/grant sequence by out-
putting a ‘‘request’’ pulse on its RQ/GT line). An
8089 that shares a bus with an 8086 or 8088 (or
one of two 8089s in a remote configuration)
would be designated a slave. Note that since the
8086 and 8088 CPUs can grant the bus only in
response to a request, whenever an 8086 or 8088

and an 8089 share a common bus, the 8089 must
be de51gnated the slave. Also, when the RQ/GT
line is not used (i.e., a single 8089 in the remote
configuration), the 8089 must be designated a
master. :

In addition to. determining master/slave status,
the CA pulse also causes the 8089 to begin execu-
tion of its internal ROM initialization sequence.
Note that since the 8089 must have access to the
system bus in order to perform this sequence, the
8089 immediately initiates a request/grant
sequence (if designated a slave) and, if required,
then requests the bus through the 8289 Arbiter.
(If designated a master, the 8089 requests the bus
through the 8289 Arbiter.) In the execution of the
initialization sequence, the 8089 first fetches the
SYSBUS byte from location FFFF6H. The W bit
(bit 0) of this byte specifies the physical bus width
of the system bus. Depending on the bus width
specified, the 8089 then fetches the address of the
system configuration block (SCB) contained in
locations FFFF8H through FFFFBH in either two
bus cycles (16-bit bus, W bit equal 1) or four bus
cycles (8-bit bus, W bit equal 0). The SCB offset
and ‘segment address values fetched are combined
into a 20-bit physical address that is stored in an
internal register. Using this address, the 8089 next
fetches the system operation command (SOC)
byte. As explained in Chapter 3; this byte
specifies both the request/grant operational mode
(R bit) and the physical width of the 1/0 bus (I
bit). After reading the SOC byte, the 8089 fetches
the ‘channel control block (CB) offset and- seg-
ment address values. These values 'are combined
into a 20-bit physical address and are stored in
another internal register. To inform the host CPU
that it has completed the initialization sequence,
the 8089 clears the Channel 1 Busy flag in the
channel control block by writing an all ‘‘zeroes”
byteto CB + 1.

After the IOP has been initialized, -the system
configuration block may be altered in order:to in-
itializc another IOP. Once an IOP has been in-
itialized, its channel control block in system
memory cannot be moved since the CB address,
which is mternally stored by the IOP durmg the
initialization sequence, is automatically accessed
on every subsequent CA pulse.
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As previously stated, the generation of the CA
and SEL inputs to the IOP are the responsibility
of the host CPU. Typically, these signals result
from the CPU’s execution of an 1/0 write
instruction to one of two adjacent 170 ports (1/0
port addresses that only differ by A0). Figure 4-29
illustrates a simple decoding circuit that could be
used to generate the CA and SEL signals. Note
that by qualifying the CA output with IOWC, the
SEL output, since it is latched for the entire I/O
bus cycle, is guaranteed to be stable on the trailing
edge of the CA pulse.

A7
As
As
Ag
A3
A2

Aq

bl

TOWC -
Ao

PORT FC=CHANNEL 1 CA
PORT FD =CHANNEL 2 CA

Figure 4-29. Channel Attention Decoding Circuit

170 Dispatching

During normal operation, the 1/0O supervisory
program running in the host CPU will receive a
request to perform a specific I/0O operation on
one of the 8089’s channels. In response to this
request, the supervisory program will typically
perform the following sequence of operations:

Check the availability of the. specified
channel by examining the channel’s busy flag
in the Channel Control Block. If it is possible
for another processor to access the channel, a
semaphore operation (implemented by a
locked XCHG instruction) is used to check
channel availability.

Load the variable parameters required for
the intended operation into the channel’s
parameter block.

Load the channel command word (CCW)
‘into the channel control block.

Establish the neéessary linkages by writing
the starting address of the channel program
(task block) in the first four bytes of the

parameter block and writing the address of
the parameter block in the channel control
block. ) i

Issue a channel attention (CA)
specified channel.

to the

In response to the CA, the 8089 interrupts any
current activity at its first opportunity (see *‘Con-
current Channel Operation”’ in section 3.2) and
begins execution of an internal instruction
sequence that fetches and decodes the channel
command word (CCW) and then performs the
operation indicated (i.e., start, halt or continue
channel program execution).

If the CCW specifies start channel program (start
task block -~ execution), the address of the
parameter block is fetched from the channel
control block, the address of the first channel
program instruction (contained in the first four
bytes of the parameter block) is fetched and then
loaded into the TP (task pointer) register and,
finally, task block execution is initiated from
either system or 170 space. Task block execution
continues, subject to the activity on the other
channel as described in ‘‘Concurrent Channel
Operation,” until a XFER instruction is
executed. Following execution of this instruction,
the next sequential channel program instruction is
executed before the channel enters the DMA
transfer mode.

If the CCW specifies halt channel, the current
operation on the specified channel is halted. If the
channel is performing task block execution (either
chained or not chained), channel operation is
stopped at an instruction boundary, and if the
channel is performing a DMA transfer, channel
operation is stopped at a DMA transfer cycle
boundary. Note that a channel will not stop a
locked DMA transfer until the operation is com-
pleted. There are two unique halt channel com-
mands. One command simply halts the channel
and clears the busy flag in the channel control
block. This command is used when the halted
operation is to be discarded. The other command
halts the channel, saves the task pointer and pro-
gram status word (PSW) byte, and clears the busy
flag. This command is used when the halted
operation is to be resumed. Note that this halt
command will not affect the integrity of resumed
task block. execution or a memory-to-memory
DMA transfer, but could affect the integrity of a
synchronized DMA transfer (a DMA request
occuring while the channel is halted could be
missed).

Mnemenics © Intel, 1979
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If the CCW specifies continue channel, an opera-
tion that has been previously halted is resumed
(and the busy flag is set). Since this command
restores the task pointer and PSW, it should be
used only if the task pointer and PSW have been
saved by a previous halt command.

Table 4-17 outlines the various CCW command
execution times. Note that the times listed in the
table for the halt commands do not include the
time required to complete any current channel
activity when the channel attention is received
(completion of the current DMA transfer cycle or
task block instruction).

DMA Transf‘ers

The number of bytes transferred during a single
DMA cycle is determined by both the source and
destination logical bus widths as well as by the

address boundary (odd or even address). The
8089 performs DMA transfers between dissimilar
bus widths by assembling bytes or disassembling
words in its: internal assembly ‘register file. As
explained in Chapter 3, the DMA source and
destination bus widths are defined by the execu-
tion of a WID instruction during task block
(channel command) execution. Note that the bus
widths specified remain in force until changed by
a subsequent WID-instruction. Table 4-18 defines
the various byte (B) -and word. (W)
source/destination transfer combinations based
on address boundary and bus width specified. -

The 8089 additionally optimizes bus accesses dur-
ing ~transfers between dissimilar ‘bus widths
whenever possible. When either the source or
destination is--a 16-bit memory bus (auto-
incrementing) that is initially aligned on an odd

Table 4-17. CCW Command Execution Times

CCW Command

Minimum Time*

Maximum Time**

CANOP
CA Halt (no save)
CA Halt (with save)
CA Start (memory)
CA Start (1/0)
CA Continue

48 + 2n clocks
48 + 2n clocks
94 + 5nclocks
108 + 6n clocks
96 + 5n clocks
95 + 5n ¢locks

48 + 2n c¢locks
48 + 2nclocks
100 + 6n clocks
124 + 10n clocks
108 + 8n clocks
103 + 6n clocks

Notes:
n isthe number of wait states per bus cycle.

* Minimum time occurs when both the channel control block and parameter block addresses are aligned on
an even address boundary and a 16-bit bus is used.

** Maximum time occurs when both the channel control block and parameter block addresses are aligned
on an odd address boundary on a 16-bit bus or when an 8-bit bus is used.

Table 4-18. DMA Assembly Register Operation

Address Boundary

Logical Bus Width
(Source — Destination)

(Source — Destination)
88 8—>16 16—>8 16 — 16
Even — Even B—B B/IB—-W W-—-8/B W-—-W
Even - Odd BB B—B W-B/B | W-=B/B
Odd — Even B—B B/IB->W B—-B B/B—-W
Odd » Odd B—B B—-B B-»B B—~B

4-47
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address boundary (causing the first transfer cycle
to be byte-to-byte), following the first transfer
cycle, the memory address will be aligned on an
even -address -boundary, and word transfers will
subsequently .occur. For example, when perform-
ing a memory-to-port transfer-from a 16-bit bus
to-an 8-bit bus with the source beginning on an
odd address boundary, the first transfer cycle will
be byte-to-byte (B — B) as indicated in table 4-18,
but subsequent transfers will be word-to-
byte/byte (W — B/B).

All DMA transfer:-cycles consist of at least two
bus cycles; one bus cycle to fetch (read) the data
form the source into the IOP, and one bus cycle
to:store (write) the data previously fetched from
the IOP ‘into-the ‘destination. Note that in all
transfers, the data passes through the IOP to
allow mask/compare and translate operations to
be optionally performed during the transfer as
well as to allow the data to be assembled or
disassembled.

The IOP performs DMA transfers in.one of three
modes: unsynchronized, source synchronized or
destination synchronized (the transfer mode is
specified in the channel control register). The un-
synchronized mode is used when both the source
and destination devices do not provide a data re-
quest (DRQ) signal to the IOP as in the case of a
memory-to-memory transfer. In the synchronized
transfer modes, the source (source synchronized)
or destination (destination synchronized) device
‘injtiates the transfer cycle by activating the IOP’s
DRQI1 (channel 1) or DRQ2 (channel 2) input.

The DRQ input is asynchronous and usually
originates from an I/0 device controller rather
than from a memory circuit. This input is latched
on the positive transition of the clock (CLK)
signal and therefore must remain active for more
than one clock . period (more .-than 200
nanoseconds when usmg a 5 MHz clock) in order
to guarantee that it is recognized..

During state Ty of the associated fetch bus cycle
(source synchronized) or. store bus cycle (destina-
tion synchronized), the IOP outputs the address
of the 170 device (the port address). This address
must be decoded (by external circuitry) to
generate the DMA acknowledge (DACK) signal
to the I/0. controller as the response to the con-
troller’s DMA request. An 170 controller will
typically use DACK as a conditional input for the
removal of DRQ. (After receipt of the DACK
signal, most Intel peripheral controllers deac-
tivate DRQ following receipt of the correspon-
ding read or write signal.) Figures 4-30 and 4-31
illustrate the DRQ/DACK timing for both source
synchronized (i.e., port-to-memory) and destina-
tion synchronized (i.e., memory-to-port)
transfers.

Table 4-19 defines the DMA transfer cycles in
terms of the number of bus and clock cycles re-
quired. Note that the number of clocks required
to complete a transfer cycle does not take into ac-
count the effects of possible concurrent opera-
tions on the other channel or wait states within
any of the bus cycles. o

I FETCH BUS CYCLE

CYCLE: |
:-STORE BUS CYCLE

[m jm T o [ e Tt T
ok \

2IDLE 4 IDLE 5 IDLE

CLOCKS' |~ CLOCKS' ™ I~ cLOCKS'™

DRQ?
{FROM 1/0 DEVICE)

DACK
(DECODED {0 ADDRESS) ' VALID I}Q ADDRESS PRESENT \

NOTES:

DRQ HOLD
FROM READ I

et e e e

DRQ FOR NEXT TRANSFER CYCLE

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT
TRANSFER CYCLE BEGINS. IF DRQ IS RECEIVED PRIOR TO STATE T4 OF THE CURRENT
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE

- CURRENT STORE CYCLE.

2. IF_THE 8089 IS SOLE WHEN DRQ IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED.

Figure 4-30. Source Synchronized Transfer Cycle
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T CYCLE 1 TRANSFER CYCLE 2

|OLE
+—— STORE BUS CYCLE { ——|=~--——FETCH BUS CYCLE 2*—|CLOCKS |*— STORE BUS CYCLE 2 ~——|

| T2 | T3 | T4 | T2 | T3 | T4

«———FETCH 8US CYCLE t'—
|’ T2 ‘ T3 | Ta

T4 T

T

DRQ HOLD
FROM WRITE . CLOCKS’® CLOCKS’

-2 DLE 41DLE 5 IDLE CLOCKS? e

.DRO* \§ l' DRQ FOR NEXT TRANSFER CYCLE ' l'
(FROM 1/0 DEVICE) &\ L
DACK ’ \
(DECODED /0 ADDRESS) ’ VALID /O ADDRESS PRESENT ~ )

NOTES: 1. FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK

INSTRUCTION IS EXECUTED.

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1.

3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS
CYCLE 2 BEGINS. IF DRQ IS RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE1
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS

4. IF THE 8089 IS IDLE WHEN DRQ IS RECOGNIZED, FIVE IDLE CLOCK CVCLES OCCUR
BEFORE THE ASSQCIATED STQRE BUS CYCLE IS lNlYlATED-

Figure 4-31. Destination Synchronized Transfer Cycle

Table 4-19. DMA Transfer Cycles

Transfer Mode

Logical Bus Width
Unsynchronized Source Synchronized Destination Synchronized
Source|Destination Bus Cycles Total Bus Cycles Total! Bus Cycles Total'
Required Clocks Required Clocks Required Clocks
8 8 2 (1 fetch, 1 store)| - 8 2 (1 fetch, 1 store) 82 2 (1 fetch, 1 store) 8:
8 B [ K 3(2fetch,1store)| 12 3(2fetch, 1 store)| 16¢ 3(2fetch, 1 store)| 12
16° 8 3(1fetch, 2store)| 12 3(1fetch, 2 store)| 12 3(1 fetch, 2 store)| 16¢
16° 163 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8
Notes:

1. The ““Total Clocks Required”’ does not include wait states. One clock cycle per wait state must be
added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the
first fetch cycle of any memory-to-memory transfer requires seven clock cycies).

2.  When performing a translate operation, one additional 7-clock bus cycle must be added to the values
specified in the table.

3.  Word transfers in the table assume an even address word boundary. Word transfers to or from odd
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock
requirements for byte-to-byte transfers.

4, Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between

dissimilar logical bus widths) insert four idie clock cycles between the two synchronized bus cycles
to allow additional time for the synchronzing device to remove its initial DMA request.
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DACK latency is defined as the time required for
the 8089 to acknowledge, by .outputting the
device’s corresponding port address, a.- DMA
request at its DRQ input. This response latency is
dependent on a number of factors including the
transfer cycle being performed, activity on the
other channel, memory address boundaries, wait
states present in either bus cycle and bus arbitra-
tion times.

Generally, when the other channel is idle,. the’

maximum DACK latency is five clock cycles (1
microsecond at 5 MHz), excluding wait states and
bus arbitration times. An exception occurs when

performing a word transfer to or from an’odd.

memory address boundary. This operation, since
two store (source synchronized) or two fetch
(destination synchronized) bus cycles are required
to access memory, has a maximum possible laten-
¢y of nine clock cycles. When the other channel is
performing DMA transfers of equal priority
(“‘P’’ bits equal), interleaving occurs at bus cycle
boundaries, and the maximum latency is either
nine clock cycles when the other channel is per-

forming a normal 4-clock fetch or store bus cycle.

or twelve clock cycles when the other channel is
performing the first fetch cycle of a memory-to-
memory transfer. If the other channel is perform-

ing ‘“‘chained’’ task block instruction execution of .
equal priority, maximum latency can be as high-as:

12 clock cycles (channel command instruction
execution is interrupted at machine cycle boun-

daries which range from two to elght clock

cycles).

DMA Termination

As stated in Chapter 3, a channel can exit the
DMA transfer mode (and return to task block
execution) on any of the followmg terminate
conditions: :

*  Single cycle transfer

*  Bytecount expired

*  Mask/compare match or mismatch

*  External event

The terminate conditions are specified by .in-

dividual fields in the channel control register.
More than one terminate condition can be

specified for a transfer (e.g., a transfer can be ter- *

minated when a specific byte count is reached or
on the occurrence of an external event). When

more than one terminate condition is possible,
displacements (which are added to the task
pointer register value) are specified to cause task
block execution to resume at a unique entry point
for each condition. Three reentry points are
available: TP, TP + 4 and TP + 8. The time inter-
val between the occurrence of a terminate condi-
tion and the resumption of task block-execution is
12 clock cycles for reentry point TP and 15 clock
cycles for reentry points TP + 4 and TP + 8.

Peripheral Interfacihg

When interfacing a peripheral to an 8-bit physical
data bus, the 8089 uses only the lower half of the
address/data lines (AD7-ADO) as the bidirec-
tional data bus, and the upper half of the ad-
dress/data lines (ADI15-AD8) maintain address
information for the entire bus cycle. Consequent-
ly, with this bus configuration, only one octal
latch (e.g., an Intel® 8282/83 Octal Latch) is re-
quired since only the lower half of the ad-
dress/data lines is time-multiplexed (unless the
address bus requires the increased current drive
capability and capacitive load immunity provided
by the latch).

When interfacing a peripheral to a 16-bit data
bus, both the lower and upper halves of the ad-
dress/data lines are time-multipelxed, and two oc-
tal latches are required. Note that unlike the 8086
and 8088 CPUs, the 8089 does not time-multiplex

"BHE (this signal is valid for the entire bus cycle).
Both 8- and 16-bit peripherals can be interfaced to

a 16-bit bus. An 8-bit peripheral can be connected

- to either the upper or lower half of the bus. An 8-

bit peripheral on the lower half of the bus must
use an even source/destination address, and an 8-
bit peripheral on the upper half of the bus must
use an odd source/destination address. To take

‘advantage of word transfers, a 16-bit peripheral

must use an even source/destination address.

To prepare a peripheral device for a DMA
transfer, command and parameter data is written
to the device’s command/status port. This is
usually accomplished using pointer register GC.
Recalling that the '8089_ executes one additional
task block instruction following execution of the

XFER instruction (the XFER instruction causes
“ the 8089 to enter the DMA mode), this additional

instruction is used to access the command port of

~an- 170 device that immediately begins DMA
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operation on receipt of the last command (the
8271 Floppy Disk Controller begins its DMA
transfer on receipt of the last command
parameter). Since a translate DMA operation re-
quires the use of all three pointer registers (GA
and GB specify the source and destination ad-
dresses; GC specifies the base address of the
translation table), when it is necessary to use the
last task block instruction to start the device,
command port access can be accomplished
relative to one of the pointer registers or relative
to the PP register. If the device’s data port ad-
dress (GA or GB) is below the device’s command
port address, either an offset or an indexed
reference can be used to access the command
port.

A peripheral’s (or peripheral controller’s) DMA
communication protocol with the 8089 is as
follows:

e  The peripheral (when source or destination
synchronized) initiates a DMA transfer cycle
by activating the 8089’s DRQ (DMA request)
input.

e The 8089 acknowledges the request by
placing the peripheral’s assigned data port
address on the bus during state Ty of the cor-
responding fetch (source synchronized) or
store (destination synchronized) bus cycle.
The peripheral is responsible for decoding
this address as the DMA acknowledge
(DACK) to its request.

e The data is transferred between the
peripheral and the 8089 during the T,
through T4 state interval of the bus cycle.
The peripheral must remove its DMA request
during this interval.

e  The peripheral, when ready, requests another
DMA transfer cycle by again activating the
DRQ input, and the above sequence is
repeated.

¢ The peripheral can, as an option, end the
DMA transfer by activating the 8089’s EXT
(external terminate) input.

The 8089 can support mulitple peripheral devices
on a single channel provided that only one device
is in the active transfer mode at any one time. To
interface multiple devices, the DMA request
(DRQ) lines are OR’ed together as are the exter-
nal terminate (EXT) lines. Unique port addresses
are, however, assigned to each device so that an

individual DMA acknowledge (DACK) is return-
ed to only the active device. DACK decoding can
be accomplished with an Intel ® 8205 Binary
Decoder or a ROM circuit. Note that the 8089 can
only determine which device has requested service
or terminated by the context of the task block
program.

Most peripheral devices interfaced to the 8089 will
use the decoded DMA acknowledge signal
(DACK) as the ‘‘chip sclect’’ input. Peripheral
devices that do not follow this convention must
use DACK as a conditional input of chip select.

While most interrupts associated with the 8089
will be DMA requests or external terminates, non-
DMA related interrupts can additionally be
supported.

One technique that would be used when an 8089 is
the local configuration (or when an 8086 or 8088
and an 8089 are locally connected as a remote
module) is to allow the CPU to accept the inter-
rupt and then direct the 8089 to the interrupt ser-
vice routine. Another technique is to allow the
8089 to ‘‘poll”’ the device to determine when an
interrupt has occurred (most peripheral con-
trollers have an interrupt pending bit in a status
word). The 8089’s bit testing instructions are
ideally suited for polling.

When the 8089 is in a remote configuration, non-
DMA related interrupts can be supported with the
addition of an Intel® 8259A Programmable
Interrupt Controller. Systems that require this
type of interrupt structure would dedicate one of
the 8089’s channels to interrupt servicing. In
implementing this structure, the interrupt output
from the 8259A is directly connected to the chan-
nel’s external terminate (EXT) input, and the
channel’s DMA request (DRQ) input is not used.
A task block program is initially executed to per-
form a source-synchronized DMA transfer (with
an external terminate) on the ““interrupt’’ channel
to ‘‘arm’ the interrupt mechanism. Since the
DRQ input is not used, when the channel enters
the DMA transfer mode, the channel idles while
waiting for the first DMA request (which never
occurs). The other channel, since the interrupt
channel is idle, operates at maximum throughput.
When an interrupt occurs, the ‘“‘pseudo’” DMA
transfer is immediately terminated, and task
block instruction execution is resumed. The task
block program would write a ‘“‘poll”” command to
the 8259A’s command port and then read the
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8259A’s data port to acknowledge the interrupt
and to determine the device responsible for the
interrupt (the device is identified by a 3-bit binary
number in the associated data byte). The device
number read would be used-by the task block pro-
gram as a vector into a jump table for the device’s
interrupt service routine. Pertinent interrupt data
could be written into the associated parameter
block for subsequent exammatlon by the host
Processor.

The interrupt mechanism previously described,
since it uses the 8089’s external terminate func-
tion, provides an extremely fast interrupt
response time. ‘

Note that when using dynamic RAM- memory
with the 8089, an Intel® 8202 Dynamic RAM
Controller can be used to simplify the interface
and to perform the RAM refresh cycle. When
maximum transfer rates are required, the RAM
refresh cycle can be externally initiated by the
8089. By connecting the decoded DACK (DMA
acknowledge) signal to the 8202’s REFRQ
(refresh request) input, the refresh cycle will occur
coincident with the I/O’ device bus cycle and
therefore will not impose wait states in the
memory bus cycle.

Instruction Encoding

Most 8089 programming will be performed at the
assembly language level using ASM-89, the 8089
assembler. During program debugging, however,
it may be necessary to work directly with machine
instructions when monitoring the bus, reading un-
formatted memory dumps, etc. This section con-
tains both a table to encode any ASM-89 instruc-
tion into its corresponding machine instruction

(table 4-24) and a table to ‘‘disassemble’’- any
machine instruction back - into -its ‘ associated
assembly language equivalent (table 4-26).

Figure 4-32 shows the format of a typical 8089
machine instruction. Except for the LPDI and
memory-to-memory forms of the MOV and
MOVB instructions that are six bytes long, all
8089 machine instructions consist of from two-to
five bytes. The first two bytes are always present
and are generally formatted as shown in figure
4-32 (table 4-24 contains the exact encodlng of
every mstuctlon)

Bits 5 through 7 of the first byte of an instruction
comprise the R/B/P field. This field identifies a
register, bit select or pointer register operand as
outlined in table 4-20.

Table 4-20. R/B/P Field Encoding

Code | Register Bit Pointer

" 000 GA 0 GA
001 GB 1 GB
010 - GC 2 GC
011 - | BC 3 N/A
100 TP 4 TP
101 X 5 N/A
110 CC 6 N/A .
i MC 7 N/A

The WB field (bits 3 and 4 of the first byte) in-
dicates how many. displacement/data bytes are
present in the instruction as outlined in table 4-21.
The displacement bytes are used in program
transfers; one byte is present for short transfers,
while long transfers contain a .two-byte (word)
displacement. As mentioned in Chapter 3, the

.BYTE1 - BYTE2

[N NN

. Ar A r W

B s i — e ==

arrtrrigrrttienprnibonng

R/B/P{WB| AA |W] OPCODE |MM OFFSET

BYTE4 BYTES

—_—— -

| LOW DISP/DATA |HIGH DISP/DATAI

——;-BASE REGISTER FOR MEMORY OPERAND
OPERATION (INSTRUCTION) CODE

WIDTH (BYTE OR WORD OPERANDS)
—~MEMORY ADDRESSING MODE

NUMBER OF DISPLACEMENT/DATA BYTES
REGISTER, BIT, F;OINTER SELECT

Figure 4-32. Typical 8089 Machine Instruction Format
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displacement is stored in two’s complement nota-
tion with the high-order bit indicating the sign.
Data bytes contain the value of an immediate con-
stant operand. A byte immediate instruction
(e.g., MOVBI) will have one data byte, and a
word immediate instruction (e.g., ADDI) will
have two bytes (a word) of immediate data. An
instruction may contain either displacement or
data bytes, but not both (the TSL instruction is an
exception and contains one byte of displacement
and one byte of data). If an offset byte is present,
the displacement/data byte(s) always follow the
offset byte.

Table 4-21. WB Field Encoding

Code Interpretation

00 No displacement/data bytes
01 One displacement/data byte
10 Two displacement/data bytes
1 TSL instruction only

The AA field specifies the addressing mode that
the processor is to use in order to construct the ef-
fective address of a memory operand. Four ad-
dressing modes are available as outlined in table
4-22. (Address modes are described in detail in
section 3.8.)

Table 4-22. AA Field Encoding

Code Interpretation
00 Base register only
01 Base register plus offset
10 Base register plus IX
" Base register plus IX,
auto-increment

Bit 0 of the first instruction byte indicates whether
the instruction operates on a byte (W=0) or a
word (W=1).

Bits 7 through 2 of the second instruction byte
specify the instruction opcode. The opcode, in
conjunction with the W field of the first byte,
identifies the instruction. For example, the op-
code ‘““111011”° denotes the decrement instruc-
tion; if W=0, the assembly language instruction is
DECB, while if W=1, the instruction is DEC.
Table 4-26 lists, in hexadecimal order, the opcode
of every assembly language instruction.

The MM field (bits 0 and 1) indicates which
pointer (base) register is to be used to construct
the effective address of a memory operand. Table
4-23 defines the MM field encoding. (Memory
operand addressing is described in section 3.8.)

Table 4-23. MM Field Encoding

Code Base Register
00 GA
]| GB
10 GC
11 PP

When the AA field value is ““01°’ (base register
+ offset addressing), the third byte of the instruc-
tion contains the offset value. This unsigned value
is added to the content of the base register
specified by the MM field to form the effective
address of the memory operand.

When the AA field value is “‘10,” the IX register
value is added to the content of the base register
specified by the MM field to provide a 64k range
of effective addresses. (Note that the upper four
bits of the IX register are not sign-extended.)

When the AA field value is ‘“11,’’ the IX register
value is added to the base register value to form
the effective address as described for an AA field
value of ““10.”’ In this addressing mode, however,
the IX register value is incremented by one after
every byte accessed.

Table 4-24. 8089 Instruction Encoding

DATA TRANSFER INSTRUCTIONS

MOV = Move word variable 76543210 76543210 765482410 76543210 76543210 76543210
Momory to register RRARAODOAA1T [100000MM offsetif AA=01

Register to memory RRROOAA1T |[100001TMM offset i! AA=01

Memory to memory 00000AAT |100100MM offsetif AA=01 00000AAT|110011MM oflsetilAA=01J

4-53.
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DATATRANSFER INSTRUCTIONS (Cont'd.)

MOVB = Move byte variable
Memory to register
Register to memory

Memory to memory

MOVBI = Move byte Immediate
Immediate to register

Immediate to memory

"MOVI = Move word immediate
Immediate to register

Immediate to memory
MOVP = Mova pointer
Memory to pointer register

Pointer register to memory. .

LPD = Load pointer with ﬁuubleword variable

oy

76543210

Table 4-24. 8089 Instruction Encoding (Cont’d.)

76543210 76543210 76543210 76543210 ‘765432i0

LPDI = Load polnter with doubleword immediate | PPP10001

ARITHMETIC INSTRUCTiONS

ADD = Add word variable
Memory to register .

Registerto memory

ADDB = Add byte variable
Memory to register

Register to memory

ADDI = Add word immediate
immediate to register

Immediate to memory

RARROODAAOD|[100000MM offsetif AA=01
RRROOAAD |100001MM offset if AA=01
OOOOOAAQ 100100MM offsetif AA=01 00000CAAOQ0|[110011TMM offsetif AA=01,
RRR01000 (00110000 data-8
00001 AAD|010011MM |- offsetifAA=01 . data-8
RRR10001|00110000 data-lo data-hi
00010AA1T]010011MM offset if AA=01 data-lo data-hi
PPPOOAAY 100011 MM [ offsetif AA=O1 *
PPPOOAA1[100110MM [ offsetif AA=0i
IPF’POOAA1|1‘00010MM offset if AA=01
|0 0001000 offset-lo offset-hl 1 ¢ hi
RRROOCAAT1 [101000MM offset if AA=01
RRROOAA1 |[110100MM ‘o"setifAA=’!!1 !
RRROOAAO}J101000MM offset if AA=01
RRROOAAD [110100MM offset it AA=01
RRR10001 |00100000C0 data-lo data-hi
00010AA1 [110000MM offsetif AA=01 data-lo data-hi
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ARITHMETIC INSTRUCTIONS (Cont'd.}

ADDBI = Add byte immedIlate
Immedaite to reglster

Immediate to memory

INC = Increment word by 1
Reglster

Memaory

INCB = Increment byte by 1

DEC = Decrement word by 1
Register

Memory

DECB = Decrementbyte by 1

Table 4-24. 8089 Instruction Encoding (Cont’d.)

LOGICAL AND BIT MANIPULATION INSTRUCTIONS

AND = AND word variable
Memory to register

Register to memary

ANDB = AND byte variable
Memory to register

Register to memory

ANDI = AND word immediate
Immediate to register

Immediate to memory

ANDBI = AND byte immediate
Immediate to register

Immediate to memory

©OR = OR word variable
Memory to register

Register to memory

76543210 76543210 76543210 786543210 76543210 76543210
RRR01000)|00100000 data-8
00001AADG|110000MM offset if AA=01 data-8
RARO0000|00111000

00000AAT|111010MM offsotif AA=01 |
Q0000AAD|T11010MM offsetif AA=01 l
RRRODOO00O}00111100

00000AAT|111011MM oflsetlfAA=D1J
0000CAAD|11101T1TMM offsetif AA=01 |

RRROOAAT (101010MM offset if AA=01
RRROOAAT|110110MM ofiset it AA=01
RRROOAAOG|[101010MM offsetif AA=01
RRROOAAOD[110110MM offsetif AA=01
RRR10001]00101000 data-io data-hi
00C010AA1T|[110010MM offsetif AA=01 data-lo data-hi
RRRO1000[00101000 data-8
00C01AAD[110010MM offset it AA=01 data-8

RRROOAAT |101001MM offset if AA=01 |

RRROCAAT |110101MM offset if AA=01

455
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LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Cont’d.)

ORB = OR byte variable
Memory to register

Register to memory

ORI = OR word immediate
Immediate to register

Immediate to memory

ORB1 = OR byte immediate
Immediate to register

Immediate to memory

NOT = NOT word variable
Register
Memory

Memory to register

NOTB = NOT byte variable

Memory

Memory to register

SETB = Setbitto1

CLR = Clearbitto0

PROGRAM TRANSFER INSTRUCTIONS

*CALL = Cail

LCALL = Long call

*JMP = Jump unconditional

LJMP = Long jump unconditional

*The ASM-89 A will

76543210 76543210

786543210

Table 4-24. 8089 Instruction Encoding (Cont’d.)

76843210

76543210

RRROOGAAO|101001MM offsetif AA=01
RRROOAAO|[110101MM] offsetif AA=O1
RRR10001]J00100100 data-lo data-hi
00010AA1T{110001MM | offsetit AA=D1 data-lo data-hi
RRRO1000}00100100 data-8
00001AAD|[110001MM [ offsetif AA=D1 data-8
RRROO0OOOOJO00101100

00000AAT[110111MM| offsetifAA=01
RRROODAAT|101011MM]| offsetif AA=01
00000AAD[110111MM]| offsetitAA=D1

RRROOAAOD |101011MM| offsetit AA=01
|BBBDOAAO|111101MM| offsetllAA=01j
leaaouAAqnanMLoﬂsetuAA=o1 |
|1ooo1‘AA1|1oo‘111MM| offset if AA=01 | disp-8 I
{10010AA1 100111M M offsetif AA=01 | disp-lo I disp-hi

l10001000!00100000|

disp-8 7

l10010001|00100000|

disp-lo l

disp-hi I

y g

target is known to be beyond the byte-displacement range.

the long form of a program transfer instruction when the

76643210
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

PROGRAM TRANSFER INSTRUCTIONS {Cont’d.)

*JZ = Jumpifwordis0 76543210 76543210 76543210 76543210 76543210 76543210
Label to register RARARROD100C[01000100 disp-8
Label to memory 00001AAT|111001MM oftset it AA=01 disp-8

LJZ = Long jumpifword is 0

Label to reqgister . RRR10000]|01000100 disp-lo disp-hi

Label to memory 000C10AAT|[111001TMM offsetif AA=01 disp-lo disp-hi
*J2B = Jumpif byte is 0 l 00001AAD | 111001MM | offset it AA=01 | disp-8 l

LJZB = Long jumpif byteis0 l 00010A-ADQ | 111001 MM | offsetif AA=01 | disp-lo I disp-hi
*JNZ = Jump if word not 0

Label to register RRRO1000|01000000 disb-B

Label to memory 00001AAT|[111000MM offsetif AA=01 disp-8

LJINZ = Long jump if word not0

Label to register RAR10000}010000060 disp-lo disp-hi

Label to memaory 060010AA1T 111000MM oftsetif AA=01 disp-lo disp-hi
*JNZB = Jump if byte not0 l 00001AADQ I 111000MM | offset if AA=01 | disp-8 |

LINZB = Long jump if byte not 0 l 00010AAD l 111000MM | offset If AA=01 | disp-lo l disp-hi
*JMCE = Jump if masked compare equal I 00001AAD | 101100MM | offset if AA=01 | disp-8 |

LJIMCE = Long jump if masked compare equal | 00010AAD l 101100MM | offset if AA=01 | disp-lo | disp-hi
*JMCNE = Jump if masked compare not equal [0 0001AAD l 101101 MM | offsetif AA=01 | disp-8 |

LIMCNE = Long jump if masked compare not equal FU 010AAD | 101101 MM | offset if AA=01 | disp-lo | disp-hi
*JBT = Jumpif bitis 1 |BBBO1AAO |1 01111 MM l offsetif AA=01 I disp-8 J

*The ASM-89 A will ically the long form of a program transfer instruction when fhe

target is known to be beyond the byte-displacement range.
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Table 4-24. 8089 Instruction Encoding (Cont’d.)

PROGRAM TRANSFER INSTRUCTIONS (Cont’d.)

76543210

76543210

76543210 76543210 76543210 1’654321‘0

LJBT = Long jump if bitis 1

*JNBT = Jump if bitis not1

LINBT = Long jump if bit is not 1

PROCESSOR CONTROL INSTRUCTIONS

TSL = Testand set while locked

| 8BBB10AA UF 01111MM I offsetif AA=01 [ disp-lo I disp-hi
IBBB01AAO|10111DMM offset if AA=01 l disp-8 |

I BBB10AAD l 101110MM l offset if AA=01 ] disp-lo l disp-hi J
| 00011AAD |1 00101MM offset if AA=01 data-8 disp-8

WID = Set logical bus widths

I1SD'00000|0000000L|

*S=source width, D=destination width; 0=8 bits, 1=16 bits

XFER = Enter DMA mode

01100000I0000600ﬂ

SINTR = Set interrupt service bit

|0100000‘0l700000000|

HLT = Halt channel program

|00100000l01001000l

NOP = No operation

IOOOUOOOO]O‘OUOOOOOI

*The ASM-89 Assembler will automatically generate the long form of a program transter instruction when the

target is known to be beyond the byte-displacement range.

Table 4-26 lists all of the 8089 machine instruc-
tions in hexadecimal/binary order by their second
byte. This table may be used to ‘‘decode’ an

assembled machine instruction into its ASM-89
symbolic form. The preceding table (table 4-25)
defines the notation used in table 4-26.
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Table 4-25. Key to 8089 Machine Instruction Decoding Guide

ldentifier Explanation
S Logical width of source bus; 0=8, 1=16
D Logical width of destination bus; 0=8, 1=16
PPP Pointer register encoded in R/B/P field
RRR Register encoded in R/B/P field
AA AA (addressing mode) field
BBB ' Bit selectencoded in R/B/P field .
offset-lo Low-order byte of offset word in doubleword pointer
offset-hi - : High-order byte of offset word in doubleword pointer
segment-lo Low-order byte of segment word in doubleword pointer
segment-hi High-order byte of segment word in doubleword pointer
data-8 . O 8-bitimmediate constant
data-lo Low-order byte of 16-bit |mmed|ate constant
data-hi High-order byte of 16-bit immediate constant
disp-8 8-bit signed displacement
disp-lo Low-order byte of 16-bit signed displacement
disp-hi High-order byte of 16-bit signed displacement
(offset) o Optional 8-bit offset used in offset addressing

Table 4-26. 8089 Machine Instruction Decoding Guide

B ;
Byte 1 - yte-2 Bytes 3,4,5,6 ASM89 Instruction Format

Hex | Binary '
00000000 00 | 00000000 NOP
01000000 00 | 00000000 SINTR
1SD00000 00 | 00000000| - WID source-width,dest-width
01100000 00 | 00000000 "XFER

01 | 00000001

{ + ‘ } notused

07 | 00000111 :
PPP10001 08 | 00001000 | offset-lo,offset-hi,segment-lo,segment-hi LPDI ptr-reg,immed32

09 | 00001001 '

Y| ] not used

1F | 00011111
RRR01000 20 | 00100000 | data-8 ADDBI ' register,immed8
RRR10001 20 | 00100000 | data-lo,data-hi ' | ADD! register,immedi16"
10001000 20 | 00100000 | disp-8 JMP short-label -
10010001 20 | 00100000 | disp-lo,disp-hi LJMP long-label

21 1 00100001 o ‘

{ ] : ] not used

23 | 00100011
RRR01000 24 | 00100100 | data-8 ORBI register,immed8
RRR10001 24 1 00100100 | data-io,data-hi ORI register,immed16

25 | 00100101 : ’ :

] ¥ ‘ } not used

27 | 00100111 |- .
RRR0O1000 28 | 00101000 | data-8 ANDBI register,immed8
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 1 Byte 2 Bytes 3,4,5,6 ASM839 Instruction Format
Hex | Binary ‘
RRR10001 28 | 00101000 | data-lo,data-hi ANDI register,immed16
29 | 00101001 : ‘
¥ } not used
2B | 00101011 ‘
RRR00000 2C | 00101100 NOT register
2D | 00101101
vl ; } not used
2F -{ 00101111
RRR01000 30 | 00110000 | data-8 MOVBI register,immed8
. RRR10001 30 | 00110000 | data-lo,data-hi MOVI register,immed16
31 | 00110001 o
* not used
37 | 00110111
RRR00000 | 38 | 00111000 INC register
39 | 00111001
¥ ' not used
3B | 00111011
RRR00000 3C | 00111100 DEC register
3D | 00111101
] not used
3F | 00111111
RRR01000 40 | 01000000 | disp-8 JNZ register,short-label
RRR10000 40 | 01000000 | disp-lo,disp-hi LINZ register,jong-label
41 | 01000001
} v | not used.
43 | 01000011 . .
RRR01000 44 { 01000100 | disp-8 JZ register,short-label .
RRR10000 44 | 01000100 | disp-lo,disp-hi LJZ - register,short-label.
45 1 01000101
¥ not used
47 | 01000111 ‘
00100000 . | 48 | 01001000 HLT
49 | 01001001
Y ; not used
4B | 01001011
00001AAQ0 | 4C |010011MM ;
¥ R ¥ ] (offset),data-8 MOVBI mem8,immeds
00001AAQ0 | _4F |010011MM , -
00010AA1 4C | 010011MM v
¥ ¥ ] (offset),data-l0,data-hi ‘MOVI mem?i6,immed16
00010AA1 4F |010011MM
50 | 01010000 .
} -t notused:
7F. | 01111111 L
RRRODAAQ | 80 [100000MM : S
¥ ¥ } (offset) MOVB register,mem8
RRRO0OAAO 83 {100000MM : .
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Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2
Byte 1 - Bytes 3,4,5,6 ASM89 Instruction Format -
Hex | Binary
RRRO0AA1 80 | 100000MM
1 } (offset) MOV register,mem16
RRROOAA1 83 | 100000MM :
RRROOAAQ 84 | 100001MM : .

oy (offset) MOVB mem8,register
RRROOAAD 87 | 100001MM .
RRROOAA1 84 | 100001MM s

¥ (offset) MOV mem16,register
RRROCAA1 87 | 100001MM .
PPPOOAA1 88 | 100010MM s

¥ (offset) LPD ptr-reg,mem32
PPPO0AA1 8B | 100010MM
PPPOOAA1 8C | 100011MM .

: ¥ } (offset) MOVP ptr-reg,mem24
PPPODAAIT 8F | 100011MM :
00000AAD 90 [ 100100MM ‘

* } (offset),00000AA0,110011MM, (offset) MOVB mem8,mem8
00000AAD 93 [ 100100MM -
00000AA1 90 | 100100MM :

i + } (offset),00000AA1,110011MM, (offset) MOV memi16,memi6
00000A A1 93 | 100100MM ’
00011AA0D 94 | 100101MM ) . E
¥ (offset),data-8,disp-8 TSL mem8,immed8,short-label
00011AAD 97 [ 100101MM :
PPPOOAA1 98 | 100110MM . : ‘ ‘

¥ (offset) MOVP - mem24,ptr-reg
PPPOOAAT 9B | 100110MM . : o
10001AA1 9C | 100111MM o

i + * (offset),disp-8 CALL -mem24,short-label
10001AA1 9F | 100111MM .
10010AA1 9C | 100111MM Lo ‘
: K (offset),disp-lo,disp-hi LCALL mema24,long-label
10010AA1 9F | 100111MM ‘
RRROOAAOD | AO | 101000MM
¥ 1} (offset) ADDB register,mem8
RRROOAAD { A3 | 101000MM V
RRRO0AA1 A0 | 101000MM : :
o o ] (offset) ADD register,mem16
RRROOAA1 A3 | 101000MM
RRROOAAD | A4 | 101001MM - o

4 (offset) ORB register,mem8
RRROOAAO | A7 | 101001MM . :
RRROOAA1 Ad | 101001MM .

: ¥ (offset) OR register,mem16

RRRO0AA1 A7 } 101001MM
RRROOAAD | A8 | 101010MM ‘

vl (offset) ANDB mems8,register
RRROOAAD | AB | 101010MM T
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

B .
Byte 1 ' yte-z Bytes 3,4,5,6 ASMB89 Instruction Format
Hex | Binary : B
RRROQAA1 | A8 | 101010MM S
¥ L (offset) AND mem16,register
RRR00AA1 | AB | 101010MM o
RRRO0AAD | AC | 101011MM C oy
A 4 ; {offset) NOTB - register,mem8
RRRO0AAO | AF | 101011MM : :
RRRO0OAA1 [ AC | 101011MM . ‘ .

ol (offset) NOT register,mem16 .
RRRO0AA1 AF { 101011MM S . ‘ L
00001AAQ B0 | 101100MM R .

¥ ] (offset),disp-8 JMCE ~mems8,short-label
00001AAQ B3 | 101100MM ‘ o L "
00010AA0Q BO | 101100MM s o
i h { : : (offset),disp-lo,disp-hi LUMCE. mem8,long-label
00010AA0 | B3 | 101100MM ' ' S
- 00001AAQ B4 | 101101MM ‘ o o
1y (offset),disp-8 JMCNE mem8,short-label
00001AAQ B7 | 101101tMM S
. 00010AA0 B4 | 101101MM . ) .
¥ . (offset),disp-lo,disp-hi LJMCNE mem8,long-label
00010AA0Q B7 | 101101MM : C P
BBBO1AAO | B8 | 101110MM R Lo
i { : : (offset),disp-8 JNBT . mem8,bit-select,short-label
BBB01AAQ | BB | 101110MM : : Lo .
BBB10AAO0 | B8 | 101110MM ' o : .

I { i (offset),disp-lo,disp-hi LIJNBT mem8,bit-select,long-label
BBB10AAO0 | BB | 101110MM : ‘ . L
BBBO1AAO | BC | 101111MM PR SRR

B * ; : (offset),disp-8 JBT mems8,bit-select,short-label
BBBO1AAO | BF | 101111MM e . g :
BBB10AAO | BC | 101111MM : R
‘ RO O { . (offset),disp-lo,disp-hi - LJBT ‘mem8,bit-select,long-label
BBB10AAO0 | BF | 101111MM o v .
00001AAQ CO | 110000MM : o o L

: ¥ |- It (offset),data-8 ADDBI  mem8,immed8
00001AAQ C3 | 110000MM : o T
00010AA1 C0 | 110000MM B R
[ 7 : ~ilp (offset),data-lo,data-hi ADDI mem16,immed16
00010AA1 C3 | 110000MM ‘ :
00001AA0Q C4 | 110001MM . :
oy - LT (offset),data-8 ORB! mem8,immed8
00001AAQ C7 | 110001MM : RE L
00010AA1 C4 | 110001MM :
} (offset),data-lo,data-hi ORI memi6,immed16
00010AA1 C7 | 110001MM '
00001AAD C8 | 110010MM ‘ ; o ek

: . . (offset),data-8 ANDBI mem8,immed8

00001AA0Q CB | 110010MM - 3 ;
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

B
Byte 1 yte.2 Bytes 3,4,5,6 ASMB89 Instruction Format
Hex}{ Binary
00010AA1 C8 | 110010MM
4 ¥ } (offset),data-lo,data-hi ANDI mem16,immed16
00010AA1 CB | 110010MM :
CC | 11001100
+ } not used
CF | 11001111
RRRO0OAAD | DO | 110100MM
¥ ] (offset) ADDB mem8,register
RRROOAAD D3 | 110100MM
RRROOAA1 DO | 110100MM
¥ } (offset) ADD mem16,register
RRRO0AAT D3 | 110100MM
RRRO0OAAD | D4 | 110101MM
¥ (offset) ORB mem8,register
RRRO0AAD D7 | 110101MM
RRRO0AA1 D4 | 110101MM
Vo (offset) OR memi6,register
RRRO0AA1 D7 | 110101MM
RRRODAAQ D8 | 110110MM
¥ (offset) ANDB mem8,register
RRROCAAQ DB | 110110MM
RRROCAA1 D8 | 110110MM
¥ ¥ ] (offset) AND - mem16,register
RRRO0AA1 DB | 110110MM
RRROOAAO | DC | 110111MM
¥ ‘ (offset) NOTB mem8,register
RRRO0OAAO | DF | 110111MM
RRRODAA1 DC | 110111MM
¥ (offset) NOT mem18,register
RRRO0AA1 DF | 110111MM
00001AAQ EC | 111000MM :
¥ (offset),disp-8 JNZB mem8,short-label
00001AAD E3 [ 111000MM
00001AA1 EO0 | 111000MM
Y (oftset),disp-8 JNZ mem16,short-label
00001AA1 E3 | 111000MM
00010AA0Q EO0 | 111000MM
¥ (offset),disp-lo,disp-hi LIJNZB mem8,long-label
00010AAD E3 | 111000MM
00010AA1 EO | 111000MM
] (offset),disp-lo,disp-hi LINZ mem16,longlabel
00010AA1 E3 | 111000MM
00001AAOD E4 | 111001MM
¥ (offset),disp-8 JZB mem8,short-label
00001AAD E7 | 111001MM
00001AA1 E4 | 111001MM
¥ ¥ (offset),disp-8 JZ mem16,short-label
00001AA1 E7 | 111001MM
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HARDWARE REFERENCE INFORMATION

Table 4-26. 8089 Machine Instruction Decoding Guide (Cont’d.

Byte 2 ) oo
Byte 1 — Bytes 3,4,5,6 ASM89 Instruction Format
Hex [ Binary : .
00010AAQ E4 | 111001MM :
+ . (offset),disp-lo,disp-hi LJZB mems8,long-label
00010AA0 E7 | 111001MM ‘
00010AA1 E4 | 111001MM : :
¥ (offset),disp-lo,disp-hi "LJZ -memi6,long-label
00010AA1 E7 | 111001MM
. 00000AA0 E8 | 111010MM
¥ ¥ (offset) INCB mems8
00000AA0 | EB | 111010MM ~
00000AA1 E8 { 111010MM :
¥ ¥ ¥ (offset) INC mem16
00000AA1 EB | 111010MM
“00000AAQ EC { 111011MM . .
, ¥ ; (offset) DECB mem8
00000AA0 EF | 111011MM P
00000AA1 EC | 111011MM :
] } (offset) DEC ' mem16
00000AA1 EF | 111011MM T
FO ; 11110000 RN
¥ not used
F3 | 11110000
BBBO0OAAD | F4 | 111101MM _
¥ ] (offset) SETB mem8,0-7
BBBO0AAO | F7 | 111101MM
BBBO0OAAD F8 | 111110MM
Sy (offset) CLR mem8,0-7.
BBBOOAAOD FB | 111110MM :
FG | 11111100
¥ : not used
FF | 11111111
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