
RKit-ST6
RKit-ST6 is a complete
toolchain for the ST6 family of
microcontrollers. It features an
optimizing ANSI C Compiler, a
Macro-Assembler, a Linker
and a Simulator/Debugger.
All these tools are smoothly
and conveniently integrated
into Raisonance Integrated
Development Environment,
which also provides drivers
for the ST6 emulators.

I

Integrated into RIDE Project Manager

The project manager creates links
between the various files that make up
a project and the tools necessary to
create that project. Its tree structure
ease the management of the most
complex applications.

Flexible Tools

RKit-ST6 is delivered with Raisonance
Integrated Development Environment
(RIDE), a fully integrated IDE featuring
color syntax highlighting editor, project
manager, on-line help and full control over all
the tools of the toolchain.
From editing to compiling, linking and
debugging (with the simulator, starter kit or
real time emulator), RIDE increases
productivity by putting all the tools at your
fingertips into a coherent and easy to use
user interface.
When it comes to debugging, RIDE
provides a rich variety of views into your
application (Main registers, Hardware,

Each of the RKit-ST6 tools are tightly
integrated into RIDE, offering the
professional developer a complete and
cleanly integrated tool kit. In addition,
each tool: assembler, compiler, linker,
simulator can be run "stand-alone", as
an individual, self-supported tool.

Optimizing ANSI-C Compiler MA-ST6 Macro-Assembler

A super-set of ANSI-C

RC-ST6 implements the ANSI standards for the C
language, extended with ST6 specific keywords:

Asm At code data

Generi
c

Interrupt intrinsic sfr

MA-ST6 is a comprehensive assembler,
associated to a powerful macro-preprocessor. In
connection with the RL-ST6 Linker/locator,
MA-ST6 provides an easy control on the bank
switching process mechanism. MA-ST6 features a
preprocessor that accepts and translates the
former AST6 syntax.

RL-ST6 Linker/Relocator

RL-ST6 is an optimizing linker/locator which acts
not only on the code generated by the RC-ST6
Compiler, but also on the code written directly in
assembler. The RL-ST6 linker supports a Bank
Switching mechanism for both code segments and
data segments. The overlay analyzer allows
automatic optimization of the data space usage.
RL-ST6 produces a symbolic output format, a HEX
output file, and a complete listing file reporting all
the optimizations performed.

SIMICE-ST6 Simulator/Debugger

The simulator is tightly integrated into RIDE and
uses the information generated by RC-ST6 or
MA-ST6 tools to provide full symbolic high level
debugging.

SIMICE-ST6 takes into account the characteristics
of the selected device and simulates (in
considerable detail) all internal peripherals.
Associated with RIDE, SIMICE-ST6 allow
simulation of multi-processor applications, and
offers various solutions that can simulate external
inputs and outputs.

SIMICE-ST6 provides various emulator-like
functions such as trace management or complex
breakpoint control. SIMICE-ST6 can also be run as
a stand alone simulator.
SIMICE-ST6 features various analysis tools as
Code Coverage or a Performance Analyzer.

Hardware Drivers

Memory Models

The memory model specifies default location for
variable declarations and default type for generic
pointers. Two memory models are available:
SMALL, for devices up to 4K Bytes and LARGE for
bigger devices that require a bank switching
Mechanism.

Base Types

Integer Types:
 - 8 bits : "signed char" and "unsigned char",
 - 16 bits : "signed int" and "unsigned int",

Pointers Types

Two types of pointers are always available, generic
pointers and space qualified pointers.

Code Optimizations

RC-ST6 optimizes the code to be as compact and
fast as possible. Nevertheless, when a choice is to
be made RC-ST6 has been designed to put
emphasis on the Code Size rather than the Speed.

Libraries

RC-ST6 is supplied with ANSI C standard libraries
as described in: stdio.h, string.h, ctype.h, and
stdlib.h standard header files.
Specific ST6 libraries are provided to allow a fast
configuration of all the internal peripherals present
in the ST6 derivatives.

Implementation

RC-ST6 Compiler and the libraries are fully
autonomous and do not require the use of any
other coding tool. A C function can be called from
an assembly program, and can call routines written
in other languages.

ST6 Specific Features

Local variables are located into overlaid data
segments to mimic a stack behavior.
RL-ST6 provides an accurate control onto the
hardware stack.

RIDE provides drivers for official
STMicroelectronics ST6 emulators and for some
third party emulators.
All emulators are driven through exactly the same
interface as the simulator.

