XA User Guide

4

‘M’ I

pm/of"‘“t

(=

e <

100

PHILIPS
NXP
XA

XA-G3, S3, G49

Ceibo Emulator DS-XA

Supporting

XA: http://ceibo.com/eng/products/dsxa.shtml

Ceibo Low Cost EB-XAG3

Emulators

ilgp.p orting http://ceibo.com/eng/products/ebxag3.shtml
EB-XAG49
http://ceibo.com/eng/products/ebxag49.shtml
EB-XAS3
http://ceibo.com/eng/products/ebxas3.shtml

Ceibo MP-51

Programmer

ilg).portmg http://ceibo.com/eng/products/mp51.shtml

www.ceibo.com

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to
make changes, without notice, in the products, including circuits, standard cells, and/or software,
described or contained herein in order to improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for the use of any of these products,
conveys no license or title under any patent, copyright, or mask work right to these products, and
makes no representations or warranties that these products are free from patent, copyright, or
mask work right infringement, unless otherwise specified. Applications that are de scribed herein
for any of these products are for illustrative purposes only. Philips Semiconductors makes no
representation or warranty that such applications will be suitable for the specified use without
further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not
designed for use in life support appliances, devices, or systems where malfunction of a Philips
Semiconductors and Philips Electronics North America Corporation Product can reasonably be
expected to result in a personal injury. Philips Semiconductors and Philips Electronics North
America Corporation customers using or selling Philips Semiconductors and Philips Electronics
North America Corporation Products for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors and Philips Electronics North America
Corporation for any damages resulting from such improper use or sale.

Copyright Philips Electronics North America Corporation, 1998
All rights reserved.

Printed in U.S.A.

1 The XA Family - High Performance, Enhanced
Architecture 80C51-Compatible 16-Bit CMOS
Microcontrollers

1.1 Introduction

The role of the microcontroller is becoming increasingly important in the world of electronics as
systems which in the past relied on mechanical or simple analog electrical control systems have
microcontrollers embedded in them that dramatically improve functionality and reliability, while
reducing size and cost. Microcontrollers also provide the general purpose solutions needed so
that common software and hardware can be shared among multiple designs to reduce overall
design-in time and costs.

The requirements of systems using microcontrollers are also much more demanding now than a
few years ago. Whether called by the name “microcontrollers”, “embedded controllers” or
“single-chip microcomputers”, the systems that use these devices require a much higher level of
performance and on-chip integration.

As microcontrollers begin to enter into more complex control environments, the demand for
increased throughput, increased addressing capability, and higher level of on-chip integration has
led to the development of 16-bit microcontrollers that are capable of processing much more
information than 8-bit microcontrollers. However, simply integrating more bits or more
peripheral functions does not solve the demand of the control systems being developed today.
New microcontrollers must provide high-level-language support, powerful debugging
environments, and advanced methods of real time control in order to meet the more stringent
functionality and cost requirements of these systems.

To meet the above goals The XA or “eXtended Architecture” family of general-purpose
microcontrollers from Philips is being introduced to provide the highest performance/cost ratio
for a variety of high performance embedded-systems-control applications including real-time,
multi-tasking environments. The XA family members add to the CPU core a specific
complement of on-chip memory, 1/0Os, and peripherals aimed at meeting the requirements of
different application areas. The core-based architecture allows easy expansion of the family
according to a wide variety of customer requirements. The powerful instruction set supports
faster computing power, faster data transfer, multi-tasking, improved response to external events
and efficient high-level language programming.

Upward (assembly-level) code compatibility with the Philips 80C51 family of controllers

provides a smooth design transition for system upgrades by providing tremendously enhanced
performance.

XA User Guide 1-1 3/24/97

f Automotive Electronics \

- Power train Electronics
- Vehicle Control Electronics
- Ignition Control

- Fuel Injection Control
- Anti-lock Braking
- Active Suspension

. J
)

\

Data Processing (Industrial Control \

- Disk Drives - Robotic Control
- k/laslf'r ngéirssor Communications - Asynchronous Motor Control
i Ccl)inIeFr)s unicat - Fuzzy Control

- Stepper Motor Control

: ,\Pﬂrsgcgtlot': ”g ling - Process Automation
J - Drive Control

(Computer Peripherals) k)

XA

Figure 1. Applications of Philips XA microcontrollers

1.2 Architectural Features of XA

* Upward compatibility with the standard 8XC51 core (assembly source level)
» 24-bit address range (16 Megabytes code and data space)

* 16-bit static CPU

» Enhanced architecture using both 16-bit words and 8-bit bytes

* Enhanced instruction set

» High code efficiency; most of the instructions are 2-4 bytes in length
* Fast 16X16 Multiply and 32x16 Divide Instructions

» 16-bit Stack Pointers and general pointer registers

» Capability to support 32 vectored interrupts - 31 maskable and 1 NMI
» Supports 16 hardware and 16 software traps

* Power Down and Idle power reduction modes

» Hardware support for multi-tasking software

3/24/97 1-2 The XA Family

2 Architectural Overview

2.1 Introduction

The Philips XA (eXtended Architecture) has a general purpose register-register architecture to
provide the best cost-to-performance trade-off available for a high speed microcontroller using
today’s technology. Intended as both an upward compatibility path for 80C51 users who need
greater performance or more memory, and as a powerful, general-purpose 16-bit controller, the
XA also incorporates support for multi-tasking operating systems and high-level languages such
as C, while retaining the comprehensive bit-oriented operations that are the hallmark of the
80C5H1.

This overview introduces the concepts and terminology of the XA architecture in preparation for
the detailed descriptions in the following sections of this manual.

2.2 Memory Organization

The XA architecture has several distinct memory spaces. The architecture and the instruction
encoding are optimized for register based operations; in addition, arithmetic and logical
operations may be done directly on data memory as well. Thus, the XA architecture avoids the
bottleneck of having a single accumulator register.

2.2.1 Register File

The register file (Figure 2.1) allows access to 8 words of data at any one time; the eight words
are also addressable as 16 bytes. The bottom 4 word registers are “banked”. That is, there are
four groups of registers, any one of which may occupy the bottom 4 words of the register file at
any one time. This feature may be used to minimize the time required for context switching
during interrupt service, and to provide more register space for complicated algorithms.

For some instructions —32-bit shifts, multiplies, and divides— adjacent pairs of word registers are
referenced as double words.

The upper four words of the register file are not banked. The topmost word register is the stack
pointer, while any other word register may be used as a general purpose pointer to data memory.

The entire register file is bit addressable. That is, any bit in the register file (except the 3
unselected banks of the bottom 4 words) may be operated on by bit manipulation instructions.

The XA instruction encoding allows for future expansion of the register file by the addition of 8
word registers. If implemented, these additional registers will be word data registers only and
cannot be used as pointers or addressed as bytes.

The overall XA register file structure provides a superset of the 80C51 register structure. For
details, refer to the section on 80C51 compatibility.

XA User Guide 2-1 3/24/97

‘ System Stack Pointer
User |Stack
R7 R7H Pointer R7L
R6 R6H R6L
Global registers.

R5 R5H R5L
R4 R4H R4L
R3 R3H R3L s
R2 R2H R2L
R1 R1H R1L Banked Registers
RO ROH ROL

\

\
\

Figure 2.1 XA register file diagram

2.2.2 Data Memory

The XA architecture supports a 16 megabyte data memory space with a full 24-bit address. Some
derivative parts may implement fewer address lines for a smaller range. The data space
beginning at address 0 is normally on-chip and extends to the limit of the RAM size of a
particular XA derivative. For addresses above that on a derivative, the XA will automatically roll
over to external data memory.

Data memory in the XA is divided into 64K byte segments (Figure 2.2) to provide an intrinsic
protection mechanism for multi-tasking systems and to improve performance. Segment registers
provide the upper 8 address bits needed to obtain a complete 24-bit address in applications that
require large data memories (Figure 2.3).

The XA provides 2 segment registers used to access data memory, the Data Segment register
(DS) and the Extra Segment register (ES). Each pointer register is associated with one of the
segment registers via the Segment Select (SSEL) register. Pointer registers retain this association
until it is changed under program control.

The XA provides flexible data addressing modes. Most arithmetic, logic, and data movement
instructions support the following modes of addressing data memory:

3/24/97 2-2 Architectural Overview

(Segmentn) .- |

\ Segment1l -~
Segment 0

64K bytes

Figure 2.2 XA data memory segments

FFFFh (64K)

The entire memory is
addressable in the

indirect and indirect Off-chip
with offset modes data memory
The direct

addressing mode
limit is at 1K (3FFh) X’

The on-chip/off-chip data
memory boundary varies >

for different XA derivatives On-chip
o| data memory

Figure 2.3 Simplified XA data memory diagram

XA User Guide 2-3 3/24/97

Direct. The first 1K bytes of data on each segment may be accessed by an address contained
within the instruction.

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with 16-bits from a pointer register.

Indirect with offsetAn 8-bit or 16-bit signed offset contained within the instruction is added to

the contents of a pointer register, then concatenated with an 8-bit segment register to produce a
complete address. This mode allows access into a data structure when a pointer register contains
the starting address of the structure. It also allows subroutines to access parameters passed on the
stack.

Indirect with auto-incremenfThe address is formed in the same manner as plain indirect, but the
pointer register contents are automatically incremented following the operation.

Data movement instructions and some special purpose instructions also have additional data
addressing modes.

The XA data memory addressing scheme provides for upward compatibility with the 80C51. For
details, refer to Chapter 9.

2.2.3 Code Memory

The XA is a Harvard architecture device, meaning that the code and data spaces are separate.
The XA provides a continuous, unsegmented linear code space that may be as large as 16
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the on-

FFFFFFh (16M)

16 Mbytes of linear
code space Off-chip
code memory

The on-chip/off-chip code
memory boundary varies
for different XA derivatives On-chip

code memory

Figure 2.4 XA code memory map

3/24/97 2-4 Architectural Overview

chip space always begins at code address 0 and extends to the limit of the on-chip code memory.
Above that, code will be fetched from off-chip. Most XA derivatives will support an external bus

for off-chip data and code memory, and may also be used in a ROM-less mode, with no code
memory used on-chip.

In some cases, code memory may be addressed as data. Special instructions provide access to the
entire code space via pointers. Either a special segment register (CS or Code Segment) or the
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code memory
referenced by the pointer.

2.2.4 Special Function Registers

Special Function Registers (SFRs) provide a means for the XA to access Core registers, internal
control registers, peripheral devices, and 1/0 ports. Any SFR may be accessed by a program at
any time without regard to any pointer or segment. An SFR address is always contained entirely
within an instruction. See Figure 2.5.

A A
512 bytes (S)lf:f[:ghip
1 K bytes z
On-Chip
512 bytes SFRs
64 bytes
Bit-Addressable

Y Y I g

Figure 2.5 SFR Address Space

The total SFR space is 1K bytes in size. This is further divided into two 512 byte regions. The
lower half is assigned to on-chip SFRs, while the second half is reserved for off-chip SFRs. This
allows provides a means to add off-chip 1/0O devices mapped into the XA as SFRs. Off-chip SFR
access is not implemented on all XA derivatives.

On-chip SFRs are implemented as needed to provide control for peripherals or access to CPU
features and functions. Each XA derivative may have a different number of SFRs implemented

XA User Guide 2-5 3/24/97

because each has a different set of peripheral functions. Many SFR addresses will be unused on
any particular XA derivative.

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral register that
allows bit access will be allocated an address within that range.

2.3 CPU

Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described in this
section.

RsET
: Register :
' File .
: == Brecuio)
' Unit '
' Data/Address/Control Bus :
' 16-bit IREG :
: - Program :
! Exception SFR bus Counter :
: ALU Controller interface .
. 16-bit =~ @ -
' Program :
: Memory :
; [PswH| [Pswy] [sc Interface ;
; t t SFR bus VANEVAN !
\ [8 or 16 bits r |
pCON| [SSEL
Data Memory '
' Interface '
. : CPU .
Oscillator .
. _’Clock .
On-chip On-chip On-chip
Peripheral EPROM/

= External External External

Data SFR Program

Memory Devices Memory

Figure 2.6 The XA Architecture

3/24/97 2-6 Architectural Overview

2.3.1 CPU Blocks

The XA processor is composed of several functional blocks: Instruction fetch and decode;
Execution unit; ALU; Exception controller; Interrupt controller; Register File and core registers;
Program memory (ROM or EPROM), Data memory (RAM); SFR and external bus interface;
Oscillator; and on-chip peripherals and 1/O ports.

Certain functional blocks that exist on most XA derivatives are not part of the CPU core and may
vary in each derivative. These are: the external bus interface, the Special Function Register bus
(SFR bus) interface, specific peripherals, 1/0O ports, code and data memories, and the interrupt
controller.

CPU Performance Features

The XA core is partially pipelined and performs some CPU functions in parallel. For instance,
instruction fetch and decode, and in some cases data write-back, are done in parallel with
instruction execution. This partial pipelining gives very fast instruction execution at a very low
cost. For instance, the instruction execution time for most register-to-register operations on the
XA is 3 CPU clocks, or 100 nanoseconds with a 30 MHz oscillator.

ALU

Data operations in the XA core are accomplished with a 16-bit ALU, providing both 8-bit and
16-bit functions. Special circuitry has been included to allow some 32-bit functions, such as
shifts, multiply, and divide.

Core Registers
The XA core includes several key Special Function Registers which are accessed by programs.

The System Configuration Register (SCR) sets up the basic operating modes of the XA. The
Program Status Word (PSW) contains status flags that show the result of ALU operations, the
register select bits for the four register file banks, the interrupt mask bit, and other system flags.
The Data Segment (DS), Extra Segment (ES), and Code Segment (CS) registers contain the
segment numbers of active data memory segments. The Segment Select register (SSEL),
contains bits that determine which segment register is used by each pointer register in the register
file. Bits in the Power Control register (PCON) control the reduced power modes of the
processor.

Execution and Control

The Execution and Control block fetches instructions from the code memory and decodes the
instructions prior to execution. The XA normally attempts to fetch instructions from the code
memory ahead of what is immediately needed by the execution unit. These pre-fetched
instructions are stored in a 7 byte queue contained in the fetch and decode unit.

If the fetch unit has instructions in the queue, the execution unit will not have to wait for a fetch
to occur when it is ready to begin execution of a new instruction. If a program branch is taken,
the queue is flushed and instructions are fetched from the new location. This block also decides
whether to attempt instruction fetches from on or off-chip code memory.

XA User Guide 2-7 3/24/97

The instruction at the head of the queue is decoded into separate functional fields that tell the
other CPU blocks what to do when the instruction is executed. These fields are stored in staging
registers that hold the information until the next instruction begins executing.

Execution Unit

The execution unit controls many of the other CPU blocks during instruction execution. It routes
addressing information, sends read and write commands to the register file and memory control
blocks, tells the fetch and decode unit when to branch, controls the stack, and ensures that all of
these operations are performed in the proper sequence. The execution unit obtains control
information for each instruction from a microcode ROM.

Interrupt Controller

The interrupt controller can receive an interrupt request from any of the sources on a particular
XA derivative. It prioritizes these based on user programmable registers containing a priority for
each interrupt source. It then compares the priority of the highest pending interrupt (if any) to the
interrupt mask bits from the PSW. If the interrupt has a higher priority than the currently running
code, the interrupt controller issues a request to the execution unit.

The interrupt controller also contains extra registers for processing software interrupts. These are
used to run non-critical portions of interrupt service routines at a decreased priority without
risking “priority inversion.”

While the interrupt controller is not part of the XA core, it is present in some form on all XA
derivatives.

Exception Controller

The exception controller is similar to the interrupt controller except that it processes CPU
exceptions rather than hardware and software interrupt requests. Sources of exceptions are: stack
overflow; divide by zero; user execution of an RETI instruction; hardware breakpoint; trace

mode; and non-maskable interrupt (NMI).

Exceptions are serviced according to a fixed priority ranking. Generally, exceptions must be
serviced immediately since each represents some important event or problem that must be dealt
with before normal operation can resume.

The Exception Controller is part of the XA core and is always present.

Interrupt and Exception Processing

Interrupt and exception processing both make use of a vector table that resides in the low
addresses of the code memory. Each interrupt and exception has an entry in the vector table that
includes the starting address of the service routine and a new PSW value to be used at the
beginning of the service routine. The starting address of a service routine must be within the first
64K of code memory.

When the XA services an exception or interrupt, it first saves the return address on the stack,

followed by the PSW contents. Next, the PC and the PSW are loaded with the starting address of
the appropriate service routine and the new PSW contents, respectively, from the vector table.

3/24/97 2-8 Architectural Overview

When the service routine completes, it returns to the interrupted code by executing the RETI
(return from interrupt) instruction. This instruction loads first the PSW and then the Program
Counter from the stack, resuming operation at the point of interruption. If more than the PC and
PSW are used by the service routine, it is up to that routine to save and restore those registers or
other portions of the machine state, normally by using the stack, and often by switching register
banks.

Reset

Power up reset and any other external reset of the XA is accomplished via an active low reset
pin. A simple resistor and capacitor reset circuit is typically used to provide the power-on reset
pulse. the reset pin is a Schmitt trigger input, in order to prevent noise on the reset pin from
causing spurious or incomplete resets.

The XA may be reset under program control by executing the RESET instruction. This
instruction has the effect of resetting the processor as if an external reset occurred, except that
some hardware features that are latched following a hardware reset (such as the state of the EA
pin and bus width programming) are not re-latched by a software reset. This distinction is
necessary because external circuitry driving those inputs cannot determine that a reset is in
progress.

Some XA derivatives also have a hardware watchdog timer peripheral that will trigger an
equivalent chip reset if it is allowed to time out.

Oscillator and Power Saving Modes
XA derivatives have an on-chip oscillator that may be used with crystals or ceramic resonators to
provide a clock source for the processor.

The XA supports two power saving modes of operation: Idle mode and Power Down mode.
Either mode is activated by setting a bit in the Power Control (PCON) register. The Idle mode
shuts down all processor functions, but leaves most of the on-chip peripherals and the external
interrupts functioning. The oscillator continues to run. An interrupt from any operating source
will cause the XA to resume operation where it left off.

The Power Down mode goes one step further and shuts down everything, including the on-chip
oscillator. This reduces power consumption to a tiny amount of CMOS leakage plus whatever
loads are placed on chip pins. Resuming operation from the power down mode requires the
oscillator to be restarted, which takes about 10 milliseconds. Power down mode can be
terminated either by resetting the XA or by asserting one of the external interrupts, if one was
left enabled when power down mode was entered. In Power Down mode, data in on-board RAM
IS retained. Further power savings may be made by reducing Vdd in Power Down mode; see the
device data sheet for detalils.

Stack

The processor stack provides a means to store interrupt and subroutine return addresses, as well
as temporary data. The XA includes 2 stack pointers, the System Stack Pointer (SSP) and the
User Stack Pointer (USP), which correspond to 2 different stacks: the system stack and the user
stack. See Figure 2.7. The system stack always resides in the first data memory segment,

XA User Guide 2-9 3/24/97

L System — - User
System Stack S%/ack User Stack Stack
Painter — I Pointer [
in Segment 0 in DS Segment
System Mode User Mode
—O\O

R7| Stack Pointer

Figure 2.7 XA Stacks

segment 0. The user stack resides in the data memory segment identified by the current value of
the data segment (DS) register. Executing code has access to only one of these stacks at a time,
via the Stack Pointer, R7. Since each stack resides in a single data memory segment, its
maximum size is 64K bytes. The purpose of having two stack pointers will be discussed in more
detail in the section on Task Management below.

The XA stack grows downwards, from higher addresses to lower addresses within data memory.
The current stack pointer always points to the last item pushed on the stack, unless the stack is
empty. Prior to a push operation, the stack pointer is decremented by 2, then data is written to
memory. When the stack is popped, the reverse procedure is used. First, data is read from
memory, then the stack pointer is incremented by 2. Data on the stack always occupies an even
number of bytes and is word aligned in data memory.

Debugging Features

The XA incorporates some special features designed to aid in program and system debugging.
There is a software breakpoint instruction that may be inserted in a user’s program by a debugger
program, causing the user program to break at that point and go to the breakpoint service routine,
which can transmit the CPU state so that it can be viewed by the user.

The trace mode is similar to a breakpoint, but is forced by hardware in the XA after the
execution of every instruction. The trace service routine can then keep track of every instruction
executed by a user program and transmit information about the CPU state to a serial port or other
peripheral for display or storage. Trace mode is controlled by a bit in the PSW. The XA is able to
alter the trace mode bit whenever an interrupt or exception vector is taken. This gives very
flexible use of trace mode, for instance by allowing all interrupts to run at full speed to comply
with system hardware requirements, while single stepping through mainline code.

3/24/97 2-10 Architectural Overview

With these two features, a simple monitor debugger routine can allow a user to single step
through a program, or to run a program at full speed, stopping only when execution reaches a
breakpoint, in either case viewing the CPU state before continuing.

2.4 Task Management

Several features of the XA have been included to facilitate multi-tasking. Multi-tasking can be
thought of as running several programs at once on the same processor, with a supervisory
program determining when each program, or task, runs, and for how long. Since each task shares
the same CPU, the system resources required by each must be kept separate and the CPU state
restored when switching execution from one task to another. The problem is much simpler for a
microcontroller than it is for a microprocessor, because the code executed by a microcontroller
always comes from the same source: the designers of the system it runs on. Thus, this code can
be considered to be basically trustworthy and extreme measures to prevent misbehavior are not
necessary. The emphasis in the XA design is to protect against simple accidents.

The first step in supporting multi-tasking is to provide two execution contexts, one for the basic
tasks —on the XA termed “user mode”— and one for the supervisory program —"system mode.". A
program running in system mode has access to all of the processor’s resources and can set up and
launch tasks.

Code running in system and user mode use different stack pointers, the System Stack Pointer
(SSP) and the User Stack Pointer (USP) respectively. The system stack is always located in the
first 64K data memory segment, where it can take advantage of the fast on-chip RAM. The user
stack is located within each task’s local data segment, identified by the DS register. The fact that
user mode code uses a different stack than system mode code prevents tasks from accidentally
destroying data on the system stack and in other task spaces.

Additional protection mechanisms are provided in the form of control bits and registers that are
only writable by system mode code. For instance the DS register, that identifies the local data
segment for user mode code, is only writable in the system mode. While tasks can still write to
the other segment register, the ES register, they cannot write to memory via the ES register
unless specifically allowed to do so by the system. The data memory segmentation scheme thus
prevents tasks from accessing data memory in unpredictable ways.

Other protected features include enabling of the Trace Mode and alteration of the Interrupt Mask.
The 4 register banks are a feature that can be useful in small multi-tasking systems by using each

bank for a different task, including one for system code. This means less CPU state that must be
saved during task switching.

XA User Guide 2-11 3/24/97

2.5 Instruction Set

The XA instruction set is designed to support common control applications. The instruction
encoding is optimized for the most commonly used instructions: register to register or register
with indirect arithmetic and logic operations; and short conditional and unconditional branches.
These instructions are all encoded as 2 bytes. The bulk of XA instructions are encoded as either 2
or 3 bytes, although there are a few 1 byte instructions as well as 4, 5, and 6 byte instructions.

The execution of instructions normally overlaps instruction fetch, and sometimes write-back
operations, in order to further speed processing.

2.5.1 Instruction Syntax

The instruction syntax chosen for the XA is similar in many ways to that of the 80C51. A typical
XA instruction has a basic mnemonic, such as "ADD", followed by the operands that the
operation is to be performed on. The basic syntax is illustrated in Figure 2.8. The direction of
operation flow is determined by the order in which operands occur in the source line. For
instance, the instruction: "ADD R1, R2" would cause the contents of R1 and R2 to be added
together and the result stored in R1. Since R1 and R2 are word registers in the XA, this is a 16-
bit operation.

op-code target source
mnemonic operand<&—— gperand
ADD R1 , R2

operand delimiter (comma)

Figure 2.8 Basic Instruction Syntax

An indirect reference (a reference to data memory using the contents of a register as an address)
is specified by enclosing the operand in square brackets, as in: "ADD R1, [R2]". See Figure 2.9.
This instruction causes the contents of R1 and the data memory location pointed to by R2
(appended to its associated segment register) to be added together and the result stored in R1.
Reversing the operand order ("ADD [R2], R1") causes the result to be stored in data memory, as
shown in Figure 2.10.

Most instructions support an additional feature called auto-increment that causes the register
used to supply the indirect memory address to be automatically incremented after the memory
access takes place. The source line for such an operation is written as follows: "ADD R1,
[R2+]". As illustrated in Figure 2.11, the auto-increment amount always matches the data size
used in the instruction. In the previous example, R2 will have 2 added to it because this was a
word operation.

3/24/97 2-12 Architectural Overview

Befgre Aftgr
R2| 1004 rR2| 1004
register file register file
1000 1000
1002 1002
1004 45 1004 4
1006 1006
data memory data memory

Figure 2.9 Basic Indirect Addressing Syntax, to register

Befgre Aftgr
R2| 1004 R2| 1004
register file register file
1000 1000
1002 1002
1004 45 1004 1045
1006 1006
data memory data memory

Figure 2.10 Basic Indirect Addressing Syntax, from Register

Another version of indirect addressing is called indirect with offset mode. In this version, an
immediate value from the instruction word is added to the contents of the indirect register in
order to form the actual address. This result of the add is 16 bits in size, which is then appended
to the segment register for that pointer register. If the offset calculation overflows 16 bits, the
overflow is ignored, so the indirect reference always remains on the same segment. The
immediate data from the instruction is a signed 8-bit or 16-bit offset. Thus, the range is +127
bytes to -128 bytes for an 8-bit offset, and +32,767 to -32,768 bytes for a 16-bit offset. Note that
since the address calculation is limited to 16-bits, the 16-bit offset mode allows access to an
entire data segment.

When an instruction requires an immediate data value (a value stored within the instruction
itself), it is written using the "#" symbol. For example: "ADD R1, #12" says to add the value 12
to register R1.

XA User Guide 2-13 3/24/97

Befgre Aftgr
R2| 1004 rRo| 1006
register file register file
1000 1000
1002 1002
1004 4 1004 4
1006 1006
data memory data memory

Figure 2.11 Indirect Addressing with Auto-Increment

Since indirect memory references and immediate data values do not implicitly identify the size of
the operation to be performed, a few XA instructions must have an operation size explicitly
called out. An example would be the instruction: "MOV [R1], #1". The immediate data value
does not specify the operation size, and the value stored in memory at the location pointed to by
R1 could be either a byte or a word. To clarify the intent of such an instruction, a size identifier
is added to the mnemonic as follows: "MOV.b [R1], #1". This tells us that the operation should
be performed on a byte. If the line read "MOV.w [R1], #1", it would be a word operation.

If a direct data address is used in an instruction, the address is simply written into the instruction:
"ADD 123, R1", meaning to add the contents of register R1 to the data memory value stored at
direct address 123. In an actual program, the direct data address could be given a name to make
the program more readable, such as "ADD Count, R1".

Operations using Special Function Registers (SFRs) are written in a way similar to direct
addresses, except that they are normally called out by their names only: "MOV PSW,#12". Using
actual SFR addresses rather than their names in instructions makes the code both harder to read
and less transportable between XA derivatives.

Bit addresses within instructions may be specified in one of several ways. A bit may be given a
unique name, or it may be referred to by its position within some larger register or entity. An
example of a bit name would be one of the status flags in the PSW, for instance the carry ("C")
flag. To clear the carry flag, the following instruction could be used: "CLR C". The same bit
could be addressed by its position within the PSW as follows: "CLR PSWL.7", where the period
(".") character indicates that this is a bit reference. A program may use its own names to identify
bits that are defined as part of the application program.

Finally, code addresses are written within instructions either by name or by value. Again, a
program is more readable and easier to modify if addresses are called out by name. Examples
are: "JMP Loop" and "JMP 124",

3/24/97 2-14 Architectural Overview

2.5.2 Instruction Set Summary

The following pages give a summary of the XA instruction set. For full details, consult Chapter 6.

Basic Arithmetic, Logic, and Data Movement Instructions
The most used operations in most programs are likely to be the basic arithmetic and logic
instructions, plus the MOV (move data) instruction. The XA supports the following basic

operations:

ADD
ADDC
SuUB
SUBB
CMP
AND
OR
XOR

These instructions support all of the following standard XA data addressing mode combinations::

Operands
R, R
R, [R]

[R], R

R, [R+]

[R+], R

R, [R+offset]

[R+offset], R

direct, R

R, direct

R, #data

[R], #data

XA User Guide

Simple addition.

Add with carry.
Subtract.

Subtract with borrow.
Compare.

Logical AND.

Logical OR.
Exclusive-OR.

Description
The source and destination operands are both registers.

The source operand is indirect, the destination operand is a
register.

The source operand is a register, the destination operand is
indirect.

The source operand is indirect with auto-increment, the destination
operand is a register.

The source operand is a register, the destination operand is
indirect with auto-increment.

The source operand is indirect with an 8 or 16-bit offset, the
destination operand is a register.

The source operand is a register, the destination operand is
indirect with an 8 or 16-bit offset.

The source operand is a register, the destination operand is a
direct address.

The source operand is a direct address, the destination operand is
a register.

The source operand is an 8 or 16-bit immediate value, the
destination operand is a register.

The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect.

2-15 3/24/97

Operands Description
[R+], #data The source operand is an 8 or 16-bit immediate value, the

destination operand is indirect with auto-increment.

[R+offset], #data The source operand is an 8 or 16-bit immediate value, the

destination operand is indirect with an 8 or 16-bit offset.

direct, #data The source operand is an 8 or 16 bit immediate value, the

destination operand is a direct address.

Other instructions on the XA use different operand combinations. All XA instructions are
covered in detail in the Instruction Set section. Following is a summary of other instruction
types:Additional arithmetic instructions

Additional arithmetic instructions

ADDS Add short immediate (4-bit signed value).
NEG Negate (twos complement).
SEXT Sign extend.
MUL Multiply.
DIV Divide.
DA Decimal adjust.
ASL Arithmetic shift left.
ASR Arithmetic shift right.
LEA Load effective address.
Additional logic instructions
CPL Complement (ones complement or logical inverse).
LSR Logical shift right.
NORM Normalize.
RL Rotate left.
RLC Rotate left through carry.
RR Rotate right.
RRC Rotate right through carry.
Other data movement instructions
MOVS Move short immediate (4-bit signed value).
MOVC Move to or from code memory.
MOVX Move to or from external data memory.
PUSH Push data onto the stack.
POP Pop data from the stack.
XCH Exchange data in two locations.

Bit manipulation instructions

3/24/97

SETB Set (write a 1 to) a bit.

CLR Clear (write a 0 to) a bit.

MOV Move a bit to or from the carry flag.

ANL Logical AND a bit (or its inverse) to the carry flag.
ORL Logical OR a bit (or its inverse) to the carry flag.

2-16 Architectural Overview

Jump, branch, and call instructions

BR Branch to code address (plus or minus 256 byte range).

JMP Jump to code address (range depends on specific JMP variation).

CALL Call subroutine (range depends on specific CALL variation).

RET Return from subroutine or interrupt.

Bcc Conditional branches with 15 possible condition variations.

JB, JNB Jump if a bit set or not set.

CJINE Compare two operands and jump if they not equal.

DJINZ Decrement and jump if the result is not zero.

JZ, INZ Jump on zero or not zero (included for 80C51 compatibility).
Other instructions

NOP No operation (used mainly to align branch targets).

BKPT Breakpoint (used for debugging).

TRAP Software trap (used to call system services in a multitasking system).

RESET Reset the entire chip.

XA User Guide 2-17 3/24/97

2.6 External Bus

Most XA derivatives have the capability of accessing external code and/or data memory through
the use of an external bus. The external bus provides address information to external devices, and
initiates code read, data read, or data write strobes. The standard XA external bus is designed to
provide flexibility, simplicity of connection, and optimization for external code fetches.

As described in section 4.4.4, the initial external bus width is hardware settable, and the XA
determines its value (8 or 16 bits) during the reset sequence.

2.6.1 External Bus Signals

The standard XA external bus supports 8 or 16-bit data transfers and up to 24 address lines. The
precise number of address lines varies by derivative. The standard control signals and their
functions for the external bus are as follows:

Signal name Function

ALE Address Latch Enable. This signal directs an external address
latch to store a portion of the address for the next bus operation.
This may be a data address or a code address.

PSEN Program Store Enable. Indicates that the XA is reading code
information over the bus. Typically connected to the Output
Enable pin of external EPROMSs.

RD Read. The external data read strobe. Typically connected to the
RD pin of external peripheral devices.

WRL Write. The low byte write strobe for external data. Typically
connected to the WR pin of external peripheral devices. For an 8-
bit data bus, this is the only write strobe. For a 16-bit data bus,
this strobe applies only to the lower data byte.

WRH Write High. This is the upper byte write strobe for external data
when using a 16-bit data bus.

WAIT Wait. Allows slowing down any type external bus cycle. When
asserted during a bus operation, that operation waits for this
signal to be de-asserted before it is completed.

2.6.2 Bus Configuration

The standard XA bus is user configurable in several ways. First, the bus size may be configured
to either 8 bits or 16 bits. This may be configured by the logic level on a pin at reset, or under
firmware control (if code is initially executed from on-chip code memory) prior to any actual
external bus operations. As on the 80C51 HAegin determines whether or not on-chip code
memory is used for initial code fetches.

3/24/97 2-18 Architectural Overview

Second, the number of address lines may be configured in order to make optimal use of /0
ports. Since external bus functions are typically shared with 1/0 ports and/or peripheral /O
functions, it is advantageous to set the number of address lines to only what is needed for a
particular application, freeing 1/O pins for other uses.

2.6.3 Bus Timing

The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE widtRSEN widthRD andWRL/WRH width, and data hold time

from WRL/WRH. These times are programmable in a range that will support most RAMSs,
ROMs, EPROMSs, and peripheral devices over a wide range of oscillator frequencies without the
need for additional external latches, buffers, or WAIT state generators.

The following figures show the basic sequence of events and timing of typical XA bus accesses.
For more detailed information, consult Section 7 and the device data sheet.

ALE
Address bus code address
Data bus address instruction data
PSEN
Figure 2.12 Typical External Code Read.
ALE
Address bus code address >< code address ><
Data bus instruction data >< instruction data X
PSEN

Figure 2.13 Optimized (Sequential Burst) External Code Read.

XA User Guide 2-19 3/24/97

ALE

Address bus data address
Data bus address data in to XA
RD

Figure 2.14 Typical External Data Read.

ALE
Address bus data address
Data bus address data out from XA
WRL/WRH

Figure 2.15 Typical External Data Write.

2.7 Ports

Standard 1/O ports on the XA have been enhanced to provide better versatility and
programmability than was previously available in the 80C51 and most of its derivatives. Access
to the I/O ports from a program is through SFR addresses assigned to those ports. Ports may be
read and written is the same manner as any other SFR.

The XA provides more flexibility in the use of I/O ports by allowing different output

configurations. See Figure 2.16. Port outputs may be programmed to be quasi-bidirectional
(80C51 style ports), open drain, push-pull, and high impedance (input only).

3/24/97 2-20 Architectural Overview

—P —
—P hi —
- hi-Z [>_ -
—P —
—P XA —
—P —
—P —
+V +V

Read
Write _>_| Write _>—| Write

Quasi-bidirectional open drain push-pull

Figure 2.16 XA Port Pins with Driver Option Detall

2.8 Peripherals

The XA CPU core is designed to make derivative design fast and easy. Peripheral devices are not
part of the core, but are attached by means of a Special Function Register bus, called the SFR
bus, which is distinct from the CPU internal buses. So, a new XA derivative may be made by
designing a new SFR bus compatible peripheral function block, if one does not already exist,
then attaching it to the XA core.

2.9 80C51 Compatibility

The 80C51 is the most extensively designed-in 8-bit microcontroller architecture in the world,
and a vast amount of public and private code exists for this device family. For customers who
use the 80C51 or one of its derivatives, preservation of their investment in code development is
an important consideration. By permitting simple translation of source code, the XA allows
existing 80C51 code to be re-used with this higher-performance 16-bit controller. At the same
time, the XA hardware was designed with the clear goal of upward compatibility. 80C51 designs
may be migrated to the XA with very few changes necessary to software source or hardware.

XA User Guide 2-21 3/24/97

The XA provides an 80C51 Compatibility Mode, which essentially replicates the 80C51 register
architecture for the best possible upward compatibility. In the alternative Native Mode, the XA
operates as an optimized 16-bit microcontroller incorporating the best conceptual features of the
original 80C51 architecture.

Many trade-offs and considerations were taken into account in the creation of the XA
architecture. The most important goal was to make it possible for a software translator to convert
80C51 assembler source code to XA source code on a 1:1 basis, i.e., one XA instruction for one
80C51 instruction.

Some specific compatibility issues are summarized in the following two sections. See Chapter 9
for a complete description of compatibility.

2.9.1 Software Compatibility

Several basic goals were observed in order to design 80C51 software compatibility for the XA,
while avoiding over-complicating the XA design. Following are some key issues for XA
software:

* Instruction mapping. Each 80C51 instruction translates into one XA instruction. Multi-
instruction combinations that could result in problems if split by an interrupt were avoided as
much as possible. Only one 80C51 instruction does not have a one-to-one direct replacement
with an XA instruction (this instruction, XCHD, is extremely rarely used).

* "As-is" instructions. Most XA instructions are more powerful supersets of 80C51 instructions.
Where this was not possible, the original 80C51 instruction is included "as-is" in the XA
instruction set.

 Timing. Instruction timing must necessarily change in order to improve performance. The XA
does not attempt to retain timing compatibility with the 80C51; rather, the design simply
maximizes instruction execution speed. When 80C51 code that is timing critical is translated to
the XA, the user must re-analyze the timing and make adjustments.

» SFR Access. Translation of SFR accesses is usually simple, since SFRs are normally
referenced by name. Such references are simply retained in the translated XA code. If program
source code from a specific 80C51 derivative references an SFR by its address, the translator can
directly substitute the appropriate XA SFR, provided both the 80C51 and the XA derivative are
correctly identified to the translator.

2.9.2 Hardware Compatibility
The key goal for hardware was to produce a familiar architecture with a good deal of upward
compatibility.

* Memory Map. A major consideration in hardware compatibility of the XA with the 80C51 is
the memory map. The XA approaches this issue by having each memory area (registers, data
memory, code memory, stack, SFRs) be a superset of the corresponding 80C51 area.

3/24/97 2-22 Architectural Overview

» Stack. One area where a functional change could not be avoided is in the use of the processor
stack. Due to the fact that the XA supports 16-bit operations in memory, it was necessary to
change the direction of stack growth to downward —the standard for 16-bit processors— in order
to match stack usage with efficient access of 16-bit variables in memory. This is an important
consideration for support of high-level language compilers such as C.

* Pin-for-pin compatibility. XA derivatives are not intended to be exactly pin-compatible with

other 80C51 derivatives that have similar features. Many on-chip XA peripherals, for example,
have improved capabilities, and maintaining pin-for-pin compatibility would limit access to these
capabilities. In general, peripherals have been made upward compatible with the original 80C51
devices, and most enhancements are added transparently. In these cases, 80C51 code will operate
correctly on the 80C51 functional subset.

 Bus Interface. The external bus on the XA is an example of a trade-off between 80C51
compatibility and performance. In order to provide more flexibility and maximum performance,
the 80C51 bus had to be changed somewhat. The differences are described in detail in the section
on the external bus.

XA User Guide 2-23 3/24/97

3/24/97 2-24 Architectural Overview

3 XA Memory Organization

3.1 Introduction

The memory space of XA is configured in a Harvard architecture which means that code and
data memory (including sfrs) are organized in separate address spaces. The XA architecture
supports 16 Megabytes (24-bit address) of both code and data space. The size and type of
memory are specific to an XA derivative.

The XA supports different types of both code and data memory e.g.,code memory could be
Eprom, EEProm, OTP ROM, Flash, and Masked ROM whereas data memory could be RAM,
EEProm or Flash.

This chapter describes the XA Memory Organization of register, code, and data spaces; how
each of these spaces are accessed, and how the spaces are related.

3.2 The XA Register File

The XA architecture is optimized for arithmetic, logical, and address-computation operations on
the contents of one or more registers in the XA Register File.

3.2.1 Register File Overview

The XA architecture defines a total of 16 word registers in the Register File:

In the baseline XA core, only RO through R7 are implemented. These registers are available for
unrestricted use except R7— which is the XA stack pointer, as illustrated in Figure 3.1. In effect,
the XA registers provide users with at least 7 distinct “accumulators” which may be used for all
operations. As will be seen below, the XA registers are accessible at the bit, byte, word, and
doubleword level.

Additional global registers, R8 through R15, are reserved and may be implemented in specific
XA derivatives. These registers, when available, are equivalent to RO through R7 except byte
access and use as pointers will not be possible (only word, double-word, and bit-addressable)
The Register File is independent of all other XA memory spaces (except in Compatibility Mode;
see chapter 9).

Register File Detail
Figure 3.2 describes RO through R7 in greater detalil.

Byte, Word, and Doubleword Registers

All registers are accessible as bits, bytes, words, and —in a few cases— doublewords. Bit access to
registers is described in the next section. As for byte and word accesses, R1 —for example—is a
word register that can be word referenced simply as “R1”. The more significant byte is labeled as
“R1H" and the less significant byte of R1 is referenced as “R1L". Double-word registers are
always formed by adjacent pairs of registers and are used for 32 bit shifts, multiplies, and
divides. The pair is referenced by the name of the lower-numbered register (which contains the

XA User Guide 3-1 3/24/97

less significant word), and this must have an even number. Thus valid double-register pairs are
(RO,R1), (R2,R3), (R4,R5) and (R6, R7).

16 bits

R15

R14

R13

derivative-optional

R12

general registers

R11

(word-accessible only)

R10

R9

R8

/\

R7

R6

R5

general registers

R4

present in all
XA derivatives

R3

R2

R1

RO

Figure 3.1 XA Register File Overview

As described in section 4.7, there are two stack pointers, one for user mode and another for
system mode. At any given instant only one stack pointer is accessible and its value is in R7.
When PSW.SM is 0, user mode is active and the USP is accessible via R7. When PSW.SM is 1,
the XA is operating in system mode, and SSP is in SP (R7). (Note however, as described in
Chapter 4, all interrupts save stack frames on the system stack, using the SSP, regardless of the

current operating mode.)

There are four distinct instances of registers RO through R3. At any given time, only 1 set of the
4 banks is active, referenced as RO through R3, and the contents of the other banks are
inaccessible. This allows high-speed context-switching, for example, for interrupt service
routines PSW bitsRS1andRSO0 select the active register bank:

RS1 RSO visible register bank

3/24/97

3-2 XA Memory Organization

PSW.RSn are writable when the XA is operating in system or user mode, and programs running
in either mode may explicitly change these bits to make selected banks visible one at a time.
More commonly, the interrupt mechanism, as described in Chapter 4, provides automatic
implicit register bank switching so interrupt handlers may immediately begin operating in a
reserved register context.

R15
R14
R13
R12 Global registers
R11 (word only)
R10
R9
R8
L SSP
SP(R7) R7H USP RL
R6 R6H : R6L
: Global registers.
R5 R5H : R5L
R4 R4H RAL
R3 R3H R3L 1
R2 R2H R2L]
Banked Registers
R1 R1H R1L
RO ROH ROL
|
I
|

Figure 3.2 XA Register File

XA User Guide 3-3 3/24/97

Bit Access to Registers

The XA Registers are all bit addressable. Figure 3.3 shows how bit addresses overlie the basic
register file map. In general, absolute bit references as given in this map are unnecessary. XA
software development tools provide symbolic access to bits in registers. For example, bit 7 may
be designated as “R0.7” with no ambiguity

Bit references to banked registers RO through R3 access the currently accessible register bank, as

set byPSW bitsRS1, RS0and the currently selected stack pointer USP or SSP. The unselected
registers are inaccessible..

R15|Fr|Fe|FD|Fc|FB|FA|Fo|F8|F7|F6|F5|F4|F3|F2|F1|Fo

R14|eF|ee|ep|Ec|EB|EA|E9| E8| E7|E6| ES| E4| E3| E2| E1| EO

R7 TE|7E|7D|7C| 7B | 7A| 79[78| 77| 76| 75| 74| 73| 72| 71| 70

R6 6F|6E|6D[6C|6B|6A|69(68| 67)|66|65(64(63|62| 61|60

R5 S5F|5E|5D|5C|5B|5A| 59 (58| 57)|56|55(54(53]|52|51(50

RA4 |4F|4E|4D|4c|4B|4a| 49| 48| 47| 46| 45| 44| 43| 42| 41| 40

RS 3F[3E(3D|3C|3B(3A(39|38]|37(36(35[34]|33(32(31|30

R2 2F[2E|2D|2C[2B[2A| 29| 28| 27 (26| 25| 24| 23(22| 21|20

R1 |1F|1e|1D|1c|1B|1A|19|18|17|16|15|14|13 121110

RO OF |OE|OD|0OC|0B|0A|09)|08]|07|06]|05]|04]|03|02|01|00

RnH RnL

Figure 3.3 Bit Address to Registers

3.3 The XA Memory Spaces

The XA divides physical memory into program and data memory spaces. Twenty-four address
bits, corresponding to a 16MB address space, are defined in the XA architecture. In any given
XA implementation, fewer than all twenty-four address bits may actually be used, and there is
provision for a small-memory mode which uses only 16-bit addresses; see Chapter 4.

Code and data memory may be on-chip or external, depending on the XA variant and the user

implementation. Whether a specific region is on-chip or external does not, in general, affect
access to the memory.

3/24/97 3-4 XA Memory Organization

3.3.1 Bytes, Words, and Alignment

XA memory is addressed in unitstoftes where each byte consists of 8 bitswérd consists of
two bytes, and the word storage order is “Little-Endian”, that is, the less significant byte of word
data is located at a lower memory address. See Figure 3.4.

address AO

n 0 L.S. Byte

WORD at address n
n+1 1 M.S. Byte

Figure 3.4 Memory byte order

Any word access must be aligned at an even address (Address bit A0=0). If an odd-aligned word
access is attempted the word at the next-smallest even address will be accessed, that is, AO will
be setto 0.

The external XA memory spaces may be accessed in byte or word units but the hardware access
method does not affect the even alignment restriction on word accesses.

3.4 Data Memory

The data memory space starts at address 0 and extends to the highest valid address in the
implementation, at maximum, FFFFFFh. As will be described below, the data memory space is
segmented into 256 segments of 64K bytes eBgternal Data Memorgtarts at the first address
following the highestnternal Data Memoryocation. In general, at least 512 bytes of Internal
Data Memory, starting at location 0, will be provided in all XA implementations; however, there
IS no inherent minimum or maximum architectural limitation on Internal Data Memory.

The upper 16 segments of data memory (addresses F0:0000 through FF:FFFF hexadecimal) are
reserved for special functions in XA derivatives. A similar range is reserved in the code memory
space, see section 3.5.

3.4.1 Alignment in Data Memory

There are no data memory alignment restrictions except that placed on word accesses to all
memory: Words must be fetched from even addresses. An attempt to fetch a word at an odd
address will fetch a word from the preceding even address.

3.4.2 External and Internal Overlap

If External Data Memory is placed by external logic at addresses that overlaps Internal Data
Memory, the Internal Data Memory generally takes precedence. The overlapped portion of the
External memory may be accessed only by using a form of the MOVX instruction; see
Chapter 6. The use of MOVX always forces external data memory fetch in XA. For non-
overlapped portion of external data memory, no MOVX is required.

XA User Guide 3-5 3/24/97

3.4.3 Use and Read/Write Access

Data memory is defined as read-write, and is intended to contain read/write data. It is logically
impossible to execute instructions from XA Data Memory. It is possible, and a common practice,
to add logic to overlap external code and data memory spaces. In this case it is important to
understand that the memory spaces are logically separate. In such a modified Harvard
architecture, implemented with external logic, it is possible —but not recommended- to write
self-modifying XA code. No such overlap is possible for internal data memory.

3.4.4 Data Memory Addressing

XA data memory addressing is optimized for the needs of embedded processing. Data memory
in the XA is divided into 64K byte segments. This provides an intrinsic protection mechanism
for multitasking applications and improves performance by requiring fewer address bits for
localized accesses.

Addressing through Segment Registers

Segment registers provide the upper 8 address bits needed to obtain a complete 24-bit address in
applications that require full use of the XA 16 Mbyte address space. Two segment registers are
defined in the XA architecture for use in accessing data memory, the Data Segment Register
(DS), and the Extra Segment Regiqtes). As user stacks are located in the segment specified

by DS, it is probably most convenient to address user data structures tizSughach pointer

register, namely RO through R6, is associated with one of the segment registers via the Segment
Select SSEL) register as illustrated in Figure 3.5.

SSEL |ESWEN|R6SEG | R5SEG|R4SEG |R3SEG | R2SEG | R1SEG | ROSEG

I
o |
I

8-bit segment
segment DS identifier —L
registers .
ES —@ R3 16-bit segment offset
1 |
complete \J Y Y
24-bit memory

address

Figure 3.5 Address generation

A 0 in the SSEL bit corresponding to the pointer register selects DS (default on RESET) and 1
selects the ES. For example, when R3 contains a pointer value, the full 24 bit address is formed
by concatenating DS or ES, as determined by the state of SSEL bit 3, as the most significant

8 bits. As a consequence of segmented addressing, the XA data memory space may be viewed as
256 segments of 64K bytes each (Figure 3.6).

3/24/97 3-6 XA Memory Organization

64K Segments
FFFFh 0 1
Data Memory 255
(only indirectly
addressed)
00h | _ _ _ __ __ ___ 1 _d_____L____1_____]
3FFh RAM
(directly and
indirectly
addressable)
Directly 40h
addressed 3Fh
data Standard
(1Kb per bit-addressable
segment) RAM
20h
1Fh
RAM
(directly and
indirectly
addressable)
0

Figure 3.6 Data memory segmentation

If R7 (the stack pointer) is used as a normal indirect pointer, the data segment addressed will
always be segment 0 in System Mode and the DS segment in User Mode. More information
about the System and User modes may be found in sections 4 and 5.

The ESWEN (bit 7 of SSEL) can be programmed only in the System Mode to enable (1) or
disable (0) write privileges to data segment via ES register in the User Mode. This bit defaults to
the disabled (0) state after reset.

Addressing Modes
The XA provides flexible data addressing modes. Arithmetic, logic, and data movement
instructions generally support the following data memory access:

Indirect A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with a 16-bit pointer in a register.

Direct. The first 1K bytes of data in each segment may be accessed by an address contained
within the instructionindirect with offsetA signed byte/word offset contained within the
instruction is added to the contents of a pointer register, and the result is concatenated with the
8-bit segment register DS to produce a complete 24-bit address.

Indirect with auto-incrementndirect addresses are formed as above and the pointer register
contents are automatically incremented.

XA User Guide 3-7 3/24/97

Bit-level Bit-level addresses are absolute references to specific bits.

Data move instructions and some special purpose instructions also have additional data
addressing modes as described in Chapter 6.

Indirect Addressing

The entire 16 MByte address space is accessible via register-indirect addressing with a segment
register, as illustrated by Figure 3.7 (Note that for simplicity, this figure omits showing how the
Extra Segment or Data Segment Register is chosen 8SBE{.).

FFFFFFh
p 16 bits Rn
g ~ + 8 bits Seg
Reg
g
[| 24 bit address
0

Figure 3.7 Indirect Access to 24 Bit Address Space

Indirect addressing with an offset is a variant of general indirect addressing in which an 8-bit or
16-bit signed offset contained within the instruction is added to the contents of a pointer register,
then concatenated with an 8-bit segment register to produce a complete address. This mode gives
access to data structures when a pointer register contains the starting address of the structure. It
also supports stack-based parameter passing.

Indirect addressing with autoincrement is another variant of indirect addressing in which the
pointer register contents are automatically incremented following the operation. When the
operand is a byte, the increment is one; when the operand is a word, the increment is 2. Using
indirect addressing with auto-increment provides a convenient method of traversing data
structures smaller than 64K bytes. For data structures exceeding 64K bytes in length, the
program code must explicitly adjust the segment register at page boundaries.

Address generation in these two modes of indirect addressing is illustrated inFigures 3.8 and 3.9.
When using indirect addressing care is necessary to avoid accessing a word quantity at an odd
address. This will result in an access using the next-lower even address, which is generally not
desirable. Note that the indirect addressing with an offset will be successful in this case as long
as the final, effective address is even. That is, both the base address and the offset may be odd.

3/24/97 3-8 XA Memory Organization

Direct Addressing

The first 1K of each segment is directly addressable. Address generation for the direct address
mode is summarized in Figure 3.10. Segment register DS is always used.

Direct data-reference instructions encode a maximum of 10 address bits, which are zero extended
to sixteen bits and concatenated with DS to form an absolute 24 bit address. In all segments, direct
addressing can be used to access any byte in the first 1K bytes of the segment.

8 or 16-bit .
signed offset @ 16 bits Rn
+ i Seg
+ RN 8 bits Reg
. partial :
16 bits indirect addr 24 bit address
+ 8 bits Seg
w1 @
Rn <-- Rn + data size
24 bit address
a) Indirect addressing with offset b) indirect addressing with auto increment

Figure 3.8 Indirect Addressing

0 10 bits Direct address from instruction

+ 8 bits

DS (data segment register)

24 bit address

Figure 3.9 Direct address generation

SFR Addressing

A 1K portion of the direct address space, addresses 400h through 7FFh, is reserved for SFR
addresses. The SFR address space uses a portion of the direct address space, but represents a
completely distinct logical area that is not related to the data memory segmentation scheme. See
section 3.6 for a complete description of SFR access.

Bit Addressing

Thirty-two bytes of each segment of data memory are also bit-addressable, starting at offset 20h
in the segment addressed by the DS register. Address generation for bit addressing in the data
memory space is shown in Figure 3.10. As described in chapter 6, bits are encoded in
instructions as 10 bits. Figure 3.11 shows the bit addresses as they appear in memory .

XA User Guide 3-9 3/24/97

identifies 1 of 8 bits in a byte.
byte offset from 20h

Figure 3.10 Bit address generation in direct memory space

3Fh 1FF| 1FE|1FD| 1FC| 1FB| 1FA| 1F9| 1F8| 1F7| 1F6| 1F5| 1F4| 1F3| 1F2| 1F1| 1F0 Segment n

3Eh 1EF|1EE|1ED|1EC| 1EB| 1EA| 1EQ| 1E8| 1E7| 1E6| 1E5| 1E4| 1E3| 1E2| 1E1| 1EQ|

) r
() ~
A
p
2 8h 14F| 14E|14D| 14C| 14B| 14A| 149| 148| 147| 146 | 145 144| 143| 142 141 140
26h 13F|13E|13D| 13C| 13B[13A| 139 138| 137| 136 135 134| 133| 132(131 130
24h 12F|12E|12D| 12C| 12B[12A| 129 128| 127| 126 125 124| 123| 122 121{ 120
22h 11F|11E|11D| 11C| 11B[11A| 119 118| 117| 116 115| 114| 113| 112(111{ 110
20h 10F| 10E|10D| 10C| 10B[10A| 109 108| 107| 106 105| 104| 103| 102(101| 100 -
\ A /s
\4 N4
byte at odd address byte even address 20h _______

Figure 3.11 Direct memory bit addressing

3.5 Code Memory

Code memory starts at address 0 and extends to the highest valid address in the implementation,
at maximum, FFFFFFHExternal Code Memorgoff-chip) starts at the first address following the
highestinternal Code Memorfon-chip) location, if any. If code memory is present on-chip, it
always starts at location 0.

The upper sixteen 64K byte code pages (addresses FO0000 through FFFFFF hexadecimal) are
reserved for special functions in XA derivatives. The same address range is reserved in the data
memory space, see section 3.4.

3.5.1 Alignment in Code Memory

As instructions are variable in length, from 1 to 6 bytes (see Chapter 6), instructions in code
memory can be located at odd addresses. As described in Chapter 6, instruction branch targets,
i.e., targets of jumps, calls, branches, traps, and interrupts must be aligned on an even address.

3/24/97 3-10 XA Memory Organization

3.5.2 External and Internal Overlap

If External Code Memory is placed by external logic at locations that overlap Internal Code
Memory, the Internal Code Memory takes precedence, and the overlapped portion of the
External memory will in not be accessed. However, on XA implementations that provide an
External AddressHA) hardware input, setting EA low will cause external program memory to
be used.

3.5.3 Access

Code memory is intended to contain executable XA instructiims XA architecture supports
storing constant data in Code Memory and provides special access modes for retrieving this
information. Constant data is implicitly stored within the instruction of many data manipulation
instructions when immediate operands are specified.

It is possible, and a common practice, to overlap external code and data memory spaces. In this
case it is important to understand that the memory spaces are logically separate. In such an
architecture, implemented with external logic, code memory is logically read-only memory that

is writable when accessed as external data memory. No such overlap is possible for internal code
memory.

MOVC addressing in Code Memory

A special instruction, MOVC, is defined in the XA for accessing constant data (e.g lookup

tables, string constants etc.) stored in code memory. There is a standard form of MOVC that
reflects the native XA architecture, and there are two variations that reflect 80C51 compatibility;
see Chapter 9 for details of 80C51 compatibility. The standard form of MOVC uses a 16-bit
register value as a pointer, appended to either the top 8 bits of the Program Counter (PC) or the
Code Segment register (CS) to form a 24-bit address, as shown in Figure 3.12. The source for the
upper 8 address bits is determined by the setting of the segment selection bit (0 = PC and 1= CS)
in the SSEL register that corresponds to the operand register.

SSEL |ESWEN|R6SEG | R5SEG|R4SEG |R3SEG | R2SEG | R1SEG | ROSEG

.

8-bit segment
segment " C| _identifier
registers] .
CS 1 R4 16-bit Segment offset
complete Y Y Y
24-bit memory
address

Figure 3.12 MOVC addressing in code memory

XA User Guide 3-11 3/24/97

3.6 Special Function Registers (SFRs)

Special Function Registers (SFRs) provide a means for programs to access CPU control and

status registers, peripheral devices, and 1/0O ports. The SFR mechanism provides a consistent
mechanism for accessing standard portions of the XA core, peripheral functions added to the

core within each XA derivative, and external devices as implemented in future derivatives.

Figure 3.13 highlights the core registers that are accessed as BERSI, SCR, SSEL, PSWH,
PSWL, CS,ES, DS. Communication with these registers as well as on-chip peripheral devices
is performed via the dedicated Special Function Register Bus (see section 8).

F!ESET
Register
File
EE Executio
Unit
Data/Address/Control Bus
16-bit IREG
@ T @
- Program
Exception SFR bus Counter
Controller interface
""""""" TT T Program
: Memory
i [PswH [Pswi] [scr] Interface
1
' SFR bus VANEVAN
: 8 or 16 bits r
1
: ==
Data Memory
Interface <:_—
_ A N
On-chip On-chip On-chip
RAM Peripheral EPROM/
ROM N
External External External
Data SFR Program
Memory Devices Memory

Figure 3.13 XA Core with SFRs highlighted

The SFR address space is 1K bytes (Figure 3.14). The first half of this space (400h through
5FFh) is dedicated to accessing core registers and on-chip peripherals outside the XA core. SFRs

3/24/97 3-12 XA Memory Organization

assigned addresses in the range 400h through 43Fh are both byte and bit-addressable. The second
half (600h through 7FFh) of the SFR space is reserved for providing access to off-chip SFRs.

The off-chip sfr space is provided to allow faster access of off-chip memory mapped I/O devices
without having to create a pointer for each access.

7FFh
Reserved for off-chip,
non-bit addressable
SFRs > 512 bytes
(memory-mapped 1/O)
600h
5FFh
1K directly Standard
non-bit addressable
addressable on-chio SERs
SFR space P
440h
43Fh 512 bytes
64 bytes of bit
addressable on-chip
SFRs
400h

Figure 3.14 SFR address space
Following are some key points to remember when using SFRs:

SFRs should be symbolically addres€elcause SFR assignments may vary from derivative to
derivative, it is important to always use symbolic references to SFRs. XA software development
tools provide symbolic constants for all SFRs in the form of header/include files and the tools
will be updated as new SFRs are added with each added XA derivative.

Verify that your application uses the right header/include .fddhough baseline SFRs are

likely to retain their addresses in future XA derivatives, this is not guaranteed. SFRs used for
optional peripherals may well have different addresses on different derivatives, and the same
address on one derivative may access a different peripheral SFR.

Any SFR may be accessed at any time without reference to a pointer or s&fReatcess is
independent of any segment register, so SFRs are always accessible with the 10 bit address
encoded in instructions accessing SFRs.

SFRs may not be accessed via indirect addvasg time indirection is used, data memory is

accessed. If an SFR address is referenced as an indirect address, physical RAM at that address —
if it exists— is accessed.

XA User Guide 3-13 3/24/97

An SFR address is always contained entirely within an instruclioe.SFR address is always
encoded in the instruction providing the access, and there is no other way of addressing an SFR.

Details of access to external SFRs is determined by derivative implemenatiess to off-
chip SFRs is a reserved feature not implemented in the baseline XA. Consult derivative product
datasheets for details of external SFR access, e.g., timing.

3.7 Summary of Bit Addressing

Several sections of this chapter have described portions of the XA that are bit-addressable. There
are a total of 1024 addressable bits distributed in the XA architecture, chosen to make important
data structures immediately accessible via XA bit-processing instructions, specifically, all
registers in the register file, RO through R7 (and R8 through R15 if implemented); directly
addressable RAM addresses 20h through 3Fh in the page currently specified by DS, and a
portion of the on-chip SFRs. Figure 3.15 summarizes all the bit-addressable portions of the XA.5

bit space overlaps bytes...

start end type start end
0 <«—» OFFh registers RO <« R15

100h -« 1FFh direct RAM 20h <« 3Fh

200h <& 3FFh on-chip SFRs 400h <43Fh

Figure 3.15 Bit addressing summary

3/24/97 3-14 XA Memory Organization

4 CPU Organization

This chapter describes the Central Processing Unit (CPU) of the XA Core. The CPU contains all
status and control logic for the XA architecture. The XA reset sequence and the system oscillator
interface with the CPU, and power control is handled here. The CPU performs interrupt and
exception handling. The XA CPU is equipped with special functions to support debugging.

4.1 Introduction
Figure 4.1 is a block diagram of the XA Core.

@SET
Register
File
%% Executio
Unit
Data/Address/Control Bus
16-bit IREG
@ T @
- Program
Exception SFR bus Counter
ALU Controller interface
16-bit \ 4 %
Program
Memory
|PSWH| |PSWL| [scR| Interface
SFRbus || | ZANEVAN
8 or 16 bits |
PCO SSEL
' Data Memory '
' Interface '
' ; CPU '
. Oscillator .
. Clock @ .
On-chip On-chip On-chip
RAM Peripheral EPROM/
7 o 1)
— External External External
Data SFR Program
Memory Devices Memory

Figure 4.1 The XA Core
Here is an overview of core elements: The XA Core oscillator provides a basic system clock.
Timing and control logic are initialized by an external reset signal; once initialized, this logic

3/24/97 4-1 CPU Organization

provides internal and external timing for program and data memory access. This logic supervises
loading the Program Counter and storing instructions fetched by the Program Memory Interface
into the Instruction Register. The timing and control logic sequences data transfers to and from
the Data Memory Interface. Under the same control, the ALU performs Arithmetic and Logical
operations. The ALU stores status information in the low byte of the Program Status Word
(PSWL). The on-board register file is used for intermediate storage and contains the current
value of the Stack PointeBP). The high byte of the Program Status Wd?&Y{VH) chooses

between a privileged System Mode and a restricted User Mode; controls a Trace Mode used for
single-step debugging, chooses the active register bank, and records the priority of the currently
executing process. The System Configuration RegiSEER] is initialized to choose native XA

mode execution or an 80C51 family compatibility mode. The Segment Selection R&fiier (
controls the use of the Code Segm&#)(Data Segmen)S), and the Extra SegmeriE$)

registers. The XA Core architecture supports interfaces to on- and off-chip RAM, ROM/
EPROM, and Special Function Registers (SFRS).

This chapter describes all these core elements in detail.

4.2 Program Status Word

The Program Status WorB$W) is a two-byte SFR register that is a focal point of XA
operations. The least significant byte contains the CPU status flags, which generally reflect the
result of each XA instruction execution. This byte is readable and writable by programs running
in both User and System modes.

PSWH PSWL

T T T T T T T T
PSW Operating Mode Flags CPU Flags

Figure 4.2 XA PSW

The most significant byte &fSW is written by programs to set important XA operating modes
and parameters: system/user mode, trace mode, register bank select bits, and task execution
priority. PSWH is readable by any process but only the register select bits may be modified by
User mode code. All of the flags may be modified by code running in System Mode.

It should be noted that the XA includes a special SFR that mimics the original 80C51 PSW
register. This register, called PSW51, allows complete compatibility with 80C51 code that
manipulates bits in the PSW. See Chapter 9 for details of 80C51 compatibility.

4.2.1 CPU Status Flags

The PSW CPU flags (Figure 4.3) signify Carry, Auxiliary Carry, Overflow, Negative, and Zero.
Some instructions affect all these flags, others only some of them, and a few XA instructions
have no effect on the PSW status flags. In general, these flags are read by programs in order to
make logical decisions about program flow. Chapter 6 describes comprehensively how CPU

XA User Guide 4-2 3/24/97

Status Flags are affected by each instruction type. Consult reference pages in Chapter 6 for
details about how individual instructions affect the PSW Status Flags.

PSWL C AC - - - V N Z

Figure 4.3 PSW CPU status flags

C, the Carry Flag, generally reflects the results of arithmetic and logical operations. It contains
the carry out of the most significant bit of an arithmetic operation, if any, for the instructions
ADD, ADDC, CMP, CINE, DA, SUB, and SUBB.The carry flag is also used as an intermediate
bit for shift and rotate instructions ASL, ASR, LSR, RLC, and RRC.

The multiply and divide instructions (MUL16, MULUS8, MULU16, DIV16, DIV32, DIVUS,
DIVU16, and DIVU32) unconditionally clear the carry flag.

AC, the auxiliary carry flag, is updated to reflect the result of arithmetic instructions ADD,
ADDC, CMP, SUB, and SUBB with the carry out of the least significant nibble of the ALU.
This flag is used primarily to support BCD arithmetic using the decimal adjust instruction (DA).

V is the overflow flag. It is set by an arithmetic overflow condition during signed arithmetic
using instructions ADD, ADDC, CMP, NEG, SUB, and SUBB.

V is also set when the result of a divide instruction (DIV16, DIV32, DIVUS8, DIVU16, DIVU32)
exceeds the size of the specified destination register and when a divide-by-zero has occurred. For
multiply instructions (MUL16, MULU8, MULU16) this flag is set when the result of a multiply
instruction exceeds the source operand size. In this case “overflow” provides an indication to the
program that the result is a larger data type than the source, such as a long integer product
resulting from the multiply of two integers).

N reflects the twos complement sign (the high-order or “negative” bit) of the result of arithmetic
operations and the value transferred by data moves. This flag is unaffected by PUSH, POP,
SEXT, LEA, and XCH instructions.

Z (“zera”) reflects the value of the result of arithmetic operations and the value transferred by
data moves. This flag is set if the result or value is zero, otherwise it is cleared. The flag is
unaffected by PUSH, POP, SEXT, LEA, and XCH instructions.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

3/24/97 4-3 CPU Organization

4.2.2 Operating Mode Flags

The PSW operating mode flags (Figure 4.4) set several aspects of the XA operating mode. All of
the flags in the upper byte of the PSW (PSWH) except the bits RS1 and RSO may be modified
only by code running in system mode.

PSWH [sMm T RS1 RSO IM3 IM2 IM1 IMO

Figure 4.4 PSW operating mode flags

The System Mode bi§M, when asserted, allows the currently running program full System
Mode access to all XA registers, instructions, and memories. (For example, most of PSWH can
only be modified whei$M is asserted.) When this bit is cleared, the XA is running in User

Mode and some privileges are denied to the currently running program.

The Trace Mode bifTM, when set to 1, enables the built-in XA debugging facilities described
in section 4.9. WhemM is cleared, the XA debugging features are disabled.

The bitsRS1andRSO0identify one of the four banks of word registers RO through R3 as the
active register set. The other three banks are not accessible as registers (but also see the
Compatibility Mode description in the System Configuration Register section).

The 4 bitdM3 throughIMO (Interrupt Mask bits) identify the execution priority of the current
executing program. The event interrupt controller compares the setting of the IM bits to the
priority of any pending interrupts to decide whether to initiate an interrupt sequence. The value 0
in the IM bits indicates the lowest priority, or fully interruptible code. The value 15 (or F
hexadecimal) indicates the highest priority, not interruptible by event interrupts. Note that
priority 15 does not inhibit servicing of exception interrupts or NMI.

The value of the IM bits may be written only by code operating in the system mode. Their value
may be read by interrupt handler code to implement software-based interrupt priorities. Note that
simply writing a new value to the interrupt mask bits can sometimes cause what is called a
priority inversion, that is, the currently executing code may have a lower priority than previously
interrupted code. The Software Interrupt mechanism is included on some XA derivatives
specifically to avoid priority inversion in complex systems. Refer to the section on Software
Interrupts for details.

4.2.3 Program Writes to PSW

The bytes comprising the PSW, namely PSWH and PSWL, are accessible as SFRs, and there is a
potential ambiguity when a write to the PSW is performed by an instruction whose execution

also modifies one or more PSW bits. The XA resolves this by giving full precedence to explicit
writes to the PSW.

XA User Guide 4-4 3/24/97

For example, executing
MOV.b ROL,#81h

sets PSW biN to 1, since the byte value transferred is a twos complement negative number.
However, executing

MOV.b PSWL, #81h

will set PSW bit<C andZ and leave biN cleared, since the value explicitly written to PSW
takes precedence.

This precedence rule suppresak$PSW flag updates. When a value is written to the PSW, for
example when executing

OR.b PSWH, #30

the contents of PSWL are unaffected.

4.2.4 PSW Initialization

As described below, at XA reset, the initial PSW value is loaded from the reset vector located at
program memory address 0. Philips recommends that the PSW initialization value in the reset
vector set$M3 throughIiMO to all 1's so that XA initialization is marked as the highest priority
process (and therefore cannot be interrupted except by an exception or NMI). At the conclusion
of the initialization code, the execution priority is typically reduced, often to O, to allow all other
tasks to run. It is also recommended that the reset vector &iitbé to 1, so that execution

begins in System Mode.

4.3 System Configuration Register

The System Configuration Regist&(GR), described in Figure 4.5, sets XA global operating
mode.SCR is intended to be written once during system start-up and left alone thereafter. Four
bits are currently defined:

T T T | T T T
SCR - - - - IF’Tl PTO CM PZ

Figure 4.5 System Configuration Register (SCR)

PZ set to O (the default) puts the XA in the Large-Memory mode that uses full 24-bit XA
addressing. WheRZ = 1 the XA uses a small-memory “Page 0” mode that uses 16 bit
addresses. The intent of Page 0 mode is to save stack space and improve interrupt latency in
systems with less than 64K bytes of code and data memory. See the following sections for
details.

3/24/97 4-5 CPU Organization

CM chooses between standard “native” mode XA operation and 80C51 compatibility mode.
When 80C51 compatibility mode is enabled, two things happen. First, the bottom 32 bytes of
data memory in each data segment are replaced by the four banks of RO through R3 from the
register file. ROL of bank O will appear at data address 0, ROH of bank 0 will appear at data
address 1, etc. Second, the use of RO and R1 as indirect pointers is altered. To mimic 80C51
indirect addressing, indirect references to RO use the byte ROL (zero extended to 16-bits) as the
actual pointer value. References to R1 similarly use the byte ROH (zero extended to 16-bits) as
the actual pointer value. Note that ROL and ROH on the XA are the same registers as RO and R1
on the 80C51. No other XA features are altered or affected by compatibility mode. Operation of
the XA with compatibility mode off (CM = 0) is reflected in descriptions found in the first 8
chapters of this User Guide. Operation with compatibility mode on (CM = 1) is discussed in
Chapter 9.

PT1 andPTO select a submultiple of the oscillator clock as a Peripheral Timing clock source, in
particular for timers but possibly for other peripherals in XA derivatives. Here are the values for
these bits and the resulting clock frequency:

PT1 PTO Peripheral Clock

0 0 oscillator/4
0 1 oscillator/16
1 0 oscillator/64
1 1 reserved

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.3.1 XA Large-Memory Model Description

When the default XA operation is chosen via8@&R (CM = 0 andPZ = 0), all addresses are
maintained by the core as 24 bit values, providing a full 16 MByte address space. On a specific
XA derivative, fewer than 24 bits may be available at the external bus interface. All 24 address
bits are pushed on the stack during calls and interrupts and 24 bits are popped by RETs and
RETIs.

4.3.2 XA Page 0 Memory Model Description

When XA Page 0 mode is chosen, only 16 address bits are maintained by the XA core. This
operating mode supports XA applications for which a 64K byte address space is sufficient. The
external memory interface port used for the upper 8 address bits, if present, is available for other
uses. A single 16-bit word is pushed on the stack during calls and interrupts and 16 bits are, in
turn popped by RETs and RETIs. Using Page 0 mode when only a small memory model is
needed saves stack space and speeds up address PUSH and POP operations on the stack.

XA User Guide 4-6 3/24/97

Switching into or out of Page 0 mode after the original initialization is not recommended. First,
switching into Page 0 mode can only be done by code running on Page 0, since the code address
will be truncated to 16-bits as soon as Page 0 mode takes effect. Instructions already in the XA
pre-fetch queue would have been fetched prior to Page 0 mode taking effect. Any addresses that
may have been pushed onto the stack previously also become invalid when Page 0 mode is
changed. Thus Page 0 mode could not be changed while in an interrupt service routine, or any
subroutine.

4.4 Reset

The term “reset” refers specifically to the hardware input required when power is first applied to
the XA device, and generally to the sequence of initialization that follows a hardware reset,
which may occur at any time. The term also refers to the effect of the RESET instruction (see
Chapter 6); in addition, an overflowing Watchdog timer (if this peripheral is present) has an
identical effect.

This section describes the XA reset sequence and its implications for user hardware and
software.

4.4.1 Reset Sequence Overview

A specific hardware reset sequence must be initiated by external hardware when the XA device
is powered-up, before execution of a program may begin. If a proper reset at power up is not
done, the XA may fail wholly or in part. The XA reset sequence includes the following
sequential components:

* Reset signal generated by external hardware

* Internal Reset Sequence occurs

« RST line goes high

» External bus width and memory configuration determined
* Reset exception interrupt generated

» Startup Code executed

Figure 4.6 illustrates this process.

4.4.2 Power-up Reset
This section describes the reset sequence for powering up an XA device.

The XARST input must be held low for a minimum reset period after Vdd has been applied to

the XA device and has stabilized within specifications. The minimum reset period for a typical

system with a reasonably fast power supply ramp-up time is 10 milliseconds. This reset period
provides sufficient time for the XA oscillator to start and stabilize and for the CPU to detect the
reset condition. At this point, the CPU initiates an internal reset seqURStanust continue to

be low for a sufficient time for the internal reset sequence to complete.

3/24/97 4-7 CPU Organization

|
vdd : XA configuration signals sampled
| \ _ first instruction executed
| Vmin ¢
I | |
| | |
RST | |

. XA :

| internal |

. reset |

sequence

reset exception
generated

Figure 4.6 XA power-up sequence

4.4.3 Internal Reset Sequence

The XA internal reset sequence occurs after power-up or any time a sufficiently long reset pulse
is applied to thdRST input while the XA is operating. This sequence requires a minimum of a 10
microseconds (or 10 clocks, whichever is greater) to completd@hdnust remain low for at

least this long.

The internal reset sequence does the following:

» Writes a 00 to most core and many peripheral SFRs. Other values are written to some periph-
eral SFRs. Consult the data sheet of a specific device for details.

» SetsCS, DS, andESto 0.

* SetsSSEL=0, i.e., sets all accesses through DS.

» Sets all registers in the Register File to 0.

» Sets the user and the system stack point&s&@andSSP to 0100h.

* Clears SCR biPZ, i.e., 24-bit memory addresses will be used by default.

* Clears SCR biCM, i.e., starts execution in XA Native Mode.

» Clears IE bitEA, disabling all maskable interrupts.

Note that the internal reset sequence does not initialize internal or external RAM. Note also that
the contents oPSW at this point is not important, as it will immediately be replaced as
described further below.

The effect of the internal reset sequence on components outside the XA core depends on the
peripheral complement and configuration of the specific XA derivative. In general, the internal
reset sequence has the following effects:

» Sets all port pins to inputs (quasi-bidirectional output configuration with port value = FF hex)

e Clears most SFRs to O
* Initializes most other SFRs to appropriate non-zero values

XA User Guide 4-8 3/24/97

Note that serial port buffers, PCA capture registers, and WatchDog feed registers (if present) are
unaffected. Consult the XA derivative data sheet for more information.

After the XA internal reset sequence has been completed, the device is quiescentiRSfll the
line goes high.

4.4.4 XA Configuration at Reset

As theRST line goes high, the value on two input pins is sampled to determine the XA memory
and bus configuration. THeA and BUSW pins (if present on a specific XA derivative) have
special function during the reset sequence, to allow external hardware to determine the use of
internal or external program memory, and to select the default external bus width.

Immediately after th&®ST line goes high, the CPU triggers a reset exception interrupt, as
described in the next section.

Selecting Internal or External Program Memory

The XA is capable of reading instructions from internal or external memory, both of which may
be present. The X&A input pin determines whether internal or external program memory will
be used. Th&A pin is sampled on the rising edge of BR®T pulse. IEA = 0, the XA will

operate out of external program memory, otherwise it will use internal code memory. The
selection of external or internal code memory is fixed until the nextRiBkis asserted and
released; until then all code fetches will access the selected code memory.

The XA cannot detect inconsistencies between the setting detectedEh itiigut and the
hardware memory configuration. For example, sefiAg= 1 on a ROMless XA variant will
cause the XA to attempt to execute internal code memory, which is undefined on a ROMless
device, typically resulting in a system failure.

Selecting External Bus Width

The XA is capable of accessing an 8 or 16 bit external data bus. The BUSW pin tells the XA the
external data bus configuration. BUSW=0 selects an 8-bit bus and BUSW=1 selects an 16-bit
bus. On power-up, the XA defaults to the 16-bit bus (due to an on-chip weak pull-up on BUSW).
The BUSW pin is sampled on the rising edge ofREF pulse. If BUSW is low, the XA

operates its external bus interface in 8 bit mode, otherwise, the XA uses 16 bit bus operation. The
bus width may also be set under software control on derivatives equipped vBIBRNEBuUS
Configuration Register”) SFR.

After RST is released, the BUSW pin may be used an alternate function on some XA derivatives.

Consult derivative data sheets for exact pinouts and details of how pins such as these may be
shared to keep package size small.

3/24/97 4-9 CPU Organization

4.4.5 The Reset Exception Interrupt

Immediately after th&ST line goes high, the CPU generates a Reset Exception Interrupt. As a
result, the initial PSW and address of the first instruction (the “start-up code”) is fetched from the
reset vector in code memory at location 0. Here’s an example in generalized assembler format of
the setup for the Reset Exception:

code_seg ; establish code segment
org Oh ; start at address 0

; reset_vector

dw initial_PSW ; define a word constant
dw startup_code ; define a word constant
org 120h ; move to address 120h

; (above vector table)

startup_code:
; put startup code here

The initial value oPSWL set in the Reset Vector is generally of no special system-wide
importance and may be set to zero or some other value to meet special needs of the XA
application. The initiaPSWH value sets the stage for system software initialization and its
value requires more attention. Here’s an example set of declarations that create the
recommended initial value fSWH:

system_mode equ 8000h
max_priority equ OFO0Oh
initial_PSW equ system_mode + max_priority

It is generally appropriate to initialize the XA in System Mode so that the start-up code has
unrestricted access to the entire architecture. This is done by using a initial value that sets the
PSWH bitSM.

Philips recommends initializing the execution priority of the start-up code to the highest possible
value of 15 (that is, IMO through IM3 to all ones) so that the start-up code is recognizable as the
highest priority process. As described above, the hardware initialization sequence turns off all
possible interrupts, so the only potential interrupting process would arise from a non-maskable
interrupt (NMI). It is generally a good idea to prevent NMI generation with a hardware lock-out
until XA start-up procedures are completed.

The PSWH initialization value given in this example sets System M&iM)(selects register
bank O (any register bank could be used) and clédrso that Trace Mode is inactive.

XA User Guide 4-10 3/24/97

4.4.6 Startup Code

Philips recommends that the first instruction of start-up code set the value of the System
Configuration RegistelSCR), described in section 4.3, to reflect the system architecture.

The next recommended step is explicitly initializing the stack pointers. The default values
(section 4.7) are usually insufficient for application needs.

The start-up code sequence may be concluded by a simple branch or jump to application code. A
RETI may not be used at the conclusion of a Reset Exception Interrupt handler (which causes the
start-up code to run) because a reset initializes the SP and does not leave an interrupt stack
frame.

4.4.7 Reset Interactions with XA Subsystems
The following describes how the reset process interacts with some key subsystems:

» Trace Exception. The trace exception is aborted by an external reset; see section 4.9.

» WatchDog. In XA derivatives equipped with a WatchDog timer feature, an internal reset will
be asserted for a derivative-defined number of clocks.

* Resets while in Idle Mode or during normal code execution. Since the XA oscillator is run-
ning in Idle Mode, th&kST input must be kept low for only 10 microseconds (or 10 clocks,
whichever is greater) to achieve a complete reset.

* Resets while in Power-Down Mode. The XA oscillator is stopped in Power-Down mode, so
theRST input must be low for at least 10 milliseconds. An exception to this is when an exter-
nal oscillator is used and the XA is in Power-Down mode. In this case, if the external oscilla-
tor is running, a reset during Power-Down mode may be the same as a reset in Idle Mode.

4.4.8 An External Reset Circuit

TheRST pin is a high-impedance Schmitt trigger input pin. For applications that have no special
start-up requirements, it is practical to generate a reset period known to be much longer than that
required by the power supply rise time and by the XA under all foreseeable conditions. One
simple way to build a reset circuit is illustrated in Figure 4.7.

Vdd Some typical values for R and C:

R ;f R = 100K, C = 1.04F
RST XA

R=1M, C=0.1UF

C— (assuming that the Vdd rise time is
1 millisecond or less)

Figure 4.7 An external reset circuit

3/24/97 4-11 CPU Organization

4.5 Oscillator

The XA contains an on-chip oscillator which may be used as the clock source for the XA CPU,
or an external clock source may be used. A quartz crystal or ceramic resonator may be connected
as shown in Figure 4.8a to use the internal oscillator. To use an external clock, connect the
source to pin XTAL1 and leave pin XTALZ2 open, as shown in Figure 4.8b.

J_ XTALL T LI LI — x7AL1
XA XA

p— —|_ XTAL2

Z nc——{ XTAL2

.

a) using the on-chip oscillator b) using an external clock

Figure 4.8 XA clock sources

The on-chip oscillator of the XA consists of a single stage linear inverter intended for use as a
positive reactance oscillator. In this application, the crystal is operated in its fundamental
response mode as an inductive reactance in parallel resonance with capacitance external to the
crystal.

A quartz crystal or ceramic resonator is connected between the XTAL1 and XTAL2 pins,
capacitors ar connected from both pins to ground. In the case of a quartz crystal, a parallel
resonant crystal must be used in order to obtain reliable operation. The capacitor values used in
the oscillator circuit should normally be those recommended by the crystal or resonator
manufacturer. For crystals, the values may generally be from 18 to 24 pF for frequencies above
25 MHz and 28 to 34 pF for lower frequencies. Too large or too small capacitor values may
prevent oscillator start-up or adversely affect oscillator start-up time.

4.6 Power Control

The XA CPU implements two modes of reduced power consumption: Idle mode, for moderate
power savings, and Power-Down mode. Power-Down reduces XA consumption to a bare
minimum. These modes are initiated by writing SFRON, as illustrated in Figure 4.9.

PCON - - - - - - PD IDL

Figure 4.9 PCON

Idle Mode is activated by setting the PCON It . This stops CPU execution while leaving the
oscillator and some peripherals running.

XA User Guide 4-12 3/24/97

Power-Down mode is activated set by setting the PCORMiIfThis shuts down the XA
entirely, stopping the oscillator.

The reset values dDL andPD are 0. If a 1 is written to both bits simultaneouBli, takes
precedence and the XA goes into Power-Down mode.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.6.1 Idle Mode

Idle mode stops program execution while leaving the oscillator and selected peripherals active.
This greatly reduces XA power consumption. Those peripheral functions may cause interrupts (if
the interrupt is enabled) that will cause the processor to resume execution where it was stopped.

In the Idle mode, the port pins retains their logical states from their pre-idle mode. Any port pins
that may have been acting as a portion of the external bus revert to the port latch and
configuration value (normally push-pull outputs with data equal to 1 for bus related pins). ALE
andPSEN are held in their respective non-asserted states. When Idle is exited normally (via an
active interrupt), port values and configurations will remain in their original state.

4.6.2 Power-Down Mode

Power-Down mode stops program execution and shuts down the on-chip oscillator. This stops all
XA activity. The contents of internal registers, SFRs and internal RAM are preserved. Further
power savings may be gained by reducing XA Vdd to the RAM retention voltage in Power
Down mode; see the device data sheet for the applicable Vdd value. The processor may be re-
activated by the assertion ST or by assertion of one of an external interrupt, if enabled.

When the processor is re-activated, the oscillator will be restarted and program execution will
resume where it left off.

In Power-Down mode, the ALE afBEN outputs are held in their respective non-asserted

states. The port pins output the values held by their respective SFRs. Thus, port pins that are not
configured to be part of an external bus retain their state. Any port pins that may have been
acting as a portion of the external bus revert to the port latch and configuration value (normally
push-pull outputs with data equal to 1 for bus related pins). If Power-Down mode is exited via
Reset, all port values and configurations will be set to the default Reset state.

In order to use an external interrupt to re-activate the XA while in Power-Down mode, the
external interrupt must be enabled and be configured to level sensitive mode. When Power-
Down mode is exited via an external interrupt, port values and configurations will remain in their
original state. Since the XA oscillator is stopped when the XA leaves Power-Down mode via an
interrupt, time must be allowed for the oscillator to re-start. Rather than force the external logic
asserting the interrupt to remain active during the oscillator start-up time, the XA implements its
own timer to insure proper wake-up. This timer counts 9,892 oscillator clocks before allowing
the XA to resume program execution, thus insuring that the oscillator is running and stable at

3/24/97 4-13 CPU Organization

that time. Once the oscillator counter times out, the XA will execute the interrupt that woke it up,
if that interrupt is of a higher priority than the currently executing code.

Note that if an external oscillator is used, power supply current reduction in the Power-Down
mode is reduced from what would be obtained when using the XA on-chip oscillator. In this
case, full power savings may be gained by turning off the external clock source or stopping it
from reaching the XTAL1 pin of the XA. If the clock source may be turned off, it may be
advantageous to use Idle mode rather than Power-Down mode, to allow more ways of
terminating the power reduction mode and to avoid the 9,892 clock waiting period for exiting
Power-Down mode.

4.7 XA Stacks

The XA stacks are word-aligned LIFO data structures that grow downward in data memory,
from high to low address. This and some other details of the XA stack implementation differ
from 80C51 stack operation. Refer to the chapter on 8051 compatibility for a detailed discussion
of this topic.

The XA implements two distinct stacks, one for User Mode and one for System Mode. The User
Stack may be placed anywhere in data memory, while the System Stack must be located in the
first 64K bytes, i.e., segment O.

4.7.1 The Stack Pointers

The XA has two stacks, the system stack and the user stack. Each stack has an associated stack
pointer, the System Stack Pointer (SSP) and the User Stack Pointer (USP), respectively. Only
one of these stacks is active at a given time. The current stack pointer at any instant (which may
be the SSP or the USP) appears as word register SP (R7) in the register file; the other stack
pointer will not be visible. The value of the PSW®M determines which stack is active (and

whose stack pointer therefore appears as R7). In User M&lde=0), SP (R7) contains the User

Stack Pointer. In System Mod8NI =1), SP (R7) contains the System Stack Pointer. The XA
automatically switches SSP and USP values when the operating mode is changed. Note that the
terms “USP” and “SSP” are logical terms, denoting the value of SP (R7) in each mode.

Segments and Protection

The User stack is always addressed relative to the current data segment (DS) value. This is
consistent with each user task being associated with a specific data segment. Moreover, code
running in User Mode cannot modiBS, so there is no possibility of changing the segment in
which the stack resides within the User context. The System Stack must always be located in
segment 0, that is, the first 64K of data memory.

4.7.2 PUSH and POP

The PUSH operation is illustrated by Figure 4.10. The stack pointer always points to an existing
data item at the top of the stack, and is decremented by 2 prior to writing data.

XA User Guide 4-14 3/24/97

The POP operation copies the data at the top of the stack and then adds two to the stack pointer,
as follows shown in Figure 4.11.

All stack pushes and pops occur in word multiples. If a byte quantity is pushed on the stack it is
stored as the least significant byte of a word and the high byte is left unwritten;

see Figure 4.12. A POP to a byte register removes a word from the stack and the byte register
receives the least significant 8 bits of the word, as shown in Figure 4.13.

MOV RO,#1234h
before PUSH RO after
2n + 6| existing data < SP 2n+6 existing data
2n + 4 (empty) an+4 12 34 [e—SP
2n + 2 (erhpty) 2n + 2 (empty)
(empty) " (empty)

Figure 4.10 PUSH operation

before POP R1 after
2n + 6 2n + 6 <+— SP
2n + 4 AA 55 < SP 2n + 4 AA 55
2n + 2 (empty) 2n + 2 (empty)
(empty) (empty)
R1 = AA55h

Figure 4.11 POP operation

before IF\>/ICC))I¥ RRli#H6869h after
2n + 4 2n + 6 «—SP
on+4 AA 55 «—SP on+4 AA 55
2n + 2 (empty) 2n + 2 (empty)
(empty) s (empty)
R1 = 5569h

Figure 4.12 POP a byte

3/24/97 4-15 CPU Organization

The stack should always be word-aligned. If the SP (R7) is modified to an odd value, the
offending LSB of the stack pointer is ignored and the word at the next-lower even address is
accessed.

Note that neither PUSH or POP operations have any effect on the PSW flags.

MOV RO,#9876h
before PUSH ROH after
2n+ 6 existing data <SP on+6 existing data
2n + 4 (empty) on + 4 00 | 98 |e—SP
2n + 2 (empty) 2n + 2 (empty)
(empty) (empty)

Figure 4.13 PUSH a byte

4.7.3 Stack-Based Addressing

Stack-based data addressing is fully supported by the XA. RO through R7 may be used in all
indexed address modes; the stack pointer in R7 is equally valid as an index.

Figure 4.14 illustrates an example of stack-based addressing. The segment used for stack relative
addressing is always the same as for other stack operations (Segment 0 for System mode code
and DS for User mode code).

Note that the precautions mentioned in section 3.3.4 apply here: when referencing a word
guantity, the final (effective) address must be even, otherwise incorrect data will be accessed.
This topic is discussed further in the section Stack Pointer Misalignment.

4.7.4 Stack Errors

Special attention is required to avoid problems due to stack overflow, stack underflow, and stack
pointer misalignment

Stack Overflow

Stack overflow occurs when too many items are pushed, either explicitly or as the result of
interrupts. As items are pushed on to the stack, it may grow downward past the memory
allocated to it. It is not always possible for programs to detect stack overflow, so the XA triggers
a Stack Overflow Exception Interrupt whenever the value ofdineentstack pointer (SSP or

USP) decrements from 80h to 7Eh (simply setting SP to a value lower than 80h would NOT
cause a stack overflow). This value was chosen so that stack space sufficient to handle a stack
overflow exception interrupt is always guaranteed, as follows:

The 80h limit leaves 64 bytes available for stack overflow processing. A worst case might be

occurs when the Stack Pointer is at 80h and a program executes an 8 word push; this generates a
stack overflow. If an NMI occurs at the same time, 3 additional words are pushed. The balance

XA User Guide 4-16 3/24/97

MOV Rn, [R7+offset]
MOV [R7+offset], Rn

SP (R7)

SM bit in PSW,

8 or 16-bit offset
(from instruction

NN
16-bit pointer
|

8-bit segment

DS identifier

00h 1

Data Memory 8 bits 16 bits

. complete 24-bit

. memory address

SP+8
SP+6
SP+4
SP+2
[SP+0)]

Figure 4.14 Stack-based addressing

of the 64 bytes on the stack is available for handler processing, which should carefully limit
further use of the stack.

Stack Underflow

Stack underflow occurs when too many items are popped and the stack pointer value becomes
greater than its initial value, i.e., the stack top. The XA does not support stack underflow
detection.

Stack Pointer Misalignment

Pointer misalignment occurs when a pointer contains an odd value and is used by an instruction
to access a word value in memory. The same situation could occur if some program action forced
the stack pointer to an odd value. In these cases, the XA ignores the bottom bit of the pointer and
continues with a word memory access.

4.7.5 Stack Initialization

At power-on resehothUSP and SSP in all XA derivatives are initialized to 100h. Since SP is
pre-decremented, the first PUSH operation will store a word at location FEh and the stack will
grow downwards from there.

3/24/97 4-17 CPU Organization

These default stack pointer start-up values overlap the System and User stacks and are applicable
only when one of these stacks will never be used.

Since the System stack is used for all exception and interrupt processing, this may not be
appropriate in all XA applications. The startup code should normally set new and different
values of both USP and SSP.

4.8 XA Interrupts

The XA architecture defines four kinds of interrupts. These are listed below in order of intrinsic
priority:

« Exception Interrupts
* Event Interrupts

» Software Interrupts
e Trap Interrupts

Exception interrupts reflect system events of overriding importance. Examples are stack
overflow, divide-by-zero, and Non-Maskable Interrupt. Exceptions are always processed
immediately as they occur, regardless of the priority of currently executing code.

Event interrupts reflect less critical hardware events, such as a UART needing service or a timer
overflow. Event interrupts may be associated with some on-chip device or an external interrupt
input. Event interrupts are processed only when their priority is higher than that of currently
executing code. Event interrupt priorities are settable by software.

Software interrupts are an extension of event interrupts, but are caused by software setting a
request bit in an SFR. Software interrupts are also processed only when their priority is higher
than that of currently executing code. Software interrupt priorities are fixed at levels from 1
through 7.

Trap interrupts are processed as part of the execution of a TRAP instruction. So, the interrupt
vector is always taken when the instruction is executed.

All forms of interrupts trigger the same sequence: Firsiaek framecontaining the address of

the next instruction and then the current value of the PSW is pushed on the System Stack. A
vector containing a new PSW value and a new execution address is fetched from code memory.
The new PSW value entirely replaces the old, and execution continues at the new address, i.e., at
the specific interrupt handler.

The new PSW value may include a new setting of PS\8Mitallowing handler routines to be
executed in System or User mode, and a new value of PSVIMtghroughIMO, reflecting the
executionpriority of the new task. These capabilities are basic to multi-tasking support on the
XA. See Chapter 5 for more details.

XA User Guide 4-18 3/24/97

Returns from all interrupts should in most cases be accomplished by the RETI instruction, which
pops the System Stack and continues execution with the restored PSW context. Since RETI
executed while in User Mode will result in an exception trap, as described further below,
interrupt service routines will normally be executed in System Mode.

The XA architecture contains sophisticated mechanisms for deciding when and if an interrupt
sequence actually occurs. As described below, Exception Interrupts are always serviced as soon
as they are triggered. Event Interrupts are deferred until their execution priority is higher than
that of the currently executing code. For both exception and event interrupts, there is a
systematic way of handling multiple simultaneous interrupts. Software and trap interrupts occur
only when program instructions generating them are executed so there is no need for conflict
resolution.

The Non-Maskable Interrupt requires special consideration. It is generated outside the XA core,
and in that respect is an event interrupt. However, it shares many characteristics of exception
interrupts, since it is not maskable. Note that NMI, while part of the XA CPU core, may not
always be connected to a pin or other event source on all XA derivatives.

4.8.1 Interrupt Type Detailed Descriptions
This section describes the four kinds of interrupts in detail.

Exception Interrupts

Exception interrupts reflect events of overriding importance and are always serviced when they
occur. Exceptions currently defined in the XA core include: Reset, Breakpoint, Divide-by-0,
Stack overflow, Return from Interrupt (RETI) executed in User Mode, and Trace. Nine
additional exception interrupts are reserved. NMI is listed in the table of exception interrupts
(Table 4.1) below because NMI is handled by the XA core in same manner as exceptions, and
factors into the precedence order of exception processing.

Since exception interrupts are by definition not maskable, they must always be serviced
immediately regardless of the priority level of currently executing code, as defined by the IM bits

in the PSW. In the unusual case that more than one exception is triggered at the same time, there
is a hard-wiredservice precedenaanking. This determines which exception vector is taken first

if multiple exceptions occur. In these cases, the exception vectorléskemy be considered

the highest priority, since its code will execute first. Of course, being non-maskable, any
exception occurring during execution of the ISR for another exception will still be serviced
immediately.

Programmers should be aware of the following when writing exception handlers:
1. Since another exception could interrupt a stack overflow exception handler routine, care
should be taken in all exception handler code to minimize the possibility of a destructive stack

overflow. Remember that stack overflow exceptions only occur once as the stack crosses the
bottom address limit, 80h.

3/24/97 4-19 CPU Organization

2. The breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint in an
emulation system) and Trace exceptions are intended to be mutually exclusive. In both cases, the
handler code will want to know the address in user code where the exception occurred. If a
breakpoint occurs during trace mode, or if trace mode is activated during execution of the
breakpoint handler code, one of the handlers will see a return address on the stack that points
within the other handler code.

Table 4.1: Exception interrupts, vectors, and precedence

Exception Interrupt Vector Address Service Precedence

Breakpoint 0004h:0007h 0
Trace 0008h:000Bh 1
Stack Overflow 000Ch:000Fh 2
Divide-by-zero 0010h:0013h 3
User RETI 0014h:0017h 4
<reserved> 0018h - 003Fh 5
NMI 009Ch:009Fh 6
Reset 0000h:0003h 7

(always serviced

immediately, aborts
other exceptions)

Event Interrupts

Event Interrupts are typically related to on-chip or off-chip peripheral devices and so occur
asynchronously with respect to XA core activities. The XA core contains no inherent event
interrupt sources, so event interrupts are handled by an interrupt control unit that resides on-chip
but outside of the processor core.

On typical XA derivatives, event interrupts will arise from on-chip peripherals and from events
detected on interrupt input pins. Event interrupts may be globally disabled &# thi¢ in the
Interrupt Enable register (IE) and individually masked by specific bits the IE register or its
extension. When an event interrupt for a peripheral device is disabled but the peripheral is not
turned off, the peripheral interrupt flag can still be set by the peripheral and an interrupt will
occur if the peripheral is re-enabled. An event interrupt that is enabled is serviced when its
priority is higher than that of the currently executing code. Each event interrupt is assigned a
priority level in the Interrupt Priority register(s). If more than one event interrupt occurs at the
same time, the priority setting will determine which one is serviced first. If more than one
interrupt is pending at the same level priority, a hardwares precedence scheme is used to choose
the first to service. The XA architecture defines 15 interrupt occurrence priorities that may be
programmed into the Interrupt Priority registers for Event Interrupts. Note that some XA
implementations may not support all 15 levels of occurrence priority. Consult the data sheet for a
specific XA derivative for details.

XA User Guide 4-20 3/24/97

Note that, like all other forms of interrupts, the PSW (including the Interrupt Mask bits) is loaded
from the interrupt vector table when an event interrupt is serviced. Thus, the priority at which the
interrupt service routine executes could be different than the priority at which the interrupt
occurred (since that was determined not by the PSW image in the vector table, but by the
Interrupt Priority register setting for that interrupt). Normally, it is advisable to set the execution
priority in the interrupt vector to be the same as the Interrupt Priority register setting that will be
used in the program.

Furthermore, the occurrence priority of an interrupt should never be set higher than the execution
priority. This could lead to infinite interrupt nesting where the interrupt service routine is re-
interrupted immediately upon entry by the same interrupt source.

Software Interrupts

Software Interruptsict just like event interrupts, except that they are caused by software writing
to an interrupt request bit in an SFR. The standard implementation of the software interrupt
mechanism provides 7 interrupts which are associated with 2 Special Function Registers. One
SFR, the software interrupt request register (SWR), contains 7 request bits: one for each software
interrupt. The second SFR is an enable register (SWE), containing one enable bit matching each
software interrupt request bit.

Software interrupts are initiated by setting one of the request bits in the SWR register. If the
corresponding enable bit in the SWE register is also set, the software interrupt will occur when it
becomes the highest priority pending interrupt and its priority is higher than the current
execution level. The software interrupt request bit in SWR must be cleared by software prior to
returning from the software interrupt service routine.

Software interrupts have fixed interrupt priorities, one each at priorities 1 through 7. These are
shown in Table 4.2 below. Software Interrupts are defined outside the XA core and may not be
present on all XA derivatives; consult the specific XA derivative data sheet for details.

Table 4.2: Software interrupts, vectors, and fixed priorities

Software Interrupt Vector Address Fixed Priority
SWi1 0100h:0103h 1
SWiI2 0104h:0107h 2
SWI3 0108h:010Bh 3
SwWi4 010Ch:010Fh 4
SWI5 0110h:0113h 5
SWI6 0114h:0117h 6
SWiI7 0118h:011Bh 7

The primary purpose of the software interrupt mechanism is to provide an organized way in
which portions of event interrupt routines may be executed at a lower priority level than the one

3/24/97 4-21 CPU Organization

at which the service routine began. An example of this would be an event Interrupt Service
Routine that has been given a very high priority in order to respond quickly to some critical
external event. This ISR has a relatively small portion of code that must be executed
immediately, and a larger portion of follow-up or “clean-up” code which does not need to be
completed right away. Overall system performance may be improved if the lower priority portion
of the ISR is actually executed at a lower priority level, allowing other more important interrupts
to be serviced.

If the high priority ISR simply lowers its execution priority at the point where it enters the
follow-up code, by writing a lower value to the IM bits in the PSW, a situation called “priority
inversion” could occur. Priority inversion describes a case where code at a lower priority is
executing while a higher priority routine is kept waiting. An example of how this could occur by
writing to the IM bits follows, and is illustrated in Figure 4.15.

Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at level 10.
This is again interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical

portion of its code and wants to lower the priority of the remainder of its code (the non-time
critical portion) in order to allow more important interrupts to occur. So, it writes to the IM bits,
setting the execution priority to 5. The ISR continues executing at level 5 until a level 8 event
interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which also
runs to completion. When the level 5 ISR returns, the previously interrupted level 10 ISR is re-
activated and eventually competes.

It can be seen in this example that lower priority ISR code executed and completed while higher
priority code was kept waiting on the stack. This is priority inversion.

Level 10 Level12 Priority Level8 Returnto Returnto Returnto
interrupt interrupt lowered interrupt level 5 level 10 level O
occurs occurs : occurs : ' '

12
10

Execution
Priority
0_

Time

Figure 4.15 Example of priority inversion (see text)

In those cases where it is desirable to alter the priority level of part of an ISR, a software
interrupt may be used to accomplish this without risk of priority inversion. The ISR must first be

XA User Guide 4-22 3/24/97

split into 2 pieces: the high priority portion, and the lower priority portion. The high priority
portion remains associated with the original interrupt vector. The lower priority portion is
associated with the interrupt vector for software interrupt 5. At the completion of the high
priority portion of the ISR, the code sets the request bit for software interrupt 5, then returns. the
remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becomes
the highest priority pending interrupt.

The diagram in Figure 4.16 shows the same sequence of events as in the example of priority
inversion, except using software interrupt 5 as just described. Note that the code now executes in
the correct order (higher priority first).

Level 10 Level 12 Software Level8 Return Return Return to
interrupt interrupt interrupt interrupt from level from level level O

occurs occurs 5issued, occurs, level 10, 8, level5
' ' return to but waits level 8 software
level 10 forlevel interrupt interrupt

: 10 to serviced serviced
' . ! complete :

12+ : —+ P

10 i

8_

Execution i
Priority
0_ -->

Time

Figure 4.16 Example use of software interrupt (see text)

Trap Interrupts

Trap Interrupts are generated by the TRAP instruction. TRAP 0 through TRAP 15 are defined

and may be used as required by applications. Trap Interrupts are intended to support application-
specific requirements, as a convenient mechanism to enter globally used routines, and to allow
transitions between user mode and system mode. A trap interrupt will occur if and only if the
instruction is executed, so there is no need for a precedence scheme with respect to simultaneous
traps.

The effect of a TRAP is immediate, the corresponding TRAP service routine is entered upon
completion of the TRAP instruction.

See Chapter 6 for a detailed description of the TRAP instruction.
4.8.2 Interrupt Service Data Elements
There are two data elements associated with XA interrupts. The first is the stack frame created

when each interrupt is serviced. The second is the interrupt vector table located at the beginning

3/24/97 4-23 CPU Organization

of code memory. Understanding the structure and contents of each is essential to the
understanding of how XA interrupts are processed.

Interrupt Stack Frame

A stack frame is generated, always on the System Stack, for each XA interrupt. With one
exception, the stack frame is stored for the duration of interrupt service and used to return to and
restore the CPU state of the interrupted code. (The exception is an Exception Interrupt triggered
by a Reset event. Since Reset re-initializes the stack pointers, no stack frame is preserved. See
section 4.4 for details.) The stack frame in the native 24-bit XA operating mode is illustrated in
Figure 4.17. Three words are stored on the stack in this case. The first word pushed is the low-
order 16 bits of the current PC, i.e., the address of the next instruction to be executed. The next
word contains the high-order byte of the current PC. A zero byte is used as a pad. In sum, a
complete 24-bit address is stored in the stack frame. The third word contains a copy of the PSW
at the instant the interrupt was serviced.

When the XA is operating in Page 0 Mode (SCRPit= 1) the stack frame is smaller because,

in this mode, only 16 address bits are used throughout the XA. The stack frame in Page 0 Mode
is illustrated in Figure 4.18. Obviously it is very important that stack frames of both sizes not be
mixed; this is one reason for the admonition in section 4.3 to set the System Configuration
Register once during XA initialization and leave it unchanged thereafter.

g/,: N

~1 Ny

Before interrupt

Low-order 16-bits of PC
6-bytes 0x00 : PC (hi-byte)

PSW After

~ —~

N =

Figure 4.17 Interrupt stack frame (non- page zero mode)

N =
Before interrupt
Abut 16-bits of PC
-bvtes :
y PSW After
= ==

Figure 4.18 Interrupt stack frame (page 0 mode)

XA User Guide 4-24 3/24/97

Interrupt Vector Table

The XA uses the first 284 bytes of code memory (addresses 0 through 11B hex) for an interrupt
vector table. The table may contain up to 71 double-word entries, each corresponding to a
particular interrupt event.

The double-word entries each consist of a 16 bit address of an interrupt service routine address
and a 16 bit PSW replacement value. Because vector addresses are 16-bit, the first instruction of
service routines must be located in the first 64K bytes of XA memory. The first instruction of all
service routines must be word-aligned. Key elements of the replacement PSW value are the
choice of System or User mode for the service routine, the Register Bank selection, and an
Execution Priority setting. For more details on PSW elements, see section 4.2.2.

The first 16 vectors, starting at code memory address O are reserved for Exception Interrupt
vectors. The second 16 vectors are reserved for Trap Interrupts. The following 32 vectors in the
table are reserved for Event Interrupts. The final 7 vectors are used for Software Interrupts.
Figure 4.19 illustrates the XA vector table and the structure of each component vector. Of the
vectors assigned to Exceptions, 6 are assigned to events specific to the XA CPU and 10 are
reserved. All 16 Trap Interrupts may be used freely. Assignments of Event Interrupt vectors are
derivative-independent and vary with the peripheral device complement and pinout of each XA
derivative.

Unused interrupt vectors should normally be set to point to a dummy service routine. The
dummy service routine should clear the interrupt flag (if it is not self-clearing) and execute an
RETI to return to the user program. This is especially true of the exception interrupts and NMI,
since these could conceivably occur in a system where the designer did not expect them. If these
vectors are routed to a dummy service routine, the system can essentially ignore the unexpected
exception or interrupt condition and continue operation.

Note that when using some hardware development tools, it may be preferable not to initialize
unused vector locations, allowing the development tool to flag unexpected occurrences of these
conditions.

4.9 Trace Mode Debugging

The XA has an optional Trace Mode in which a special trace exception is generated at the
conclusion of each instruction. Trace Mode supports user-supplied debugger/monitor programs
which can single-step through any code, even code in ROM.

4.9.1 Trace Mode Operation
Trace Mode is initiated by assertiRW.TM in the context of the program to be traced.

Using Trace Mode requires a detailed understanding of the XA instruction execution sequence

because when and if a trace exception occurs depends on events within the execution sequence
of a single instruction. Figure 4.20 illustrates the XA instruction sequence in overview.

3/24/97 4-25 CPU Organization

— 7 Software
—Interrupt—

——Vectors—]
01000 y

—— 32—
Event

— Interrupt—

— Vectors—]

- 16 bits >

Service Rouiine Address

80h

Replacerrient PSW

16
— TraFJ
—Interrupt
— Vectors—

Increasing
addresses

40h

16=
— Exception—
— Vectors—]

Code Memory

Figure 4.19 Interrupt vectors

Instruction n-1 Instruction n Instruction n+1
[X X J 00

Figure 4.20 XA Instruction Sequence Overview

A detailed model of this sequence is shown in Figure 4.21: First, at the beginning of the
instruction cycle, the state of the TM flag is latched. Next, the instruction is checked to see if it is
valid; undefined instructions or disallowed operations (like a write through ES in User Mode) are
simply not executed, and there is no chance for a trace to occur. The sequence then checks for
instructions illegal in the current context (currently only an IRET while in User Mode is detected
here) and services an exception if one is found. If, and only if, none of these special conditions
occur, the instruction is actually executed. Just after execution, if the Trace Mode bit had been
latched TRUE at the beginning of the instruction cycle, the Trace is serviced. Finally, the cycle
checks for a pending interrupt and performs interrupt service if one is found

Note that an external reset may occur at any point during the cycle illustrated in Figure 4.21.
This will abort processing when it occurs.

XA User Guide 4-26 3/24/97

L Instruction n »‘

N

v

latch Execute

: . Instruction ———p Checklacch; ___y, Interrupt
™ —> instruction __p, illegal? —— P |nstruction p

allowed? ™ =1? pending?
state l v l v l v
service service service
exception

trace interrupt

l

Figure 4.21 Instruction Execution Clock Detail

One consequence of this sequence is that the instruction that sets TM = 1 cannot generate a
Trace, since TM is not latched when the instruction is actually executed. Another consequence is
that an instruction that generates an exception will never be traced. Finally if an event interrupt
occurs during an instruction clock when the instruction being executed is a TRAP, the TRAP

will be executed, then the trace service, and finally the interrupt will be serviced.

4.9.2 Trace Mode Initialization and Deactivation

SincePSW.TM is in the protected portion of the PSW (i.e., in PSWH), only code executing in
System Mode can initiate or turn off Trace Mode. In practice, this may be done by invoking a
trap whose replacement PSW clears this bit, or by executing a RETI instruction with a synthetic
Exception/Interrupt stack frame explicitly pushed on the top of the System Stack, as follows:

Lo-order 16-bits of PC . .
: : address of next instruction
0x00 + PC (hi-byte) in traced routine
\ PSW

TM set in saved PSW image

Tracing will continue until the PSW bItM is cleared. This may be done by the trace service
routine by examining the stack frame at the top of the system stack and clearing the TM bit prior
to returning to the currently traced process. A similar method may be used to initiate trace mode.
Note that stack frames generated by exception interrupts are always placed on the System stack.
It is probably a good idea for the trace service routine to verify that the item in the stack frame is
consistent with the traced process before modifying the TM bit.

3/24/97 4-27 CPU Organization

XA User Guide 4-28 3/24/97

5 Real-time Multi-tasking

Multi-taskingas the name suggests, allows tasks, which are pieces of code that do specific duties,
to run in an apparently concurrent manner. This means that tasks will seem to all run at the same
time, doing many specific jobs simultaneously.

High end applications (like automotive) require instantaneous responses when dealing with high
speed events, such as engine management, traction control and adaptive braking system (ABS)
and hence there is a trend towards multi-tasking in a wide variety of high performance embedded
control applications.

Real-time application programs are often comprised of multiple tasks. Each task manages a
specific facet of application program. Building a real-time application from individual tasks

allows subdividing a complicated application program into independent and manageable
modules. Each task shares the processor with other tasks in the application program according to
an assigned priority level.

In real-time multi-tasking, the main concern is figgstem overhea&®witching tasks involve

moving lots of data of the terminated and initiated tasks, and extensive book-keeping to be able

to restore dormant tasks when required. Thus it is extremely crucial to minimize the system
overhead as much as possible. In some cases, some of the tasks may be associated with real-time
response, which further complicates the requirements from the system.

The following section analyzes the requirements and the XA suitability to these applications.

5.1 Multi-tasking Support in XA

The XA has numerous provisions to support multi-tasking systems. The architecture provides
direct support for the concept of a multi-tasking OS by providing two (System/User) privilege
levels for isolation between tasks. High performance, interrupt driven, multi-tasking applications
systems requiring protection are feasible with the XA.

The XA architecture offers the following features which will appeal to multi-tasking
implementations.

5.1.1 Dual stack approach

The architecture defines a System Stack Pointer (SSP) as well as an User Stack Pointer (USP).
The dual stack feature supports fast task switching, and ease the creation of a multi-tasking
monitor kernel. The separation of the two offers a reduction is storing and retrieving stack
pointers or using a single stack, when switching to the kernel and back to an application. It also
serves to speed up interrupt processing in large systems with external data memory. User stacks
can be allocated in the slower external memory, while system memory is in internal SRAM,
allowing for fast interrupt latency in this environment. The dual stack approach also adds the
benefit of a better potential to recover from an ill-behaved task, since the system stack is still
intact when an error is sensed.

3/24/97 5-1 Multi-tasking

5.1.2 Register Banks

The XA also supports 4 banks of 8 byte/4 word registers, in addition to 12 shared registers. In
some applications, the register banks can be designated statically to tasks, cutting significantly
on the overhead for saving and restoring registers on context switching.

5.1.3 Interrupt Latency and Overhead

Interrupt latency is extremely critical in a multitasking environment. For a real-time multitasking
environment, a fast interrupt response is crucial for switching between tasks. The XA is designed
to provide such fast task switching environment through improved interrupt latency time.

The interrupt service mechanism saves the PC (1 or 2 words, depending on the Page0 mode flag
PZ) and the PSW (1 word) on the stack. The interrupt stack normally resides in the internal data
memory, and interrupt call including saving of three words takes 23 clocks. Prefetching the
service routine takes 3 additional clocks.

When interrupt or an exception/trap occurs, the current instruction in progress always gets
executed prior servicing the interrupt. This present an overhead, while increasing the effective
interrupt latency, since the event that interrupted the machine cannot be dealt with before the
book-keeping is completed. In XA, the longest uninterrupted instruction is the signed 32x16
Divide, which takes 24 clocks.

This puts the worst case interrupt latency at [24 + 23 + 3] = 50 clocks (3.125 microseconds at
16.0 MHz, 2.5 microseconds at 20.0 MHz, and 1.67 microseconds at 30.0 MHz). Saving the state
of the lower registers can be done by simply switching the register bank.

In the general case, up to 16 registers would be saved on the stack, which takes 32 clocks. The
total latency+overhead at start of an interrupt is a maximum of 68 clocks (4.25 microsecond at
16 MHz, 3.4 at 20 MHz and 2.27 at 30 MHz). This allows for extremely fast context switching
for multitasking environments.

5.1.4 Protection

The issue is mentioned here simply to clarify what is and what is not supported by the XA
architecture. Dual stack pointer and minor privileges to what looks like a supervisor mode do not
mean full protection. It is assumed that code in a microcontroller does not require guarding from
intentional system break-in by a lower privilege task. A table of the protected features in XA is
given below. Note that features marked “disallowed” are simply not completed if attempted in
the User mode. There are no exceptions or flags associated with these occurrences.

XA User Guide 5-2 3/24/97

Protected Features in the XA

Table 5.1: Segment and Stack Register Protection
. Write . Write Read Read Read . Write to
Mode \évsrlteto through \évsrlteto through | through | through | through \évsrllieto SSEL
DS ES DS ES SSP bit 7
System || Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed
User Dis- Allowed | Allowed | Select- Allowed | Allowed | Not Not Dis-
allowed able 1 possible | possible | allowed

Note 1: The MSB of SSEL (bit 7) selects whether write through ES is allowed in User mode.
However, this bit is accessible only in System mode.

Table 5.2: PSW bit protection

Mode erte to SM erte to RS0O:1 Write to TM bit erte to IMO:3
bit bits bits

System Allowed Allowed Allowed Allowed

User Disallowed Allowed Disallowed Disallowed

In addition to the above, the System Stack is protected from corruption by User Mode execution
of the RETI instruction. If User Mode code attempts to execute that instruction, it causes an
exception interrupt. If it is necessary to run TRAP routines, for instance, in User Mode, the User
RETI exception handler can perform the return for the User Mode code. To accomplish this, the
User RETI exception handler may pop the topmost return address from the stack (2 or 3 words,
depending on whether the XA is in Page Zero mode) and then execute the RETI.

Protection Via Data Memory Segmentation

In User/Application mode, each task is protected from all others via the separation of data spaces
(unless explicit sharing is planned in advance). If the address spaces of two tasks include no
shared data, one task cannot affect the data of another, but it can read any data in the full address

space. Code sharing is always safe since code memory may never bée.viittapplication

mode program is prohibited from writing the segment registers, thus confining the writable area
per an ill-behaved task to its dedicated segment. Most applications, which are not expected to
utilize multi-tasking or use external memory, do not require any protection. They will remain
after reset in system mode, and could access all system resources.

At any given instant, two segments of memory are immediately accessible to an executing XA
program. These are the data segment DS, where the stack and local variables reside, and the
extra segment ES, which may be used to read remote data structures. Restricting the
addressability of task modules helps gain complete control of system resources for efficient,
reliable operation in a multi-tasking environment.

1. True for non-writable code memory only like EPROM, ROM, OTP. This might change for FLASH parts.

3/24/97 5-3 Multi-tasking

Protection Via Dual Stack Pointers

The XA provides a two-level user/supervisor protection mechanism. These asetboe
applicationmode and theystenor supervisormode. In a multitasking environment, tasks in a
supervisor level are protected from tasks in the application level.

The XA has two stack pointers (in the register file) called the System Stack Pointer (SSP) and
the User Stack Pointer (USP). In multitasking systems one stack pointer is used for the
supervisory system and another for the currently active task. This helps in the protection
mechanism by providing isolation of system software from user applications. The two stack
pointers also help to improve the performance of interrupts. If the stack for a particular
application would exceed the space available in the on-chip RAM, or on-chip RAM is needed for
other time critical purposes (since on-chip RAM is accessed more quickly than off-chip
memory), the main stack can be put off-chip and the interrupt stack (using the System SP) may
be put in on-chip RAM.

These features of the XA place it well above the competition in suitability to multi-tasking
applications.

XA User Guide 5-4 3/24/97

6 Instruction Set and Addressing

This section contains information about the addressing modes and data types used in the XA.
The intent is to help the user become familiar with the programming capabilities of the
processor.

6.1 Addressing Modes

Addressing modes are ways to form effective addresses of the operands. The XA provides seven
basicpowerful addressing modes for access on word, byte, and bit data, or to specify the target
address of a branch instruction. Theasicaddressing modes are uniformly available on a large
number of instructions. Table 6.1 includes the basic addressing modes in the XA. An instruction
could use a combination of these basic addressing modes, e.g., ADD RO, #020 is a combination
of Register and Immediate addressing modes.

All modes (non-register) generate ADDR[15:0]. This address is combined with DS/ES[23:16]
for data and PC/CS[23:16] for code to form a 24-bit address

An XA instruction can have zero, one, two, or three operands, whose locations are defined by the
addressing mode. destinationoperand is one that is replaced by a result, or is in some way
affected by the instruction. The destination operand is listed first in an addressing mode
expression. Aourceoperand is a value that is moved or manipulated by the instruction, but is
not altered. The source is listed second in an addressing mode expression.

Table 6.1 Basic Addressing Modes

MODE MNEMONIC OPERANDS
Register R operand(s) in register (in Register file)
Indirect [R] Byte/Word whose 16-bit address is in R
Indirect-Offset [R+off 8/16] Byte or Word data whose address (16-bit) contained in R, is
offset by 8/16-bit signed integer “off 8/16’
Direct mem_addr Byte/Word at given memory “mem_addr’
SFR1 sfr_addr Byte/Word at “sfr_addr’ address
Immediate #data 4/5 Immediate 4/5 and 8/16-bit integer constants “data8/16”
#data 8/16
Bit bit 10-bit address field specifying Register File, Data Memory or

SFR bit address space

1. This is a special case of direct addressing mode but separately identified, as SFR space is sepa-
rate from data memory.

1. Exception is Page 0 mode, where all addresses are 16-bit.

4/17/98 6-1 Addressing Modes and Data Types

6.2 Description of the Modes

6.2.1 Register Addressing

Instructions using this addressing mode contain a field that addresses the Register File that
contains an operand. The Register file is hyweord, double-word or bit addressable.

Example: ADD R6, R4 Before: R4 contains 005Ah
R6 contains A5A5h

After: R4 contains 005Ah
R6 contains A5FFh

REGISTER - REGISTER
DESTINATION
ALU — ™| A5FFh (result) |R6
ABA5h (original contents)
SOURCE
005Ah R4
ADD R6, R4 REGISTER FILE

Figure 6.1

2. The unimplemented 8 word registers are not Byte addressable

XA User Guide 6-2 4/17/98

6.2.2 Indirect Addressing

Instructions using this addressing mode contain a 16-bit address field. This field is contained in 1
out of 8 pointer registers in the Register File (that contain the 16-bit address of the operand in
any 64K data segment). For data, the segment is identified by the 8-bit contents of DS or the ES
and for code by the 8-bit contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit
n = 0 selects DS and 1 selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for
code) in the segment select register SSEL corresponding to the indirect register number. The
address of the pointer word for word operands should be even

Example: ADD R6, [R4] Before R6 contains 1005h
SSEL4=1 R4 contains AO0OOh
i.e., the operand is in Word at AOOOh contains A5A5h
segment determined
by the contents of ES After: R4 contains AOOOh
So, if ES = 08, the R6 contains B5AAN
operand is in Word at AOOOh in segment 8
segment 8 of data memory. of data memory contains A5A5h

REGISTER - INDIRECT
B5AAh (result)
ALU P~ 1005h |R6
Seg8 SSEL.4 =
FFFFh <
EJ -
POINTER
A5A5h <A000h AOOOh R4
OH
DATA MEMORY REGISTER FILE
ADD R6, [R4]
Figure 6.2

4/17/98 6-3 Addressing Modes and Data Types

6.2.3 Indirect-Offset Addressing

This addressing mode is just like the Register-Indirect addressing mode above except that an
additional displacement value is added to obtain the final effective address. Instructions using
this addressing mode contain a 16-bit address field and an 8 or 16-bit signed displacement field.

This field addresses 1 out of 8 pointer registers in the Register File that contains the 16-bit

address of the operand in any 64K data segment. The contents of the pointer register are added to

the signed displacement to obtain the effective ad%i(mma'ch mustbe even) of the operand.

For data the segment is identified by the 8-bit contents of DS or the ES and for code, by the 8-bit
contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit n = 0 selects DS and 1
selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for code) in the segment select

register SSEL.

Example: ADD R5, [R3 +30h]
SSEL.3=1
i.e., the operand is in
segment determined
by the contents of ES
So, if ES = 04, the
operand is in segmen
4 of data memory.

Before: R3 contains CO00h

R5 contains 0065h
Word at CO30h = A540h

After: R3 contains CO00h

R5 contains A5A5h
Word at CO30h = A540h

t

REGISTER - INDIRECT WITH OFFSET

ADD RS5, [R3+30]

DATA MEMORY

0030h

DESTINATION
ALU 0065h B A5AS5h
Seg4 SSEL.3 =
FFFFh <
ES=4
oaon POINTER
C030h C000h
Oh

REGISTER FILE

R5

Figure 6.3

3. In case of an odd address, the XA forces the operand fetch from the next lower even boundary

(address.bit0 = 0)

XA User Guide

6-4

4/17/98

6.2.4 Direct Addressing

Instructions using this addressing mode contain an 10-bit address field, which contains the actual
address of the operand in any 64K data memory segment or sfr space.The direct address data
memory space is always the bottom 1K byte (0:3FFh) of any segment. The associated data
segment is always identified by the 8-bit contents of DS.

Example: SUB RO, 200h Before: RO contains A5FFh
If DS = 02, the 200H contains 5555h
operand is in segment
2 of data memory.

After: RO contains 50AAh
200h contains 5555h

REGISTER - DIRECT
Seg2
FFFFh <« DS=2h
ALU
SOURCE
5555h | 200h
Oh
DATA MEMORY
ASEFh DESTINATION
p| S0AAR (result)| RO
REGISTER FILE
SUB RO, 200h
Figure 6.4

4/17/98 6-5 Addressing Modes and Data Types

6.2.5 SFR Addressing

This is identical to the direct addressing mode described before, except it addresses the 1K SFR
space. Although encoded into the same instruction field as the direct addressing described above,
this is actually a separate space. Instructions using this addressing mode contain an 10-bit SFR
address. The 1K SFR space is always directly addressed (400:7FFh) and is mapped directly
above the 1K direct-addressed RAM space.

Example: MOV ROH, 406h Before: ROH contains 05h
406h contains A5h

After: ROH contains A5h
406h contains A5h

6.2.6 Immediate Addressing

In immediate addressing, the actual operand is given explicitly in the instruction.The immediate
operand is either an 4/5, 8 or 16-bit integer which constitutes the source operand. 4-bit short
immediate operands used with instructions ADDS and MOVS are sign extended.

Example: ADD ROL,#0B9h Before: RO contains 13h
After: ROL contains CCh

REGISTER - IMMEDIATE DESTINATION

| CCh (result)| ROL

13h

ALU

B9h

ADD ROL, #B9h
IMMEDIATE DATA

Figure 6.5

4. The syntax always refers to the SFR address starting from the base address of 400H.

XA User Guide 6-6 4/17/98

6.2.7 Bit Addressing

Instructions using the bit addressing mode contain a 10-bit field containing the address of the bit
operand. The XA supports three bit address spaces, which are encoded into the same format. The
spaces are: 256 bits in the register file (the entire active register file); 256 bits in the data memory
(byte addresses 20 through 3F hex on the current data segment); and 512 bits in the SFR space (byte
addresses 400 through 43F hex).

Bit addresses 0 to FF hex map to the register file, bit addresses 100 to 1FF hex map to data memory,
and bit addresses 200 to 3FF map to the SFR space.

A separate bit-addressable space (20-3F hex) in the direct-address data memory, exists for each
segment. The current working segment for the direct-address space being always identified by the
DS register.

The encoding of the 10-bit field for bit addresses is as follows:

This bit determines whether 5 or 6 bit field (6 bits

the bit address is an SFR or for an SFR) identifies
not (1 = SFR). the byte that the

addressed bit resides
in.

9/8|7]6|5(413|2|1|0

\//

If not an SFR bit address, this bit 3-bit field identifies 1 of
determines whether the bit address 8 bits in a byte.

Is in the Register File or the data

memory (0 = Register file, 1 =

data memory).

Bit Address Encoding

Examples:

For a given data segment,

1 001100 010 = Bit 2 of an SFR at address OCh (i.e., 40Ch in the map)
0 001100 010 = Bit 2 of Register file at address 0Ch, i.e., R6L
0101100 010 = Bit 2 of Data memory address OCh

Figure 6.6

4/17/98 6-7 Addressing Modes and Data Types

6.3 Relative Branching and Jumps

Program memory addresses as referenced by Jumps, Calls, and Branch instructions must be word
aligned in XA. For instance, a branch instruction may occur at any code address, but it may only
branch to an even address. This forced alignment to even address provides three benefits:

* Branch ranges are doubled without providing an extra bit in the instruction and

« Faster execution as XA always fetches first two byte of an instruction simultaneously.

» Allows translated 8051 code to have branches extended over intervening code that will tend to
grow when translated and generally increase the chances of a branch target being in that
range.

Therel8 displacement is a 9-bit two’s complement integer which is encoded as 8-bits that
represents the relative distance in words from the current PC to the destination PC. Similarly, the
rell6displacement is a 17-bit twos complement integer which is encoded as 16-bits. The value of
the PC used in the target address calculation is the address of the instruction following the Branch,
Jump or Call instruction.

The 8-bit signed displacement is between -128 to +127. The branch range for rel8 is (sample
calculation shown below) is really +254 bytes to -256 bytes for instructions locateewatran
address, and +253 to -257 for the same located atdaddress, with the limitation that the target
address is word aligned in code memory.

The 16-bit signed displacementis -32,768 to +32,767. The branch range is therefore +65,534 bytes
to -65,536 bytes for instructions located aearnaddress, and +65,533 to -65,537 for the same
located at alwdd address, with the limitation that the target address is word aligned in code
memory.

Sample calculation for rel8 range:

Assuming word aligned branch target, forward range as measured from current PC is:

Branch Target Address - Current PC
Now, maximum positive signed 8-bit displacement = +127; So, rel8 << 1 is +254

If Current PC = ODD, then
Range =254 -1 =+253 as PC is forced to an even location, else

If current PC = EVEN, then
Range = +254

Similarly, reverse range as measured from current PC is:

Branch Target Address - Current PC
Now, maximum positive signed 8-bit displacement =-128; So, rel8 << 1 is -256

If Current PC = ODD, then

Range =-257
Else if current PC = EVEN, then
Range = -256

XA User Guide 6-8 4/17/98

6.4 Data Typesin XA

The XA uses the following types of data:

e Bits

* 4/5-bit signed integers

» 8-bit (byte) signed and unsigned integers

* 8-Dbit, two digit BCD numbers

e 16-bit (word) signed and unsigned integers

» 10-bit address for bit-addressing in data memory and SFR space

» 24-bit effective address comprising of 16-bit address and 8-bit segment select. See addressing
modes for more information.

A byte consists of 8-bits. A word is a 16-bit value consisting of two contiguous bytes. A double
word consists of two 16-bit words packed in two contiguous words in memory.

Negative integers are represented in twos complement form. 4-bit signed integers (sign extended
to byte/word) are used as immediate operands in MOVS and ADDS instructions.

Binary coded decimal numbers are packed, 2 digits per byte. BCD operations use byte operands.

6.5 Instruction Set Overview

The XA uses a powerful and efficient instruction set, offering several different types of
addressing modes. A versatile set of “branch” and “jump” instructions are available for
controlling program flow based on register or memory contents. Special emphasis has been
placed on the instruction support of structured high-level languages and real-time multi-tasking
operating systems.

This section discusses the set of instructions provided in the XA microcontroller, and also shows
how to use them. It includes descriptions of the instruction format and the operands used by the
instructions. After a summary of the instructions by category, the section provides a detailed
description of the operation of each instruction, in alphabetical order.

Five summary tables are provided that describes the available instructions. The first table is a
summary of instructions available in the XA along with their common usage. The second and
third table are tables of addressing modes and operands, and the instruction type they pertain to.
A fourth table that lists the summary of status flags update by different instructions. A fifth table
lists the available instructions with their different addressing modes and briefly describes what
each instruction does along with the number of bytes, and number of clocks required for each
instruction.

The formats have been chosen to optimize the length and execution speed of those instructions
that would be used the most often in critical code. Only the first and sometimes the second byte
of an instruction are used for operation encoding. The length of the instruction and the first
execution cycle activity are determined from the first byte. Instruction bytes following the first
two bytes (if any) are always immediate operands, such as addresses, relative displacements,
offsets, bit addresses, and immediate data.

4/17/98 6-9 Addressing Modes and Data Types

Glossary of mnemonics, notations used

General:

offset8
offset16

direct
#datad

#datab
#data8
#datal6
bit

rel8
rell6
addr16
addr24
SP
USsP
SSP

C

AC

\

N

Z

DS

ES

direct

An 8-bit signed offset (immediate data in the instruction) that is added to a register to
produce an absolute address.
A 16-bit signed offset (immediate data in the instruction) that is added to a register to
produce an absolute address.
An 11-bit immediate address contained in the instruction.
4 bits of immediate data contained in the instruction. (range +7 to -8 for
signed immediate data and 0-15 for shifts)
5 bits of immediate data contained in the instruction. (0-31 for shifts)
8 bits of immediate data contained in the instruction. (+127 to -128)
16 bits of immediate data contained in the instruction. (+32,767 to -32,768)
The 10-bit address of an addressable bit.
An 8-bit relative displacement for branches. (+254 to -256)
An 16-bit relative displacement for branches.(+65,534 to -65,536)
A 16-bit absolute branch address within a 64K code page.
A 24-bit absolute branch address, able to access the entire XA address space.
The current Stack Pointer (User or System) depending on the operation mode.
The User Stack Pointer.
The System Stack Pointer
Carry flag from the PSW.
Auxiliary Carry flag from the PSW.
Overflow flag from the PSW.
Negative flag from the PSW.
Zero flag from the PSW.
Data segment register. Holds the upper byte of the 24-bit data address space of the XA.
Used mainly for local data segments.
Extra segment register. Holds the upper byte of the 24-bit data address space of the XA.
Used mainly for addressing remote data structures.
Uses the current DS for data memory for the upper byte of the 24-bit address or none
(uses only the low 16-bit address) for accessing the special functions register (SFR)
space. The interpretation should be as below:
if (data range)
then (direct = (DS:direct)
if (sfr range)
then (direct) = (sfr)

Operation encoding fields:

SZ
IND
H/L

dddd
ddd

SSSS
SSS

Data Size. This field encodes whether the operation is byte, word or double-word.
This field flags indirect operation in some instructions.
This field selects whether PUSH and POP Rlist use the upper or lower half of the
available registers.

Destination register field, specifies one of 16 registers in the register file.

Destination register field for indirect references, specifies one of 8 pointer registers in
the register file.

Source register field, specifies one of 16 registers in the register file.

Source register field for indirect references, specifies one of 8 pointer registers in the
register file.

XA User Guide 6-10 4/17/98

Mnemonic text:

Rs Source register.

Rd Destination register.

[1] In the instruction mnemonic, indicates an indirect reference (e.g.: [R4] refers to the
memory address pointed to by the contents of register 4).

[R+] Used to indicate an automatic increment of the pointer register in some indirect

addressing modes.

[WS:R] Indicates that the pointer register (R) is extended to a 24-bit pointer by the selected
segment register (either DS or ES for all instructions except MOVC, which uses either
P023_160r CS)

Rlist A bitmap that represents each register in the register file during a PUSH or POP
operation. These registers are RO-R7 for word or ROL-R7H for byte.

Pseudocode:

() Used to indicate "contents of" in the instruction operation pseudocode (e.g.: (R4) refers
to the contents of register 4).

<--- Pseudocode assignment operator. Occasionally used as <--> to indicate assignment in

both directions (interchange of data).

((SP)) Data memory contents at the location pointed to by the current stack pointer. In system
mode, the current SP is the SSP, and the segment used is always segment 0. In user
mode, the current SP is the USP, and the segment used is the Data Segment (DS). This
segment apply to the uses of the SP, not just PUSH and POP. In a few cases, “((SSP))”
or “((USP))” indicate that a specific SP is used, regardless of the operating mode.

Rn.x Indicates bit x of register n.
Rn.x-y Indicates a range of bits from bit x to bit y of register n.

Note: all indirect addressing is accomplished using the contents of the data segment register as the
upper 8 address bits unless otherwise specified. Example: [ES:Rs] indicates that the extra segment
register generates the upper 8 bits of the address in this case.

Execution time:

Pz - In Page O
nt - Not Taken
t - Taken

Syntax For Operand size:
.w = For word operands

.b = byte operands

.d = double-word operands

Default operand size is dependant on the operands used e.g MOV RO,R1 is always word-size
whereas MOV ROL, ROH is always byte etc. For INDIRECT_IMMEDIATE,
DIRECT_IMMEDIATE, DIRECT_DIRECT, etc., user must specify operand size.

4/17/98 6-11 Addressing Modes and Data Types

Others

Ox = prefix for Hex values

[] = For indirect addressing

[[]] = For Double-indirect addressing
dest = destination

Src = source

Table 6.2 Instruction Set in XA

Mnemonic

Usage

MOV, MOVC, MOVS, MOVX, LEA, XCH, PUSH, POP,
PUSHU, POPU

Data Movement

ADD, ADDS, ADDC, SUB, SUBB

Add and Subtract

MULU.b, MULU.w, MUL.w
DIVU.b, DIVU.w, DIVU.d, DIV.w, DIV.d

Multiply and Divide

RR, RRC, RL, RLC, LSR, ASR, ASL, NORM

Shifts and Rotates

CLR, SETB, MOV, ANL, ORL

Bit Operations

JB, JBC, JNB, JNZ, JZ, DINZ, CINE,

Conditional Jumps/Calls

BOV, BNV, BPL, BCC, BCS, BEQ, BNE, BG, BGE,
BGT, BL, BLE, BLT, BMI

Conditional Branches

AND, OR, XOR

Boolean Functions

JMP, FIMP, CALL, FCALL, BR

Unconditional Jumps/Calls/Branches

RET, RETI

Return from subroutines, interrupts

SEXT, NEG, CPL, DA

Sign Extend, Negate, Complement, Decimal Adjust

BKPT, TRAP#, RESET

Exceptions

NOP

No Operation

XA User Guide

6-12

4/17/98

Table 6.3 shows a summary of the basic addressing modes available for data transfer and
calculation related instructions.

Table 6.3 Instruction Addressing Modes

G L R e e e e e R R
R, R)
R, [R] 2
[R], R 5
R, [R+0ff8] 3
[R+0ff8], R 3
R, [R+0ff16] 4
[R+0ff16], R 4
R, [R+] . . B B . 2
[R+], R >
[R+], [R+] . 5
dir, R N 3
R, dir 3
dir, [R] . 3
[R], dir . 3
R, #data 2*/3/4
[R], #data 2%/3/4
[R+], #data 2%/3/4
[R+off8], 3%4/5
#data
[R+0ff16], 4*/5/6
#data
dir, #data 3%/4/5
dir, dir . 4
R, USP . 5
Notes:

- Shift class includes rotates, shifts, and normalize.

- USP = User stack pointer.

* . ADDS and MOVS uses a short immediate field (4 bits).

** nstructions with no operands include: BKPT, NOP, RESET, RET, RETI.

4/17/98 6-13 Addressing Modes and Data Types

Modes/ MOVC PUSH DA, SEXT JUMP DJINZ CJINE BIT MISC bytes
Operands POP CPL,NEG | CALL OPS
R, [R+] . 5
[R+], R . 5
A, . 2

[A+DPTR]

A, [A+PC] . 5
direct . 3
Rlist . 2

R . >
addr24 . 4
[R] . 5

[A+DPTR] JMP 2
R, rel o 3

direct, rel . 4

R, direct, rel . 4
R, #data, rel R 4/5
[R], #data, . a5
rel
bit . 3

bit, C; C, bit . 3

C, /bit . 3

rel . Cond. 2
Branch

bit, rel Cond. 4
Branch

#data4 TRAP 2

R, R+0off8 LEA 3

r, R+off16 LEA 4

<none> ** . 112

Notes:

- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.
*: ADDS and MOVS uses a short immediate field (4 bits).
** nstructions with no operands include: BKPT, NOP, RESET, RET, RETI.

XA User Guide

6-14

4/17/98

Table 6.4 summarizes the status flag updates for the various XA instruction types.

Table 6.4 Status Flag Updates

Flags Updated
Instruction Type
C AC \% N z
ADD, ADDC, CMP, SUB, SUBB X X X X X
ADDS, MOVS - - - X X
AND, OR, XOR - - - X X
ASR, LSR * - ; X X
branches, all bit operations, NOP - - - - -
Calls, Jumps, and Returns - - - - -
CINE X - - X X
CPL - - - X X
DA * - - X X
DIV, MUL * - * X X
DJINZ - - ; X X
LEA - - - - -
MOV, MOVC, MOVX - - - X X
NEG - - X X X
NORM - - ; X X
PUSH, POP - - - - -
RESET * * * * *
RL, RR - - ; X X
RLC, RRC * ; - X X
SEXT - - - - -
TRAP, BKPT - - - - -
XCH - - - - -
ASL * - X X X

Notes:

-: flag not updated.

X: flag updated according to the standard definition.

*: flag update is non-standard, refer to the individual instruction description.
Note: Explicit writes to PSW flags takes precedence over flag updates.

4/17/98 6-15 Addressing Modes and Data Types

Instruction Set Summary

Table 6.5 lists the entire XA instruction set by instruction type. This can be used as a quick
reference to find specific instructions that may be looked up in the detailed alphabetical description
section.

Instruction timing data given in this table and in the following detailed instruction description
section are based on code execution from internal code memory and data accesses to internal RAM
and registers only. Due to the highly programmable timing of accesses to external code and data
memory on the XA and the interaction of pipelined functions, detailed timing for all conditions
cannot be documented in a concise fashion. The instruction timing data given here also assumes
that the CPU does not need to stall while the instruction is read into the pre-fetch queue.

In the case of branches, one on-chip code fetch (16 bits) is built into the timing numbers. The time
given will be valid if the instruction that is branched to is not longer than two bytes. For longer
instructions, the CPU will wait until the entire instruction is contained in the pre-fetch queue before
resuming execution. This may take one or two additional fetches since the XA has instructions up
to six bytes in length.

Following is a summary of events or conditions that may cause timing differences from the given data.
These are generally stalls that occur when the CPU must wait for some information to become available.

— Instruction fetch. Execution stalls if the pre-fetch queue does not contains a complete
instruction when it is needed. Except following branches, the state of the queue depends upon
the history of instructions that have previously executed.

— Instruction sequence dependencies. This typically occurs when an instruction that reads data from
a resource such as the SFR bus or the external bus follows an instruction that caused a write to
the same resource. The CPU must stall while the write completes (which otherwise requires no
CPU time) before the read can begin. Execution cannot resume until the read is complete.

— Internal data memory versus SFR accesses. SFR reads require an additional 2 clocks to
complete. Because XA peripherals run from the CPU clock divided by 2, there may be one
clock used to synchronize the CPU and the SFR bus.

— Program flow changes. When any change occurs in the program flow, the XA must flush the
pre-fetch queue and begin loading it from the new execution address. The published timing
values include one internal code fetch for all branches, jumps, calls, etc. If the instruction at the
new address is longer than two bytes, additional fetch cycles must occur to obtain a complete
instruction in the queue. In the case of a return from subroutine or interrupt, the first code fetch
may only obtain one byte of the next instruction since returns may resume execution at odd
code addresses.

— Internal versus external code execution. Programmable bus timing and other bus
considerations result in a different timing for internal and external code accesses. Use of the 8-
bit bus width for external code access has a substantial effect on overall performance. Possible
use of the WAIT signal adds an additional variable to this effect. The external bus requirement
for an ALE cycle at 16-byte address boundaries, during program flow changes, and after
external bus data accesses also adds to the variability.

— Internal versus external data access. Programmable bus timing again causes different timing
for internal and external data accesses. The 8-bit data bus setting contributes to the differences.
Use of the WAIT signal may vary the timing still further.

XA User Guide 6-16 4/17/98

— Collision of external code fetch and external data access. When an externally executing
program accesses data on the external bus, the pre-fetch queue tends to starve more often that

for internal execution.

Table 6.5
Mnemonic Description Bytes locks
Arithmetic Operations
ADD Rd, Rs Add registers direct 2 3
ADD Rd, [Rs] Add register-indirect to register 2 4
ADD [Rd], Rs Add register to register-indirect 2 4
ADD Rd, [Rs+offset8] Add register-indirect with 8-bit offset to 3 6
register
ADD [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6
offset
ADD Rd, [Rs+offsetl16] Add register-indirect with 16-bit offset to 4 6
register
ADD [Rd+offsetl16], Rs Add register to register-indirect with 16-bit 4 6
offset
ADD Rd, [Rs+] Add register-indirect with auto increment to 2 5
register
ADD [Rd+], Rs Add register-indirect with auto increment to 2 5
register
ADD direct, Rs Add register to memory 3 4
ADD Rd, direct Add memory to register 3 4
ADD Rd, #data8 Add 8-bit immediate data to register 3 3
ADD Rd, #datal6 Add 16-bit immediate data to register 4 3
ADD [Rd], #data8 Add 8-bit immediate data to register-indirect 3 4
ADD [Rd], #datal6 Add 16-bit immediate data to register-indirect 4 4
ADD [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5
with auto-increment
ADD [Rd+], #datal6 Add 16-bit immediate data to register-indirect 4 5
with auto-increment
ADD [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6
with 8-bit offset
ADD [Rd+offset8], #datal6 Add 16-bit immediate data to register-indirect 5 6
with 8-bit offset
ADD [Rd+offsetl16], #data8 Add 8-bit immediate data to register-indirect 5 6
with 16-bit offset
4/17/98 6-17 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes Qlocks

ADD [Rd+offsetl6], #datal6é | Add 16-bit immediate data to register-indirect 6 6
with 16-bit offset

ADD direct, #data8 Add 8-bit immediate data to memory 4 4

ADD direct, #datal6 Add 16-bit immediate data to memory 5 4

ADDC Rd, Rs Add registers direct with carry 2 3

ADDC Rd, [Rs] Add register-indirect to register with carry 2 4

ADDC [Rd], Rs Add register to register-indirect with carry 2 4

ADDC Rd, [Rs+offset8] Add register-indirect with 8-hit offset to 3 6
register with carry

ADDC [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6
offset with carry

ADDC Rd, [Rs+offset16] Add register-indirect with 16-bit offset to 4 6
register with carry

ADDC [Rd+offsetl6], Rs Add register to register-indirect with 16-bit 4 6
offset with carry

ADDC Rd, [Rs+] Add register-indirect with auto increment to 2 5
register with carry

ADDC [Rd+], Rs Add register-indirect with auto increment to 2 5
register with carry

ADDC direct, Rs Add register to memory with carry 3 4

ADDC Rd, direct Add memory to register with carry 3 4

ADDC Rd, #data8 Add 8-bit immediate data to register with 3 3
carry

ADDC Rd, #datal6 Add 16-bit immediate data to register with 4 3
carry

ADDC [Rd], #data8 Add 16-bit immediate data to register-indirect 3 4
with carry

ADDC [Rd], #datal6 Add 16-bit immediate data to register-indirect 4 4
with carry

ADDC [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5
and auto-increment with carry

ADDC [Rd+], #datal6 Add 16-bit immediate data to register-indirect 4 5
and auto-increment with carry

ADDC [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6
with 8-bit offset and carry

ADDC [Rd+offset8], #datal6 Add 16-bit immediate data to register-indirect 5 6
with 8-bit offset and carry

XA User Guide 6-18 4/17/98

Table 6.5

Mnemonic Description Bytes Clocks

ADDC [Rd+offsetl16], #data8 Add 8-bit immediate data to register-indirect 5 6
with 16-bit offset and carry

ADDC [Rd+offset16], #datal6 | Add 16-bit immediate data to register-indirect 6 6
with 16-bit offset and carry

ADDC direct, #data8 Add 8-bit immediate data to memory with 4 4
carry

ADDC direct, #datal6 Add 16-bit immediate data to memory with 5 4
carry

ADDS Rd, #data4 Add 4-bit signed immediate data to register 2 3

ADDS [Rd], #data4 Add 4-bit signed immediate data to register- 2 4
indirect

ADDS [Rd+], #datad Add 4-bit signed immediate data to register- 2 5
indirect with auto-increment

ADDS [Rd+offset8], #datad Add register-indirect with 8-bit offset to 4-bit 3 6
signed immediate data

ADDS [Rd+offset16], #datad Add register-indirect with 16-bit offset to 4-bit 4 6
signed immediate data

ADDS direct, #data4 Add 4-bit signed immediate data to memory 3 4

ASL Rd, Rs Logical left shift destination register by the 2 See
value in the source register Notel

ASL Rd, #data4 Logical left shift register by the 4-bit 2 See
immediate value Notel

ASR Rd, Rs Arithmetic shift right destination register by 2 See
the count in the source Notel

ASR Rd, #data4 Arithmetic shift right register by the 4-bit 2 See
immediate count Notel

CMP Rd, Rs Compare destination and source registers 2 3

CMP [Rd], Rs Compare register with register-indirect 2 4

CMP Rd, [Rs] Compare register-indirect with register 2 4

CMP [Rd+offset8], Rs Compare register with register-indirect with 8- 3 6
bit offset

CMP [Rd+offsetl6], Rs Compare register with register-indirect with 4 6
16-bit offset

CMP Rd, [Rs+offset8] Compare register-indirect with 8-bit offset 3 6

with register

CMP Rd,[Rs+offset16] Compare register-indirect with 16-bit offset 4 6
with register

4/17/98 6-19 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes locks

CMP Rd, [Rs+] Compare auto-increment register-indirect 2 5
with register

CMP [Rd+], Rs Compare register with auto-increment 2 5
register-indirect

CMP direct, Rs Compare register with memory 3 4

CMP Rd, direct Compare memory with register 3 4

CMP Rd, #data8 Compare 8-bit immediate data to register 3 3

CMP Rd, #datal6 Compare 16-bit immediate data to register 4 3

CMP [Rd], #data8 Compare 8 -bit immediate data to register- 3 4
indirect

CMP [Rd], #datal6 Compare 16-bit immediate data to register- 4 4
indirect

CMP [Rd+], #data8 Compare 8-bit immediate data to register- 3 5
indirect with auto-increment

CMP [Rd+], #datal6 Compare 16-bit immediate data to register- 4 5
indirect with auto-increment

CMP [Rd+offset8], #data8 Compare 8-bit immediate data to register- 4 6
indirect with 8-bit offset

CMP [Rd+offset8], #datal6 Compare 16-bit immediate data to register- 5 6
indirect with 8-bit offset

CMP [Rd+offsetl16], #data8 Compare 8-bit immediate data to register- 5 6
indirect with 16-bit offset

CMP [Rd+offsetl6], #datal6 | Compare 16-bit immediate data to register- 6 6
indirect with 16-bit offset

CMP direct, #data8 Compare 8-bit immediate data to memory 4 4

CMP direct, #datal6 Compare 16-bit immediate data to memory 5 4

DA Rd Decimal Adjust byte register 2 4

DIV.w Rd, Rs 16x8 signed register divide 2 14

DIV.w Rd, #data8 16x8 signed divide register with immediate 3 14
word

DIv.d Rd, Rs 32x16 signed double register divide 2 24

DIV.d Rd, #datal6 32x16 signed double register divide with 4 24
immediate word

DIVU.b Rd,Rs 8x8 unsigned register divide 2 12

DIVU.b Rd, #data8 8X8 unsigned register divide with immediate 3 12
byte

XA User Guide 6-20 4/17/98

Table 6.5

Mnemonic Description Bytes Clocks

DIVUw Rd, Rs 16X8 unsigned register divide 2 12

DIVU.w Rd, #data8 16X8 unsigned register divide with immediate 3 12
byte

DIvU.d Rd,Rs 32X16 unsigned double register divide 2 22

DIVU.d Rd, #datal6 32X16 unsigned double register divide with 4 22
immediate word

LEA Rd, Rs+offset8 Load 16-bit effective address with 8-bit offset 3 3
to register

LEA Rd, Rs+offset16 Load 16-bit effective address with 16-bit 4 3
offset to register

MULw Rd, Rs 16X16 signed multiply of register contents 2 12

MUL.w Rd, #datal6 16X16 signed multiply 16-bit immediate data 4 12
with register

MULU.b Rd, Rs 8X8 unsigned multiply of register contents 2 12

MULU.b Rd, #data8 8X8 unsigned multiply of 8-bit immediate data 3 12
with register

MULU.w Rd, Rs 16X16 unsigned register multiply 2 12

MULU.w Rd, #datal6 16X16 unsigned multiply 16-bit immediate 4 12
data with register

NEG Rd Negate (twos complement) register 2 3

SEXT Rd Sign extend last operation to register 2 3

SuUB Rd, Rs Subtract registers direct 2 3

SuUB Rd, [Rs] Subtract register-indirect to register 2 4

SuUB [Rd], Rs Subtract register to register-indirect 2 4

SuUB Rd, [Rs+offset8] Subtract register-indirect with 8-bit offset to 3 6
register

SuUB [Rd+offset8], Rs Subtract register to register-indirect with 8-bit 3 6
offset

SUB Rd, [Rs+offset16] Subtract register-indirect with 16-bit offset to 4 6
register

SuUB [Rd+offsetl6], Rs Subtract register to register-indirect with 16- 4 6
bit offset

SUB Rd, [Rs+] Subtract register-indirect with auto increment 2 5
to register

SuUB [Rd+], Rs Subtract register-indirect with auto increment 2 5
to register

4/17/98 6-21 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes Qlocks

SUB direct, Rs Subtract register to memory 3 4

SUB Rd, direct Subtract memory to register 3 4

SUB Rd, #data8 Subtract 8-bit immediate data to register 3 3

SUB Rd, #datal6 Subtract 16-bit immediate data to register 4 3

SUB [Rd], #data8 Subtract 8-bit immediate data to register- 3 4
indirect

SUB [Rd], #datal6 Subtract 16-bit immediate data to register- 4 4
indirect

SUB [Rd+], #data8 Subtract 8-bhit immediate data to register- 3 5
indirect with auto-increment

SUB [Rd+], #datal6 Subtract 16-bit immediate data to register- 4 5
indirect with auto-increment

SUB [Rd+offset8], #data8 Subtract 8-bit immediate data to register- 4 6
indirect with 8-bit offset

SUB [Rd+offset8], #datal6 Subtract 16-bit immediate data to register- 5 6
indirect with 8-bit offset

SUB [Rd+offset16], #data8 Subtract 8-bit immediate data to register- 5 6
indirect with 16-bit offset

SUB [Rd+offsetl6], #datal6é | Subtract 16-bit immediate data to register- 6 6
indirect with 16-bit offset

SUB direct, #data8 Subtract 8-bit immediate data to memory 4 4

SUB direct, #datal6 Subtract 16-bit immediate data to memory 5 4

SUBB Rd, Rs Subtract with borrow registers direct 2 3

SUBB Rd, [Rs] Subtract with borrow register-indirect to 2 4
register

SUBB [Rd], Rs Subtract with borrow register to register- 2 4
indirect

SUBB Rd, [Rs+offset8] Subtract with borrow register-indirect with 8- 3 6
bit offset to register

SUBB [Rd+offset8], Rs Subtract with borrow register to register- 3 6
indirect with 8-bit offset

SUBB Rd, [Rs+offset16] Subtract with borrow register-indirect with 16- 4 6
bit offset to register

SUBB [Rd+offsetl16], Rs Subtract with borrow register to register- 4 6
indirect with 16-bit offset

SUBB Rd, [Rs+] Subtract with borrow register-indirect with 2 5
auto increment to register

XA User Guide 6-22 4/17/98

Table 6.5

Mnemonic Description Bytes Qlocks

SUBB [Rd+], Rs Subtract with borrow register-indirect with 2 5
auto increment to register

SUBB direct, Rs Subtract with borrow register to memory 3 4

SUBB Rd, direct Subtract with borrow memory to register 3 4

SUBB Rd, #data8 Subtract with borrow 8-bit immediate data to 3 3
register

SUBB Rd, #datal6 Subtract with borrow 16-bit immediate data to 4 3
register

SUBB [Rd], #data8 Subtract with borrow 8-bit immediate data to 3 4
register-indirect

SUBB [Rd], #datal6 Subtract with borrow 16-bit immediate data to 4 4
register-indirect

SUBB [Rd+], #data8 Subtract with borrow 8-bit immediate data to 3 5
register-indirect with auto-increment

SUBB [Rd+], #datal6 Subtract with borrow 16-bit immediate data to 4 5
register-indirect with auto-increment

SUBB [Rd+offset8], #data8 Subtract with borrow 8-bit immediate data to 4 6
register-indirect with 8-bit offset

SUBB [Rd+offset8], #datal6 Subtract with borrow 16-bit immediate data to 5 6
register-indirect with 8-bit offset

SUBB [Rd+offset16], #data8 Subtract with borrow 8-bit immediate data to 5 6
register-indirect with 16-bit offset

SUBB [Rd+offsetl6], #datal6 | Subtract with borrow 16-bit immediate data to 6 6
register-indirect with 16-bit offset

SUBB direct, #data8 Subtract with borrow 8-bit immediate data to 4 4
memory

SUBB direct, #datal6 Subtract with borrow 16-bit immediate data to 5 4
memory

Logical Operations

AND Rd, Rs Logical AND registers direct 2 3

AND Rd, [Rs] Logical AND register-indirect to register 2 4

AND [Rd], Rs Logical AND register to register-indirect 2 4

AND Rd, [Rs+offset8] Logical AND register-indirect with 8-bit offset 3 6
to register

AND [Rd+offset8], Rs Logical AND register to register-indirect with 3 6
8-bit offset

4/17/98 6-23 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes Qlocks

AND Rd, [Rs+offset16] Logical AND register-indirect with 16-bit 4 6
offset to register

AND [Rd+offsetl6], Rs Logical AND register to register-indirect with 4 6
16-bit offset

AND Rd, [Rs+] Logical AND register-indirect with auto 2 5
increment to register

AND [Rd+], Rs Logical AND register-indirect with auto 2 5
increment to register

AND direct, Rs Logical AND register to memory 3 4

AND Rd, direct Logical AND memory to register 3 4

AND Rd, #data8 Logical AND 8-bit immediate data to register 3 3

AND Rd, #datal6 Logical AND 16-bitimmediate data to register 4 3

AND [Rd], #data8 Logical AND 8-bit immediate data to register- 3 4
indirect

AND [Rd], #datal6 Logical AND16-bit immediate data to register- 4 4
indirect

AND [Rd+], #data8 Logical AND 8-bit immediate data to register- 3 5
indirect and auto-increment

AND [Rd+], #datal6 Logical AND16-bit immediate data to register- 4 5
indirect and auto-increment

AND [Rd+offset8], #data8 Logical AND8-bit immediate data to register- 4 6
indirect with 8-bit offset

AND [Rd+offset8], #datal6 Logical AND16-bit immediate data to register- 5 6
indirect with 8-bit offset

AND [Rd+offsetl6], #data8 Logical AND8-bit immediate data to register- 5 6
indirect with 16-bit offset

AND [Rd+offsetl6], #datal6é | Logical AND16-bit immediate data to register- 6 6
indirect with 16-bit offset

AND direct, #data8 Logical AND 8-bit immediate data to memory 4 4

AND direct, #datal6 Logical AND16-bit immediate data to memory 5 4

CPL Rd Complement (ones complement) register 2 3

LSR Rd, Rs Logical right shift destination register by the 2 See
value in the source register Note 1

LSR Rd, #data4 Logical right shift register by the 4-bit 2 See
immediate value Note 1

NORM Rd, Rs Logical shift left destination register by the 2 See
value in the source register until MSB set Note 1

XA User Guide

6-24

4/17/98

Table 6.5

Mnemonic Description Bytes Qlocks

OR Rd, Rs Logical OR registers 2 3

OR Rd, [Rs] Logical OR register-indirect to register 2 4

OR [Rd], Rs Logical OR register to register-indirect 2 4

OR Rd, [Rs+offset8] Logical OR register-indirect with 8-bit offset to 3 6
register

OR [Rd+offset8], Rs Logical OR register to register-indirect with 8- 3 6
bit offset

OR Rd, [Rs+offsetl16] Logical OR register-indirect with 16-bit offset 4 6
to register

OR [Rd+offsetl6], Rs Logical OR register to register-indirect with 4 6
16-bit offset

OR Rd, [Rs+] Logical OR register-indirect with auto 2 5
increment to register

OR [Rd+], Rs Logical OR register-indirect with auto 2 5
increment to register

OR direct, Rs Logical OR register to memory 3 4

OR Rd, direct Logical OR memory to register 3 4

OR Rd, #data8 Logical OR 8-bit immediate data to register 3 3

OR Rd, #datal6 Logical OR 16-bit immediate data to register 4 3

OR [Rd], #data8 Logical OR 8-bit immediate data to register- 3 4
indirect

OR [Rd], #datal6 Logical OR 16-bit immediate data to register- 4 4
indirect

OR [Rd+], #data8 Logical OR 8-bit immediate data to register- 3 5
indirect with auto-increment

OR [Rd+], #datal6 Logical OR 16-bit immediate data to register- 4 5
indirect with auto-increment

OR [Rd+offset8], #data8 Logical OR 8-bit immediate data to register- 4 6
indirect with 8-bit offset

OR [Rd+offset8], #datal6 Logical OR 16-bit immediate data to register- 5 6
indirect with 8-bit offset

OR [Rd+offset16], #data8 Logical OR 8-bit immediate data to register- 5 6
indirect with 16-bit offset

OR [Rd+offset16], #datal6é | Logical OR 16-bit immediate data to register- 6 6
indirect with 16-bit offset

OR direct, #data8 Logical OR 8-bit immediate data to memory 4 4

4/17/98 6-25 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes Qlocks

OR direct, #datal6 Logical OR16-bit immediate data to memory 5 4

RL Rd, #datad Rotate left register by the 4-bit immediate 2 See
value Note 1

RLC Rd, #data4 Rotate left register though carry by the 4-bit 2 See
immediate value Note 1

RR Rd, #data4 Rotate right register by the 4-bit immediate 2 See
value Note 1

RRC Rd, #data4 Rotate right register though carry by the 4-bit 2 See
immediate value Note 1

XOR Rd, Rs Logical XOR registers 2 3

XOR Rd, [Rs] Logical XOR register-indirect to register 2 4

XOR [Rd], Rs Logical XOR register to register-indirect 2 4

XOR Rd, [Rs+offset8] Logical XOR register-indirect with 8-bit offset 3 6
to register

XOR [Rd+offset8], Rs Logical XOR register to register-indirect with 3 6
8-bit offset

XOR Rd, [Rs+offset16] Logical XOR register-indirect with 16-bit 4 6
offset to register

XOR [Rd+offsetl6], Rs Logical XOR register to register-indirect with 4 6
16-bit offset

XOR Rd, [Rs+] Logical XOR register-indirect with auto 2 5
increment to register

XOR [Rd+], Rs Logical XOR register-indirect with auto 2 5
increment to register

XOR direct, Rs Logical XOR register to memory 3 4

XOR Rd, direct Logical XOR memory to register 3 4

XOR Rd, #data8 Logical XOR 8-bit immediate data to register 3 3

XOR Rd, #datal6 Logical XOR 16-bit immediate data to register 4 3

XOR [Rd], #data8 Logical XOR 8-bit immediate data to register- 3 4
indirect

XOR [Rd], #datal6 Logical XOR 16-bit immediate data to 4 4
register-indirect

XOR [Rd+], #data8 Logical XOR 8-bit immediate data to register- 3 5
indirect with auto-increment

XOR [Rd+], #datal6 Logical XOR 16-bit immediate data to 4 5
register-indirect with auto-increment

XA User Guide 6-26 4/17/98

Table 6.5

Mnemonic Description Bytes Qlocks

XOR [Rd+offset8], #data8 Logical XOR 8-bit immediate data to register- 4 6
indirect with 8-bit offset

XOR [Rd+offset8], #datal6 Logical XOR 16-bit immediate data to 5 6
register-indirect with 8-bit offset

XOR [Rd+offset16], #data8 Logical XOR 8-bit immediate data to register- 5 6
indirect with 16-bit offset

XOR [Rd+offsetl6], #datal6 | Logical XOR 16-bit immediate data to 6 6
register-indirect with 16-bit offset

XOR direct, #data8 Logical XOR 8-bit immediate data to memory 4 4

XOR direct, #datal6 Logical XOR16-bit immediate data to memory 5 4

Data transfer

MOV Rd, Rs Move register to register 2 3

MOV Rd, [Rs] Move register-indirect to register 2 3

MOV [Rd], Rs Move register to register-indirect 2 3

MOV Rd, [Rs+offset8] Move register-indirect with 8-bit offset to 3 5
register

MOV [Rd+offset8], Rs Move register to register-indirect with 8-bit 3 5
offset

MOV Rd, [Rs+offset16] Move register-indirect with 16-bit offset to 4 5
register

MOV [Rd+offset16], Rs Move register to register-indirect with 16-bit 4 5
offset

MOV Rd, [Rs+] Move register-indirect with auto increment to 2 4
register

MOV [Rd+], Rs Move register-indirect with auto increment to 2 4
register

MOV direct, Rs Move register to memory 3 4

MOV Rd, direct Move memory to register 3 4

MOV [Rd+], [Rs+] Move register-indirect to register-indirect, 2 6
both pointers auto-incremented

MOV direct, [RS] Move register-indirect to memory 3 4

MOV [Rd], direct Move memory to register-indirect 3 4

MOV Rd, #data8 Move 8-bit immediate data to register 3 3

MOV Rd, #datal6 Move 16-bit immediate data to register 4 3

4/17/98 6-27 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes Clocks

MOV [Rd], #data8 Move 16-bit immediate data to register- 3 3
indirect

MOV [Rd], #datal6 Move 16-bit immediate data to register- 4 3
indirect

MOV [Rd+], #data8 Move 8-bit immediate data to register-indirect 3 4
with auto-increment

MOV [Rd+], #datal6 Move 16-bit immediate data to register- 4 4
indirect with auto-increment

MOV [Rd+offset8], #data8 Move 8-bit immediate data to register-indirect 4 5
with 8-bit offset

MOV [Rd+offset8], #datal6 Move 16-bit immediate data to register- 5 5
indirect with 8-bit offset

MOV [Rd+offsetl16], #data8 Move 8-bit immediate data to register-indirect 5 5
with 16-bit offset

MOV [Rd+offsetl16], #datal6 | Move 16-bit immediate data to register- 6 5
indirect with 16-bit offset

MOV direct, #data8 Move 8-bit immediate data to memory 4 3

MOV direct, #datal6 Move 16-bit immediate data to memory 5 3

MOV direct, direct Move memory to memory 4 4

MOV Rd, USP Move User Stack Pointer to register (system 2 3
mode only)

MOV USP, Rs Move register to User Stack Pointer (system 2 3
mode only)

MOVC Rd, [Rs+] Move data from WS:Rs address of code 2 4
memory to register with auto-increment

MOVC A, [A+DPTR] Move data from code memory to the 2 6
accumulator indirect with DPTR

MOVC A, [A+PC] Move data from code memory to the 2 6
accumulator indirect with PC

MOVS Rd, #data4 Move 4-bit sign-extended immediate data to 2 3
register

MOVS [Rd], #data4 Move 4-bit sign-extended immediate data to 2 3
register-indirect

MOVS [Rd+], #datad Move 4-hit sign-extended immediate data to 2 4
register-indirect with auto-increment

MOVS [Rd+offset8], #data4 Move register-indirect with 8-bit offset to 4-bit 3 5
sign-extended immediate data

XA User Guide 6-28 4/17/98

Table 6.5

Mnemonic Description Bytes Qlocks

MOVS [Rd+offsetl6], #datad Move register-indirect with 16-bit offset to 4- 4 5
bit sign-extended immediate data

MOVS direct, #data4 Move 4-bit sign-extended immediate data to 3 3
memory

MOVX Rd, [Rs] Move external data from memory to register 2 6

MOVX [Rd], Rs Move external data from register to memory 2 6

PUSH direct Push the memory content (byte/word) onto 3 5
the current stack

PUSHU direct Push the memory content (byte/word) onto 3 5
the user stack

PUSH Rlist Push multiple registers (byte/word) onto the 2 See
current stack Note 2

PUSHU Rlist Push multiple registers (byte/word)from the 2 See
user stack Note 2

POP direct Pop the memory content (byte/word) from the 3 5
current stack

POPU direct Pop the memory content (byte/word) from the 3 5
user stack

POP Rlist Pop multiple registers (byte/word) from the 2 See
current stack Note 3

POPU Rlist Pop multiple registers (byte/word) from the 2 See
user stack Note 3

XCH Rd, Rs Exchange contents of two registers 2 5

XCH Rd, [Rs] Exchange contents of a register-indirect 2 6

address with a register

XCH Rd, direct Exchange contents of memory with a register 3 6

Program Branching

BCC rel8 Branch if the carry flag is clear 2 6t/3nt
BCS rel8 Branch if the carry flag is set 2 6t/3nt
BEQ rel8 Branch if the zero flag is set 2 6t/3nt
BNE rel8 Branch if the zero flag is not set 2 6t/3nt
BG rel8 Branch if greater than (unsigned) 2 6t/3nt
BGE rel8 Branch if greater than or equal to (signed) 2 6t/3nt
BGT rel8 Branch if greater than (signed) 2 6t/3nt

4/17/98 6-29 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes locks

BL rel8 Branch if less than or equal to (unsigned) 2 6t/3nt

BLE rel8 Branch if less than or equal to (signed) 2 6t/3nt

BLT rel8 Branch if less than (signed) 2 6t/3nt

BMI rel8 Branch if the negative flag is set 2 6t/3nt

BPL rel8 Branch if the negative flag is clear 2 6t/3nt

BNV rel8 Branch if overflow flag is clear 2 6t/3nt

BOV rel8 Branch if overflow flag is set 2 6t/3nt

BR rel8 Short unconditional branch 2 6

CALL [Rs] Subroutine call indirect with a register 2 8/5(P2)

CALL rell6 Relative call (+/- 64K) 3 714(P2)

CJINE Rd,direct,rel8 Compare direct byte to register and jump if 4 10t/7nt
not equal

CJINE Rd,#data8,rel8 Compare immediate byte to register and 4 at/6nt
jump if not equal

CINE Rd,#datal6,rel8 Compare immediate word to register and 5 at/6nt
jump if not equal

CJINE [Rd],#data8,rel8 Compare immediate word to register-indirect 4 10t/7nt
and jump if not equal

CJINE [Rd],#datal6,rel8 Compare immediate word to register-indirect 5 10t/7nt
and jump if not equal

DJINZ Rd,rel8 Decrement register and jump if not zero 3 8t/5nt

DJINZ direct,rel8 Decrement memory and jump if not zero 4 ot/5nt

FCALL addr24 Far call (anywhere in the 24-bit address 4 12/8
space) (P2)

FIMP addr24 Far jump (anywhere in the 24-bit address 4 6
space)

JB bit,rel8 Jump if bit set 4 10t/6nt

JBC bit,rel8 Jump if bit set and then clear the bit 4 11t/7nt

JMP rell6 Long unconditional branch 3 6

JMP [Rs] Jump indirect to the address in the register 2 7
(64K)

JMP [A+DPTR] Jump indirect relative to the DPTR 2 5

JMP [[Rs+]] Jump double-indirect to the address (pointer 2 8
to a pointer)

XA User Guide 6-30 4/17/98

Table 6.5

Mnemonic Description Bytes Qlocks
JNB bit,rel8 Jump if bit not set 4 10t/6ént
JNZ rel8 Jump if accumulator not equal zero 2 6t/3nt
JZ rel8 Jump if accumulator equals zero 2 6t/3nt
NOP No operation 1 3
RET Return from subroutine 2 8/6(P2)
RETI Return from interrupt 2 10/

8(P2)

Bit Manipulation

ANL C, bit Logical AND bit to carry 3 4
ANL C, /bit Logical AND complement of a bit to carry 3 4
CLR bit Clear bit 3 4
MOV C, bit Move bit to the carry flag 3 4
MOV bit, C Move carry to bit 3 4
ORL C, bit Logical OR a hit to carry 3 4
ORL C, /bit Logical OR complement of a bit to carry 3 4
SETB bit Sets the bit specified 3 4
Exception / Trap
BKPT Cause the breakpoint trap to be executed. 1 23/
19(PZ)
RESET Causes a hardware Reset, identical to an 2 18
external Reset
TRAP #datad Causes 1 of 16 hardware traps to be 2 23/
executed 19(P2)

Note 1: For 8 and 16 bit shifts, it is 4+1 per additional two bits. For 32-bit shifts, it is 6+1 per additional two bits.
Note 2: 3 clocks per register pushed.
Note 3: 4 clocks for the first register and two clocks for each additional register.

4/17/98 6-31 Addressing Modes and Data Types

ADD Integer Addition

Syntax: ADD dest, source
Operation: dest <- src + dest

Description: Performs a twos complement binary addition of the source and destination operands,
and the result is placed in the destination operand. The source data is not affected by the operation.

Note: If used with write to PSWL, takes precedence to flag updates
Sizes:Byte-Byte, Word-Word

Flags Updated:C, AC, V, N, Z

ADD Rd,Rs
Bytes 2
Clocks 3
Operation (Rd) <-- (Rd) + (Rs)
Encoding:
0/ 0|0|0|SZ|0 |01 d|d|d |d|s|s|s]|s
ADD Rd, [Rs]
Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:
O| 0] 0| 0O0|ISZ/0]|1]|O0 d|{d|d|d|O0O|s |s |s
ADD [Rd], Rs
Bytes: 2
Clocks: 4
Operation (WS:Rd) <-- (WS:Rd) + (Rs)
Encoding:
O| 0] 0|l O0O|lSZ|0O]|1]|O0 s|s|s|s|1|d|d]|d

XA User Guide 6-32 4/17/98

ADD Rd, [Rs+offset8]

Bytes:
Clocks:

Operation
Encoding:

3
6

(Rd) <-- (Rd) + ((WS:Rs)+offset8)

0

SZ

byte 3: offset8

ADD

Bytes:
Clocks:

Operation:
Encoding:

[Rd+offset8], Rs

3
6

((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + (Rs)

0

0

SZ

byte 3: offset8

ADD Rd, [Rs+offset16]

Bytes:
Clocks:

Operation:
Encoding:

4
6

(Rd) <-- (Rd) + ((WS:Rs)+offset16)

0

0

0

0

SZ

1

byte 3: upper 8 bits of offset16

byte 4: lower 8 bits of offset16

ADD

Bytes:
Clocks:

Operation:
Encoding:

[Rd+offsetl6], Rs

4
6
((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + (RS)

0

0

0

0

SZ

1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

4/17/98

6-33

Addressing Modes and Data Types

ADD Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

O| 0| 0| O|SZ| 0| 1|1 d|d|d]|d]|O]|s |s |s

ADD [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

Ol O] O] OfSz| 0] 1|1 s|s|s|s|1|d|d]|d

ADD direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (RS)
Encoding:
O| 0] 0| 0O|ISZ| 1|10 S| s| s | s |1 |direct3bits

byte 3: lower 8 bits of direct

ADD Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:
O|0|L0|0|SZ|1|1/|O0 d|d|d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

XA User Guide 6-34 4/17/98

ADD Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:
1,0/ 0|1 0]0|O0]|12 d|d|d|d| 0] 0] 0]|O0

byte 3: #data8

ADD Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #datal6
Encoding:
1,0/ 0|1| 100|121 d|d|d|d| 0] 0] 0]|O0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADD [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data8
Encoding:
1,00 1|]0]0j1|0O0 O|d|d|d| 0] 0] 0]|O0

byte 3: #data8

ADD [Rd], #datal6

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6
Encoding:
17001 2(212]0]1|0 O|d|d|d| 0] 0] 0]|O0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

4/17/98 6-35 Addressing Modes and Data Types

ADD
Bytes:
Clocks:
Operation:

Encoding:

[Rd+], #data8

3
5

(WS:Rd)) <~ ((WS:Rd)) + #data8
(Rd) <—- (Rd) + 1

1

0

byte 3: #data8

ADD
Bytes:
Clocks:
Operation:

Encoding:

4
5

((WS:Rd)) <-- (WS:Rd)) + #datal6
(Rd) <-- (Rd) + 2

[Rd+], #datal6

1

0

0

1

1

0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADD

Bytes:
Clocks:
Operation:
Encoding:

4
6

((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8

[Rd+offset8], #data8

1

0

byte 3: offset8

byte 4: #data

ADD

Bytes:
Clocks:
Operation:
Encoding:

8

5
6

((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datal6

[Rd+offset8], #datal6

1

0

byte 3: offset8

byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide

6-36

4/17/98

ADD [Rd+offsetl6], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #data8
Encoding:
1(0/0|1|0|1(|0]|12 O, d{d{d| 0| 0| 0| O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6
byte 5: #data8

ADD [Rd+offsetl6], #datal6

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #datal6
Encoding:
1 (00| 1]1|1(0|12 0O,d|d|d|jOo|O0|O0|O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

ADD direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:
170|012/ 0l2]1]O0 O |direct: 3bits| O| O| O| O

byte 3: lower 8 bits of direct
byte 4: #data8

ADD direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #datal6
Encoding:
100 1]1j1(11|0 O |direct: 3bits| O| 0| O| O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-37 Addressing Modes and Data Types

ADDC Integer addition with Carry

Syntax: ADDC destsource

Operation: dest<-dest+src+ C

Description: Performs a two’s complement binary addition of the source operand and the
previously generated carry bit with the destination operand. The result is stored in the destination
operand.The source data is not affected by the operation.

If the carry from previous operation is one (C=1), the result is greater than the sum of the operands;
if it is zero (C=0), the result is the exact sum.

This form of addition is intended to support multiple-precision arithmetic. For this use, the carry
bitis first reset, then ADDC is used to add the portions of the multiple-precision values from least-
significant to most-significant.

Size: Byte-Byte, Word-Word

Flags Updated:C, AC, V, N, Z

ADDC Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs) + (C)
Encoding:
0|0l 0| 1(Sz|0|0]|1 d|d|d|d| s|s]|s]|s

ADDC Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + (WS:Rs)) + (C)
Encoding:
O| 0] 0| 21|Ssz/0]|1]|0O0 d|d|d|d| 0| s|s]|s

XA User Guide 6-38 4/17/98

ADDC

Bytes:
Clocks:

Operation:
Encoding:

[Rd], Rs

2
4

((WS:Rd)) <~ ((WS:Rd)) + (Rs) + (C)

0

SZ

ADDC Rd, [Rs+offset8]

Bytes:
Clocks:

Operation:
Encoding:

3
6

(Rd) <-- (Rd) + ((WS:Rs)+offset8) + (C)

0

0

SZ

byte 3: offset8

ADDC

Bytes:
Clocks:

Operation:
Encoding:

[Rd+offset8], Rs

3
6

((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs) + (C)

0

0

SZ

byte 3: offset8

ADDC Rd, [Rs+offset16]

Bytes:
Clocks:

Operation:
Encoding:

4
6

(Rd) <-- (Rd) + ((WS:Rs)+offsetl6) + (C)

0

0

0

1

SZ

1

byte 3: upper 8 bits of offsetl6
byte 4: lower 8 bits of offsetl6

4/17/98

6-39

Addressing Modes and Data Types

ADDC [Rd+offsetl6], Rs
Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- (WS:Rd)+offsetl6) + (Rs) + (C)
Encoding:

0|0 |0 |1 |SZ|1 d|d|d
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
ADDC Rd, [Rs+]
Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

O|j0|0 |1 SZ|O0 S |s |s
ADDC [Rd+], Rs
Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) + (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

0|0 | 0| 1|Sz|0 d|d|d
ADDC direct, Rs
Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs) + (C)
Encoding:

0|00 |1]|SZ|1 direct: 3 bits

byte 3: lower 8 bits of direct

XA User Guide

6-40

4/17/98

ADDC Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct) + (C)
Encoding:
0|0 |0 |1 (Sz|1 |1]0 d| d|{d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

ADDC Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8 + (C)
Encoding:
110|0|1|0|0| O] 1 d|{d|d|d|0|O0O| 0] 1

byte 3: #data8

ADDC Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #datal6 + (C)
Encoding:
1/0|0| 1| 100|121 d|{d|d|d|[O0O|0| 0] 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd], #data8

Bytes: 3
Clocks:: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data8 + (C)
Encoding:
1(0(0|1|]0j]0(21|O O|d|d|d|O0O|0| 0] 1

byte 3: #data8

4/17/98 6-41 Addressing Modes and Data Types

ADDC [Rd], #datal6

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6 + (C)
Encoding:
1/0(0|1|12|0|1]|0O 0O|d|d|d|O0|l0] 0|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)
(Rd) <-- (Rd) + 1

Encoding:

1,0/ 020 0] 1|1 O|d|d|d|0|0O]| 0|1
byte 3: #data8

ADDC [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6 + (C)
(Rd) <-- (Rd) + 2

Encoding:

1100121011 O|d|d|d|0|0]| 0|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+offset8], #data8

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data8 + (C)
Encoding:

110|012/ 0{1]|]0]O0 0| d{d|d| O] Of 0] 1

byte 3: offset8
byte 4: #data8

XA User Guide 6-42 4/17/98

ADDC [Rd+offset8], #datal6

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #datal6 + (C)
Encoding:

170|012 12(1]0]0O0 O d/ d|{d| O] 0| 0] 1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+offsetl6], #data8

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #data8 + (C)
Encoding:

1,0/ 0|1|0j1 0|1 0| d|{d|d| 0] 0|O0]| 1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADDC [Rd+offsetl6], #datal6

Bytes: 6

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #datal6 + (C)
Encoding:

1(0/0|1]1|1 (0|1 0O|d|d|d|O0|0 |0 |1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

ADDC direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8 + (C)
Encoding:
1002|021]1]0 O |direct:3bits| 0 | O | O] 1

byte 3: lower 8 bits of direct
byte 4: #data8

4/17/98 6-43 Addressing Modes and Data Types

ADDC direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #datal6 + (C)
Encoding:
1100|221 |1]0 O |direct:3bits| 0 |0 |0 | 1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-44 4/17/98

ADDS Add Short

Syntax: ADDS dest, #value

Operation: dest <- dest + #data4

Description: Four bits of signed immediate data are added to the destination. The immediate data
is sign-extended to the proper size, then added to the variable specified by the destination operand,
which may be either a byte or a word. The immediate data range is +7 to -8. This instruction is used
primarily to increment or decrement pointers and counters.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

(Note: the C and AC flags musbt be updated by ADDS since this instruction is used to replace
the 80C51 INC and DEC instructions, which do not update the flags.)

ADDS Rd, #data4

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + #data4
Encoding:
1 /01| 0|SzZz|]0|0]|1 d|d|d|d #datad

ADDS [Rd], #datad

Bytes: 2
Clocks: 4
Operation:((WS:Rd)) <-- ((WS:Rd)) + #data4
Encoding:
1] 0|1,0(Szj]0| 1|0 0| d| d| d #datad

ADDS [Rd+], #data4

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data4
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

17 0|]1,0(SZ] 0| 1|1 O d|d| d #datad

4/17/98 6-45 Addressing Modes and Data Types

ADDS [Rd+offset8], #data4

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data4d
Encoding:
110|1|0(SZz|]1|0]|O0 0| d|d| d #datad
byte 3: offset8
ADDS [Rd+offsetl6], #datad
Bytes: 4
Clocks: 6
Operation:((WS:Rd)+offsetl6) <-- (WS:Rd)+offsetl6) + #datad
Encoding:
1 /01| 0|Sz|1]|0]|1 0| d|d| d #datad
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
ADDS direct, #data4
Bytes: 3
Clocks: 4
Operation:(direct) <-- (direct) + #data4
Encoding:
1701 0|Sz|]1]|1]|0 0 [direct: 3 bits #datad

byte 3: lower 8 bits of direct

XA User Guide 6-46

4/17/98

AND Logical AND

Syntax: AND dest, src

Operation: dest <- dest AND src

Description: Bitwise logical AND the contents of the source to the destination. The byte or word
specified by the source operand is logically ANDed to the variable specified by the destination
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

AND Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) * (Rs)
Encoding:
0|1 0] 1|Sz|]0|0]|1 d|d|d|d|s|s]|s]|s
AND Rd, [Rs]
Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) * ((WS:Rs))
Encoding:
O| 1| 0] 1(szyf0|1]|0 d|d|d|d| O0|s |s |s
AND [Rd], Rs
Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) * (Rs)
Encoding:
O| 1| 0] 1(szf0|1]|0 s|s|s|s|1|d|d]|d

4/17/98 6-47 Addressing Modes and Data Types

AND Rd, [Rs+offset8]

Bytes:
Clocks:
Operation:
Encoding:

3
6
(Rd) <-- (Rd) * ((WS:Rs)+offset8)

0

1

SZ

byte 3: offset8

AND

Bytes:
Clocks:
Operation:
Encoding:

3
6

((WS:Rd)+offset8) <-- (WS:Rd)+offset8) « (Rs)

[Rd+offset8], Rs

0

1

SZ

byte 3: offset8

AND Rd, [Rs+offsetl6]

Bytes:
Clocks:
Operation:
Encoding:

4
6

(Rd) <-- (Rd) * ((WS:Rs)+offset16)

0

1

0

1

SZ

1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

AND

Bytes:
Clocks:
Operation:
Encoding:

4
6

((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) * (Rs)

[Rd+offset16], Rs

0

1

0

1

SZ

1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide

6-48

4/17/98

AND Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) * ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:
O 1) 0| 1|82 O|s |s |s
AND [Rd+], Rs
Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) * (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:
0| 10| 1|Sz 1|d|d]|d

AND direct, Rs

Bytes:
Clocks:

Operation:
Encoding:

3
4

(direct) <-- (direct) « (Rs)

0

1

0

1

SZ

1 | direct: 3 bits

byte 3: lower 8 bits of direct

AND Rd, direct

Bytes:
Clocks:

Operation:
Encoding:

3
4

(Rd) <-- (Rd) « (direct)

0

1

0

1

SZ

0 |direct: 3 bits

byte 3: lower 8 bits of direct

4/17/98

6-49

Addressing Modes and Data Types

AND Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) « #data8
Encoding:
1,00 1|]0]0]O0|12 d

byte 3: #data8

AND Rd, #datal6

Bytes: 4

Clocks: 3

Operation: (Rd) <-- (Rd) « #datal6
Encoding:

1,00 1j2,0]0]1] |d

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

AND [Rd], #data8

Bytes: 3

Clocks: 4

Operation: ((WS:Rd)) <-- (WS:Rd)) » #data8
Encoding:

1,100, 200|100 |O

byte 3: #data8

AND [Rd], #datal6

Bytes: 4

Clocks: 4

Operation: ((WS:Rd)) <-- (WS:Rd)) * #datal6
Encoding:

1,001 10]2|0| |O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide 6-50

4/17/98

AND [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) « #data8
(Rd) <-- (Rd) +1

Encoding:

1100 1]0|]0|1]1 O|(d|d|d| 0] 1|01
byte 3: #data8

AND [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) « #datal6
(Rd) <-- (Rd) + 2

Encoding:

1/0/0|1|1]0|1|1 O|d|d|d| 0] 1|01

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

AND [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) « #data8
Encoding:
100 1|]0j1(0}|0O Ol d|{d|d| 0|1 0|1

byte 3: offset8
byte 4: #data8

AND [Rd+offset8], #datal6

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) « #datal6
Encoding:
1001|111 (0{|0O Ol d|{d|d| 0|1 0|1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-51 Addressing Modes and Data Types

AND [Rd+offsetl6], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) « #data8
Encoding:
1,00 1|]0|1]0|12 0O,d|d|{d| 0] 1|01

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

AND [Rd+offsetl6], #datal6

Bytes: 6

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) « #datal6
Encoding:

1,00 1]1|1]0|1 0Ol d d|d| 0] 1|01

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

AND direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) #data8
Encoding:
1,002/ 0]1]|1]0O0 O |direct:3bits| 0 |2 |0 | 1

byte 3: lower 8 bits of direct
byte 4: #data8

AND direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) « #datal6
Encoding:
110|012 212j1]|1]0 O |direct: 3bits| 0 |1 |0 |1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-52 4/17/98

ANL Logical AND a bit to the Carry flag

Syntax: ANL C, bit

Operation: C <- C (AND) Bit

Description: Read the specified bit and logically AND it to the Carry flag.
Size:Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with carry
affected by the result of an ALU operation

Bytes: 3
Clocks: 4
Encoding:
0|0y 0] 0] 1|0|0]O O|10|0|0]|0 | bhit:2

byte 3: lower 8 bits of bit address

4/17/98 6-53 Addressing Modes and Data Types

ANL Logical AND the complement of a bit to the Carry flag

Syntax: ANL C, /bit

Operation: Carry <- C (AND)bit

Description: Read the specified bit, complement it, and logically AND it to the Carry flag.
Size:Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with carry
affected by the result of an ALU operation

Bytes: 3
Clocks: 4
Encoding:
oOojo0L 00 1|{0]|0]|O Ol 1] 0| 2| 0| O] hit:2

byte 3: lower 8 bits of bit address

XA User Guide 6-54 4/17/98

ASL Arithmetic Shift Left

Syntax: ASL dest, count

Operation:

Do While (count not equal to 0)
(C) <- (dest.msb)

(dest.bit n+1) <- (dest.bit n)
count = count-1

if sign change during shift,

W) <-1

End While

Description:

If the count operand is greater than 0, the destination operand is logically shifted left by the
number of bits specified by the count operand. The Low-order bits shifted in are zero-filled and
the high-order bits are shifted out through the C (carry) bit. If the count operand is 0, no shift is
performed.

The count operand could be:
- An immediate value (#data4 or #datab)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count is a positive value which may be from 1 to 31 and the destination operand is a signed
integer (twos complement form).The destination operand (data size) may be 8, 16, or 32 bits. In
the case of 32-bit shifts, the destination operand must be the least significant half of a double
word register.The count operand is not affected by the operation.

Note:

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for
immediate shift count, shifting is continued until count is O.

Size:Byte, word, and double word

Flags Updated C, V, N, Z

Note: The V flag is set if the sign changes at any time during the shift operation and remains set
until the end of the shift operation i.e., the V flag does not get cleared even if the sign reverts to its

original state because of continued shifts within the same instruction. ASL clears the V flag if the
condition to set it does not occur.

4/17/98 6-55 Addressing Modes and Data Types

ASL Rd, Rs

Operation:
(Rd)

C 4 MSB«+——LSB=—0

Bytes 2
Clocks For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Encoding

1| 10| 0[SZ1|Sz0| 0| 1 d|{d|d|d|s|s]|s]|s

ASL Rd, #datad

Rd,#datab
Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

(Rd)

C <+ MSB<+——LSB=—0

Encoding: (for byte and word data sizes)

1(1|{0]| 11SZ21|Sz0|0 |1 d|d|d|d #data4

(for double word data size)

1|10 21| 1|01 d|d|d #data5

Note: SZ1/SZ0 =00 : byte operation; SZ1/SZ0 =10 : word operation; SZ1/SZ0 =11 : double word
operation.

XA User Guide 6-56 4/17/98

ASR Arithmetic Shift Right

Syntax: ASR dest, count

Operation:

Do While (count not equal to 0)
(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)
dest.msb <- Sign bit

count = count-1

End While

Description:

If the count operand is greater than 0, the destination operand is logically shifted right by the
number of bits specified by the count operand. The low-order bits are shifted out through the C
(carry) bit. If the count operand is 0, no shift is performed. To preserve the sign of the original
operand, the MSBs of the result are sign-extended with the sign bit.

The count operand could be:
- An immediate value (#data4/5)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count operand could be an immediate value or a register. The count is a positive value which
may be from 0 to 31 and the destination operand is a signed integer. The count operand is not
affected by the operation. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the
destination operand must be the least significant half of a double word register.

Note:

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for
immediate shift count, shifting is continued until count is O.

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or

R7:R6).
Size: Byte, Word, Double Word

Flags Updated:C, N, Z

4/17/98 6-57 Addressing Modes and Data Types

ASR Rd, Rs

Bytes: 2

Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Operation:

(Rd)
|—>—»MISB—>LSB >t C

Encoding:

1| 10| 0/SzZ1|sz0|1 | O] |d|d |d|d| s|s|s]|s

ASR Rd, #datad
Rd,#datab5

Operation:
(Rd)

LM‘SB—>LSB — C

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Encoding: (for byte and word data sizes)
1| 1|0 1(Sz1({Sz0|1 | O d|d|d]|d #datad

(for double word data size)

1| 1]0| 1|SZ1|Sz0|1 | O d|d]|d #data5

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 10: word operation; SZ1/SZ0 = 11: double word
operation.

XA User Guide 6-58 4/17/98

BCC Branch if carry clear

Syntax: BCC rel8
Operation:
(PC) <--(PC) +2
if (C) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates
the C flag) did not generate a carry (the carry flag contains a 0). If Carry is clear, the program
execution branches at the location of the PC, plus the specified displacement, rel8. The branch
range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range
Size:Bit

Flags Updated:none

Bytes 2
Clocks: 6 (t)/ 3 (nt)
Encoding:
1(12(12|11|]0]0j0|O0 rel8

4/17/98 6-59 Addressing Modes and Data Types

BCS Branch if carry set

Syntax: BCS rel8
Operation:
(PC) <-- (PC) + 2
if (C) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates
the C flag) generated a carry (the carry flag contains a 1). The branch range is +254 bytes to -256
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes 2
Clocks: 6t/3nt
Encoding:
1/1(2|1|]0]0]0|12 rel8

XA User Guide 6-60 4/17/98

BEQ Branch if zero

Syntax: BEQ rel8
Operation:
(PC) <-- (PC) + 2
if (Z) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the Z flag) had a result of zero (the Z flag contains a 1). The branch range is +254 bytes to
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes 2
Clocks: 6t/3nt
Encoding:
1 (12 (12|1|0]0| 1|1 rel8

4/17/98 6-61 Addressing Modes and Data Types

BG Branch if greater than (unsigned)

Syntax: BG rel8
Operation: (PC) <-- (PC) + 2
if (Z) OR (C) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
greater than the source value, in an unsigned operation. The branch range is +254 bytes to -256
bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
111111 10| 0| O rel8

XA User Guide 6-62 4/17/98

BGE Branch if greater than or equal to (signed)

Syntax: BGE rel8
Operation: (PC) <--(PC) +2
if (N) XOR (V) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
greater than or equal to the source value, in a signed operation. The branch range is +254 bytes to
-256 bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size: Bit

Flags Updated:none

Bytes 2
Clocks: 6t/3nt
Encoding:
1{12}112}1, 0|10 rel8

4/17/98 6-63 Addressing Modes and Data Types

BGT Branch if greater than (signed)

Syntax: BGT rel8
Operation: (PC) <-- (PC) + 2
if ((Z) OR (N)) XOR (V) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
greater than the source value, in a signed operation. The branch range is +254 bytes to -256 bytes,
with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size:Bit

Flags Updated:none

Bytes 2
Clocks: 6t/3nt
Encoding:
11|12 (1]j1|0|0 rel8

XA User Guide 6-64 4/17/98

BKPT Breakpoint

Syntax: BKPT

Operation: (PC)<--(PC)+1
(SSP) <-- (SSP) -6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (bkpt vector)
(PC.15-0) <-- code memory (bkpt vector)
(PC23-16) <-- 0; (PC.0) <-- 0

Description: Causes a breakpoint trap. The breakpoint trap acts like an immediate interrupt, using
a vector to call a specific piece of code that will be executed in system mode. This instruction is
intended for use in emulator systems to provide a simple method of implementing hardware
breakpoints.

For a breakpoint to work properly under all conditions, it must have an instruction length no greater
than the smallest other instruction on the processor, in this case the one byte NOP. This
requirement exists because a breakpoint may be inserted in place of a NOP that is followed by
another instruction that is branched to or otherwise executed without going through the breakpoint.
If the breakpoint instruction were longer than the NOP, it would corrupt the next instruction in
sequence if that instruction were executed.

The opcode for the breakpoint instruction is specifically assigned to be all ones (FFh). This is so
that un-programmed EPROM code memory will contain breakpoints. Similarly, the NOP
instruction is assigned to opcode 00 so that both "blank” code states map to innocuous instructions.

Size:None

Flags Updated:none

Bytes 1
Clocks: 23/19 (P2)
Encoding:

1711|111} 11

5. All flags are affected during the PSW load from the vector table. It is possible that these flags are restored
by the debugger, but does not have to be the case.

4/17/98 6-65 Addressing Modes and Data Types

BL Branch if less than or equal to (unsigned)

Syntax: BL rel8
Operation: (PC) <-- (PC) + 2

if (Z) OR (C) = 1 then

(PC) <-- (PC + rel8*2)

(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
less than or equal to the source value, in an unsigned operation. The branch range is +254 bytes to
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
11121121 0|] 0|12 rel8

XA User Guide 6-66 4/17/98

BLE Branch if less than or equal (signed)

Syntax: BLE rel8
Operation: (PC) <-- (PC) + 2
if ((Z) OR (N)) XOR (V) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
less than or equal to the source value, in a signed operation. The branch range is +254 bytes to -
256 bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1 /1|12 |1 1] 0|1 rel8

4/17/98 6-67 Addressing Modes and Data Types

BLT Branch if less than (signed)

Syntax: BLT rel8
Operation: (PC) <-- (PC) + 2
if (N) XOR (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
less than the source value, in a signed operation. The branch range is +254 bytes to -256 bytes, with
the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1/1(2|1]|1|0] 1|1 rel8

XA User Guide 6-68 4/17/98

BMI Branch if negative

Syntax: BMI rel8

Operation: (PC) <--(PC) +2
if (N) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the N flag) had a result that is less than O (the N flag contains a 1). The branch range is
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1 /1|11 (01| 1|1 rel8

4/17/98 6-69 Addressing Modes and Data Types

BNE Branch if not equal

Syntax: BNE rel8
Operation: (PC) <-- (PC) + 2
if (Z) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the Z flag) had a non-zero result (the Z flag contains a 0). The branch range is +254 bytes
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1/1(2|12|0]0]1|0O0 rel8

XA User Guide 6-70 4/17/98

BNV Branch if no overflow

Syntax: BNV rel8
Operation: (PC) <--(PC) +2
if (V) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the V flag) did not generate an overflow (The V flag contains a 0). The branch range is
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1 /1|1 112(0]1]0|O0 rel8

4/17/98 6-71 Addressing Modes and Data Types

BOV Branch if overflow flag

Syntax: BOV rel8

Operation: (PC) <-- (PC) + 2
if (V) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the V flag) generated an overflow (the V flag contains a 1). The branch range is +254 bytes
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
11|12 (0|1|]0]|12 rel8

XA User Guide 6-72 4/17/98

BPL Branch if positive

Syntax: BPL rel8
Operation: (PC) <-- (PC) + 2
if (N) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the N flag) had a result that is greater than O (the N flag contains a 0). The branch range is
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1 /111120110 rel8

4/17/98 6-73 Addressing Modes and Data Types

BR Unconditional Branch

Syntax: BR rel8
Operation: (PC) <-- (PC) + 2

(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: Branches unconditionally in the range of +254 bytes to -256 bytes, with the limitation
that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size:None

Flags Updated:none

Bytes: 2
Clocks: 6
Encoding:
1 /12|11 1]1|0 rel8

XA User Guide 6-74 4/17/98

CALL Call Subroutine Relative

Syntax: CALL rell6
Operation: (PC) <--(PC) +3
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC) <-- (PC + rel16*2)
(PC.0)<--0
Description: Branches unconditionally in the range of +65,534 bytes to -65,536 bytes, with the
limitation that the target address is word aligned in code memory. The 24-bit return address is
saved on the stack.
Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.
Note: Refer to section 6.3 for details of branch range
Size:None

Flags Updated:none

Bytes: 3
Clocks: 714(PZ)
Encoding:

byte 2: upper 8 bits of rel16
byte 3: lower 8 bits of rel16

4/17/98 6-75 Addressing Modes and Data Types

CALL Call Subroutine Indirect

Syntax: CALL [Rs]

Operation: (PC) <-- (PC) + 2
(SP) <-- (SP) -4
((SP)) <-- (PC.23-0)
(PC.15-1) <-- (Rs.15-1)
(PC.0)<--0

Description: Causes an unconditional branch to the address contained in the operand register,
anywhere within the 64K page following the CALL instruction.The return address (the address
following the CALL instruction) of the calling routine is saved on the stack. The target address
must be word aligned, as CALL or branch will force PC.bit0 to 0.

Note:
(1) Since the PC always points to the instruction following the CALL instruction and if that
happens to be on a different page, then the called routine should be located in that page (64K)

(2) if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.
Size:None

Flags Updated:none

Bytes: 2
Clocks: 8/5(PZz)
Encoding:
11,0, 0]0] 1|10 0, 0| 0| 0| 0| s|s]|s

XA User Guide 6-76 4/17/98

CINE Compare and jump if not equal

Syntax: CJINE dest, src, rel8

Operation: (PC) <-- (PC) + # of instruction bytes
(dest) - (direct) (result not stored)
if (Z) = 0 then
(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: The byte or word specified by the source operand is compared to the variable
specified by the destination operand and the status flags are updated. Jump to the specified address
if the values are not equal. The source and destination data are not affected by the operation. The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Byte-Byte, Word-Word

Flags Updated:C, N, Z

(Note: this particular type of compare must update the V or AC flags to duplicate the 80C51
function.)

CJINE Rd, direct, rel8
Bytes: 4
Clocks: 10t/7nt
Encoding:
1 1] 1(0(Sz|0 |1]0 d|d|d]|d 0 | direct: 3 bits

byte 3: lower 8 bits of direct
byte 4: rel8

4/17/98 6-77 Addressing Modes and Data Types

CIJNE Rd, #data8, rel8

Bytes: 4
Clocks: ot/6nt
Encoding:
111, 0]0]0] 1|12 d|{d|d|d|0|l0|]0]|O
byte 3: rel8

byte 4. data#8

CIJNE Rd, #datalé, rel8

Bytes: 5
Clocks: ot/6nt
Encoding:
1|11, 010|112 d|{d|d|d|0l0|]0]|O
byte 3: rel8

byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

CINE [Rd], #data8, rel8

Bytes: 4
Clocks: 10t/7nt
Encoding:
111, 0] 0]0] 1|12 O|d|d|d|10|]0]|O0
byte 3: rel8

byte 4: #data8

CINE [Rd], #datals6, rel8

Bytes: 5
Clocks: 10t/7nt
Encoding:
1111, 0] 10|11 O|d|d|d| 1] 0|0|O
byte 3: rel8

byte 4. upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-78 4/17/98

CLR Clear Bit

Syntax: CLR it

Operation: (bit) <-- 0

Description: Writes a 0 (clears) to the specified bit.
Size:Bit

Flags Updated:none

Bytes: 3
Clocks: 4
Encoding:
0|0 0] 0] 1|0|0]O 0 0| O] O hit:2

byte 3: lower 8 bits of bit address

4/17/98 6-79

Addressing Modes and Data Types

CMP Integer Compare

Syntax: CMP dest, src

Operation: dest - src

Description: The byte or word specified by the source operand is compared to the specified
destination operand by performing a twos complement binary subtraction of src from dest. The
flags are set according to the rules of subtraction. The source and destination data are not affected
by the operation.

Size: byte-byte, word-word

Flags Updated:C, AC, V, N, Z

CMP Rd,Rs

Operation (Rd) - (Rs)

Bytes 2
Clocks 3
Encoding:
Ol 1] 0| O0|SZ| 0| 0] 1 d|d|d|d]| s|s]|s]|s
CMP Rd, [Rs]

Operation: (Rd) - (WS:Rs))

Bytes: 2
Clocks: 4
Encoding:
0|1, 01 0(SZz|0|1|O0 d|{d|d|d|O0O|s |s |s

XA User Guide 6-80 4/17/98

CMP [Rd], Rs

Operation: ((WS:Rd)) - (Rs)
Bytes: 2

Clocks: 4

Encoding

0|10 0|SZ| 0|10

CMP Rd, [Rs+offset8]

Bytes: 3

Clocks: 6

Operation: (Rd) - ((WS:Rs)+offset8)
Encoding:

0|10 0|SZ|1|0|O0

byte 3: offset8

CMP [Rd+offset8], Rs

Bytes: 3

Clocks: 6

Operation: ((WS:Rd)+offset8) - (Rs)
Encoding:

0|10 0|SZ|1|0|O0

byte 3: offset8

CMP Rd, [Rs+offsetl6]

Bytes: 4

Clocks: 6

Operation: (Rd) - ((WS:Rs)+offset16)
Encoding:

0|1, 0] 0(SZz;1|0]1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

4/17/98

6-81

Addressing Modes and Data Types

CMP [Rd+offsetl6], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offsetl6) - (Rs)
Encoding:
O| 10| 0|SZz|1|0]1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

CMP Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) - (WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

0Ol 1| 0| O|SZz| 0| 1|1 d|ld|d|d]|O0O|s |s |s

CMP [Rd+], Rs

Bytes: 2
Clocks: 5

Operation: ((WS:Rd)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

Ol 1| 0| O|SZz| 0| 1|1 s|s|s|s|1|d|d]|d

CMP direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) - (Rs)
Encoding:
O|1, 0| 0|Sz|1|1/|0 s|s|s|s |1 |direct 3hbits

byte 3: lower 8 bits of direct

XA User Guide 6-82 4/17/98

CMP Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) - (direct)
Encoding:
O| 1 0]0(Sz|;1|1]|0 d|d|d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

CMP Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) - #data8
Encoding:
1100 1]0|]0|O0]1 d|{d|d|d| 0|l 1] 0|0

byte 3: #data8

CMP Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) - #datal6
Encoding:
1/0/0|1| 100|121 d|d|d|d| 0] 1] 0|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

CMP [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) - #data8
Encoding:
1,00 1|]0]0j1|O0 O|d|d|d| 0] 1]0]|0

byte 3: #data8

4/17/98 6-83 Addressing Modes and Data Types

CMP [Rd], #datal6

Bytes: 4

Clocks: 4

Operation: ((WS:Rd)) - #datal6
Encoding:

1,00 1|]1|0]1|O0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

CMP [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) - #data8
(Rd) <-- (Rd) + 1

Encoding:

1100, 2/0]0]|] 1|1

byte 3: #data8

CMP [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) - #datal6
(Rd) <-- (Rd) + 2

Encoding:

1,00 1]1|]0] 1|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

CMP [Rd+offset8], #data8

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offset8) - #data8
Encoding:

110|012/ 0{1]|]0]O0

byte 3: offset8
byte 4: #data8

XA User Guide

6-84

4/17/98

CMP [Rd+offset8], #datal6

Bytes: 5
Clocks: 6
Operation:

Encoding:

((WS:Rd)+offset8) - #datal6

1,00 1] 1|1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

CMP [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation:

Encoding:

((WS:Rd)+offset16) - #data8

1,00 1|01

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

CMP [Rd+offset16], #datal6

Bytes: 6
Clocks: 6
Operation:

Encoding:

((WS:Rd)+offset16) - #datal6

1,00 1] 1|1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

CMP direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) - #data8

Encoding:

1,00 1|01

direct: 3bits| 0 |1 |0 | O

byte 3: lower 8 bits of direct
byte 4: #data8

4/17/98

6-85

Addressing Modes and Data Types

CMP direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) - #datal6
Encoding:
10|02 212j1|1]0 O |direct: 3bits| 0 |1 |0 | O

byte 3: lower 8 bits of direct
byte 4. upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-86 4/17/98

CPL Integer Ones Complement

Syntax: CPL Rd
Operation: Rd <-- Rd)

Description: Performs a ones complement of the destination operand specified by the register Rd.
The result is stored back into Rd. The destination may be either a byte or a word.

Size:Byte, Word

Flags Updated N, Z

Bytes: 2
Clocks: 3
Encoding:
11 0|0 212(Szj]0|0]|O d|d|d|d|1|]0]1]|0O0

4/17/98 6-87 Addressing Modes and Data Types

DA Decimal Adjust

Syntax: DA Rd

Operation: if (Rd.3-0)>9or (AC)=1
then (Rd.3-0) <-- (Rd.3-0) + 6
if (Rd.7-4)>9or (C)=1
then (Rd.7-4) <-- (Rd.7-4) + 6

Description: Adjusts the destination register to BCD format (binary-coded decimal) following an
ADD or ADDC operation on BCD values. This operation may only be done on a byte register.

If the lower 4 bits of the destination value are greater than 9, or if the AC flag is set, 6 is added to
the value. This may cause the carry flag to be set if this addition caused a carry out of the upper 4
bits of the value.

If the upper 4 bits of the destination value are greater than 9, or if the carry flag was set by the add
to the lower bits, 60 hex is added to the value. This may cause the carry flag to be set if this addition
caused a carry out of the upper 4 bits of the value. Carry will never be cleared by the DA instruction
if it was already set.

Size: Byte

Flags Updated:C, N, Z

The carry flag may be set but not cleared. See the description of the carry flag update above.

Bytes 2
Clocks: 4
Encoding:
1,001 0|0]|0]|O d|{d|d|d|1 0|]0]|O0

Note: Please refer to the table on the next page.

XA User Guide 6-88 4/17/98

The following table shows the possible actions that may occur during the DA instruction, related
to the input conditions.

Table 6.6
Low nibble Qarry 0 H'igh Initial Number Resulting
(bits3-0) || A€ high nibble C flag addedto | ¢ fia
nibble (bits 7-4) value
0-9 0 0 0-9 0 00 0
A-F 0 1 0-8 0 06 0
0-3* 1 0 0-9 0 06 0
0-9 0 0 A-F 0 60 1
A-F 0 1 9-F 0 66 1
0-3* 1 0 A-F 0 66 1
0-9 0 0 0-2* 1 60 1
A-F 0 1 0-2* 1 66 1
0-3* 1 0 0- 3 *** 1 66 1

: The largest digit that could result from adding two BCD digits that caused the AC flag to
be set is 3. This is with an ADDC instruction where 9 + 9 + 1 (the carry flag) = 13 hex.

*x : The largest digit that could result in the upper nibble of a value by adding two BCD bytes,
with no carry from the bottom nibble (the AC flag = 0) is 2. For instance, 98 hex + 97 hex = 12F
hex.

*** :The largest digit that could result in the upper nibble of a value by adding two BCD bytes,
with a carry from the bottom nibble (the AC flag = 1) is 3. For instance, 99 hex + 99 hex = 132 hex.

4/17/98 6-89 Addressing Modes and Data Types

DIV.w 16x8 Signed Division
DIV.d 32x16 Signed Division
DIVU.b 8x8 Unsigned Division
DIVU.w 16x8 Unsigned Division
DIvU.d 32x16 Unsigned Division

Description: The byte or word specified by the source operand is divided into the variable
specified by the destination operand.

For DIVU.b, the destination operand can be any byte register that is the least significant byte of a
word register. For DIV.w and DIVU.w, the destination operand must be a word register, and for
DIV.d and DIVU.d, the destination operand must identify a word register that is the low-word of
a double-word register (see note below). The result is stored in the destination register as the
quotient (8 bits for DIVU.b, DIVU.w, DIV.w, and DIVU.w, and 16-bits for DIV.d and DIVU.d)

in the least significant half and the remainder (same size as the quotient), in the most significant
half (except for DIVU.b which stores the quotient in the destination as identified by the lower half
of a word register and the remainder at upper half of the same word register).

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

Size: Byte-Byte, Word-Byte, Double word-Word
Flags Updated:C, V, N, Z
The carry flag is always cleared. The V flag is set in the following cases, otherwise it is cleared:

- DIVU.b: V is set if a divide by 0 occurred. A divide by 0 also causes a hardware trap

to be generated.

- DIV.w, DIVU.w: V is set if the result of the divide is larger than 8 bits (the result does
not fit in the destination).

- DIV.d, DIVU.d: V is set if the result of the divide is larger than 16 bits (the result does
not fit in the destination).

The Z, and N flags are set based on the quotient (integer) portion of the result only and not on the
remainder.

Examples:

a) DIVU.b R4L, R4H - will store the result of the division of R4L by R4H in
R4L and R4H (quotient in register R4L, remainder in register R4H).

b) DIV.w RO, R2L - will store the result of word register RO divided by byte register
R2L in word register RO (quotient in register ROL, remainder in register ROH).

c) DIV.d R4,R2 - will store the result of double-word register R5:R4 divided by word
register R2 in double-word register R5:R4 (quotient in R4, remainder in R5)

XA User Guide 6-90 4/17/98

Note: For all divides except DIVU.b, the destination register size is the same as indicated by the
instruction (by the “.b”, “.w”, or “.d") and the source register is half that size.

DIV.w Rd, Rs
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (signed divide)
(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:
1 (2121 0| 0] 1|11 d|d|d|d|s|s]|s]|s

DIV.w Rd, #data8
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (signed divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:
1 (211, 0| 1] 0[0|O0 d|{d|d|d| 1] 0|11

byte 3: #data8

DIV.d Rd, Rs
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)
Bytes: 2
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (signed divide)
(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:
111,01 1] 1|1 d|d|d|O| s|s|s]|s

4/17/98 6-91 Addressing Modes and Data Types

DIV.d Rd, #datal6
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #datal6 (signed divide)
(Rd+1)<-- 16-bit remainder of (Rd) / #datal6
Encoding:
111, 0| 1|{0]0|12 d|{d|d|O0O|1| 0] 0|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

DIVU.b Rd, Rs
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (RdL) / (Rs) (unsigned divide)
(RdH) <-- 8-bit remainder of (RdL) / (Rs)
Encoding:
1 /11, 0] 0]0]O0]12 d|{d|d|d|s|s]|s]|s

DIVU.b Rd, #data8
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3

Clocks: 12

Operation: (RdL) <-- 8-bit integer portion of (RdL) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (RdL) / #data8

Encoding:

1|11, 0 1]0]|]0|O0 d|{d|d|d|0|l 0] 0] 1
byte 3: #data8

XA User Guide 6-92 4/17/98

DIVU.w Rd, Rs
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:
111,00 1] 0|1 d|d|d|d| s|s|s]|s

DIVU.w Rd, #data8
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:
111,01 0]0|O0 d|d|d|d|] 0] 0| 1|1

byte 3: #data8

DIVU.d Rd, Rs
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (unsigned divide)
(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:
1 (11| 0| 110|121 d|d|d|O| s|s]|s]|s

4/17/98 6-93 Addressing Modes and Data Types

DIVU.d Rd, #datal6
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #datal6 (unsigned divide)
(Rd+1)<-- 16-bit remainder of (Rd) / #datal6
Encoding:
111, 0| 1|{0]0|12 d|{d|d|O0O| 0| 0] 0] 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide 6-94 4/17/98

DJINZ Decrement and jump if not zero

Syntax: DJIJNZ dest, rel8

Operation: (PC) <--(PC) +3

(dest) <-- (dest) - 1

if (Z) = 0 then

(PC) <-- (PC + rel8*2); (PC.0) <-- 0
Description: Controls a loop of instructions. The parameters are: a condition code (Z), a counter
(register or memory), and a displacement value. The instruction first decrements the counter by
one, tests the condition if the result of decrement is O (for termination of the loop); if it is false,
execution continues with the next instruction. If true, execution branches to the location indicated
by the current value of the PC plus the sign extended displacement. The value in the PC is the
address of the instruction following DINZ.

The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word
aligned in code memory.The destination operand could be byte or word.

Note: Refer to section 6.3 for details of jump range
Size: Byte, Word

Flags Updated:N, Z

DJIJNZ Rd,rel8

Bytes: 3
Clocks: 8t/5nt
Encoding:
11 0] 0] 0|Sz|1 |1 |1 d|d|d|d| 1| 0] 0| O
byte 3: rel8

DJNZ direct, rel8

Bytes: 4
Clocks: ot/5nt
Encoding:
1 1] 1(0(Sz|0 |1]0 O| O| O| O] 1 |direct: 3 bits

byte 3: lower 8 bits of direct
byte 4: rel8

4/17/98 6-95 Addressing Modes and Data Types

FCALL Far Call Subroutine Absolute

Syntax: FCALL addr24

Operation: (PC)<--(PC) +4
(SP) <-- (SP) -4
((SP)) <-- (PC)
(PC.23-0) <-- addr24
(PC.0)<--0

Description: Causes an unconditional branch to the absolute memory location specified by the
second operand, anywhere in the 16 megabytes XA address space. The 24-bit return address (the
address following the CALL instruction) of the calling routine is saved on the stack. The target
address must be word aligned as CALL or branch will force PC.bit0 to 0.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size:None

Flags Updated:none

Bytes 4
Clocks: 12/8(PZ2)
Encoding:
1/1|0|0|0]|1]|0]O address: middle 8 bits (bits 15-8)

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

XA User Guide 6-96 4/17/98

FIMP Far Jump Absolute

Syntax FIMP addr24

Operation: (PC.23-0) <-- addr24
(PC0)<--0

Description: Causes an unconditional branch to the absolute memory location specified by the
second operand, anywhere in the 16 megabytes XA address space.

Note: The target address must be word aligned as JMP always forces PC to an even address.
Note: if the XA is in page 0 mode, only 16-bits of the address will be used.

Size None

Flags Updated:none

Bytes 4
Clocks: 6
Encoding:
1{12/0(2]0(|1|0]O0 address: middle 8 bits (bits 15-8)

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

4/17/98 6-97 Addressing Modes and Data Types

JB Relative Jump if bit set

Syntax: JB bit, rel8

Operation: (PC)<--(PC) +4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0)<--0

Description: If the specified bit is a one, program execution jumps at the location of the PC, plus
the specified displacement. If the specified bit is clear, the instruction following JB is executed.The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

Note: Refer to section 6.3 for details of jump range

Size:Bit

Flags Updated:none

Bytes 4
Clocks: 10t/6nt
Encoding:
1700 1|]0|1 1|1 1/ 00| 0| O] O] hit: 2
byte 3: lower 8 bits of bit address
byte 4: rel8

XA User Guide 6-98 4/17/98

JBC Jump if bit is set then clear bit

Syntax: JBC Dbit, rel8

Operation: (PC)<--(PC)+4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0; (bit) <-- 0

Description: If the bit specified is set, branch to the address pointed to by the PC plus the specified
displacement. The specified bit is then cleared allowing implementation of semaphore operations.
If the specified bit is clear, the instruction following JBC is executed. The branch range is +254
bytes to -256 bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of jump range

Size:Bit

Flags Updated:none

Bytes 4
Clocks: 11t/7nt
Encoding:
1001|011 |12 111200 O] O] hit: 2
byte 3: lower 8 bits of bit address
byte 4: rel8

4/17/98 6-99 Addressing Modes and Data Types

JMP Relative Jump

Syntax JMP rell6
Operation: (PC) <-- (PC) +3
(PC) <-- (PC + rell6*2)
(PC.0)<--0

Description: Jumps unconditionally. The branch range is +65,535 bytes to -65,536 bytes, with the
limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of jump range
Size:None

Flags Updated:none

Bytes 3
Clocks: 6
Encoding:
1/1|0|2|0|1]|0]1 rell6: upper 8 bits

byte 3: lower 8 bits of rel16

XA User Guide 6-100 4/17/98

JMP Jump Indirect through Register

Syntax: JMP [Rs]

Operation: (PC) <--(PC) +2
(PC.15-1) <-- (Rs.15-1) (note that P£16is not affected)
(PC.0)<--0

Description: Causes an unconditional branch to the address contained in the operand word
register, anywhere within the 64K code page following the JMP instruction.The value of the PC
used in the target address calculation is the address of the instruction following the JMP
instruction.

The target address must be word aligned as JMP will force PC.bit0 to O.

Size none

Flags Updated:none

Bytes: 2
Clocks: 7
Encoding:
1|10 2j0]1|]1|0O0 Ol 11| 1] 0| s|s|s

4/17/98 6-101 Addressing Modes and Data Types

JMP Jump indirect through register

Syntax: JMP [A+DPTR]
Operation: (PC) <-- (PC) + 2

(PC15-1) <-- (A) + (DPTR)

(PC.0)<--0
Description: Causes an unconditional branch to the address formed by the sum of the 80C51
compatibility registers A and DPTR, anywhere within the 64K code page following the JMP
instruction. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Note: The target address must be word aligned as JMP will force PC.bitO to O.

Flags Updated:none

Bytes 2
Clocks: 5

Note: A and DPTR are pre-defined registers used for 80C51 code translation.

Encoding:

11,0, 1|0 1]1|O0 O 1000 1]1]|O0

XA User Guide 6-102 4/17/98

JMP Jump double indirect

Syntax: JMP [[Rs+]]

Operation: (PC) <-- (PC) + 2
(PC.15-0) <-- code memory ((WS:Rs))
(PC.0)<--0
(Rs) <-- (Rs) + 2

Description: Causes an unconditional branch to the address contained in memory at the address
pointed to by the register specified in the instruction. The specified register is post-incremented.

This 2-byte instruction may be used to compress code size by using it to index through a table of
procedure addresses that are accessed in sequence. Each procedure would end with another JIMP
[[R+]] that would immediately go to the next procedure whose address is in the table.

The procedures must be located in the same 64K address page of the executed “Jump Double-
indirect” instruction (although the table could be in any page). This instruction can result in
substantial code compression and hence cost reduction through smaller memory requirements. The
register pointer (index to the table) being automatically post-incremented after the execution of the
instruction. The 24-bit address is identified by combining the low order 16-bit of the PC and either

of high 8-bits of PC or the contents of a byte-size CS register as chosen by the program through a
segment select Special Function Register (SFR).

Note: The subroutine addresses must be word aligned as JMP will force PC.bit0 to O.

Flags Updated:none

Bytes 2
Clocks: 8
Encoding:
1{12/0(2 01|10 Ol 1{1| 0| 0| s|s]|s

4/17/98 6-103 Addressing Modes and Data Types

JNB Jump if bit not set

Syntax JNB bit, rel8
Operation: (PC)<--(PC) +4

if (bit) = 0 then
(PC.15-0) <-- (PC + rel8*2); (PC.0) <--0
Description: If the specified bit is a zero, program execution jumps at the location of the PC, plus
the specified displacement. If the specified bit is set, the instruction following JB is executed.
The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word
aligned in code memory.
Note: Refer to section 6.3 for details of jump range
Size:Bit

Flags Updated:none

Bytes: 4
Clocks: 10t/6nt
Encoding:
1700 1|]0|1 1|1 10| 212(0]| 0| 0] bit:2
byte 3: lower 8 bits of bit address
byte 4: rel8

XA User Guide 6-104 4/17/98

JNZ Jump if the A register is not zero

Syntax: JNZ rel8
Operation: (PC) <--(PC) +2

if (A) not equal to 0O, then

(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0
Description: A relative branch is taken if the contents of the 80C51 Accumulator are not zero. The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 8B0C51 compatibility features.

Note: Refer to section 6.3 for details of jump range
Size Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
111,021 1]|0 rel8

4/17/98 6-105 Addressing Modes and Data Types

Jz Jump if the A register is zero

Syntax: JZ rel8

Operation: (PC) <-- (PC) + 2
If (A) =0 then
(PC.15-0) <-- (PC + rel8*2);
(PC.0)<--0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are zero. The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range
Size:Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt
Encoding:
1110 11|]0]O0 rel8

XA User Guide 6-106 4/17/98

LEA Load effective address

Syntax: LEA Rd, Rs+offset8/16

Operation: (Rd) <-- (Rs)+offset8/16

Description: The word specified by the source operand is added to the offset value and the result
is stored into the register specified by the destination operand. The source and destination operands
are both registers. The offset value is an immediate data field of either 8 or 16 bits in length. The
source data is not affected by the operation.

This instruction mimics the address calculation done during other instructions when the register
indirect with offset addressing mode is used, allowing the resulting address to be saved for other
purposes.

Note: The result of this operation is always a word since it duplicates the calculation of the indirect
with offset addressing mode.

Size: Word-Word

Flags Updated:none

LEA Rd, Rs+offset8

Bytes: 3
Clocks: 3
Encoding:
0|10 010|]0]|]O0]O O|d|d|d|O]| s|s]|s

byte 3: offset8

LEA Rd, Rs+offsetl6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rs)+offsetl16
Encoding:
0|10 012|]0]|0]O O|d|d|d|[O| s|s]|s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6

4/17/98 6-107 Addressing Modes and Data Types

LSR Logical Shift Right

Syntax: LSR dest, count

Operation:

Do While (count not equal to 0)
(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)
(dest.msb) <- 0

count = count-1

End While

Description: If the count operand is greater than the variable specified by the destination
operand is logically shifted right by the number of bits specified by the count operand. The
MSBs of the result are filled with zeroes.The low-order bits are shifted out through the C (carry)
bit. If the count operand is 0, no shift is performed.The count operand is a positive value which
may be from 0 to 31. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the
destination operand must be the least significant half of a double word register. The count is not
affected by the operation.

Note:

- For Logical Shift Left, use ASL ignoring the N flag.

- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for
immediate shift count, shifting is continued until count is O.

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

Size Byte, Word, Double Word
Flags Updated:C, N, Z (N = 0 after an LSR unless count = 0, then it is unchanged)
LSR Rd, Rs (Rs = Byte-register)

Operation
(Rd)

0 —» MSB———»LSB—» C

Bytes 2
Clocks For 8/16 bit shifts --> 4+1 for each 2 bits of shift
For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding

1(/1|0|0|Sz21(Sz0| 0| 0| |d|d|d|d]| s| s|s|s

XA User Guide 6-108 4/17/98

LSR Rd, #datad
Rd, #datab

Operation:
(Rd)

0 —» MSB——»LSB— C

Bytes: 2
Clocks: For 8/16 bit shifts --> 4+1 for each 2 bits of shift
For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding: (for byte and word data sizes)

1/1(0|1]S21|SZ20] 0| O d|d|d|d #datad

(for double word data size)

111/ 0| 111|010 d|d|d #datab

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operation;
SZ1/SZ0 = 11: double word operation.

4/17/98 6-109 Addressing Modes and Data Types

MOV Move Data

Syntax: MOV dest, src
Operation: dest <- src

Description: The byte or word specified by the source operand is copied into the variable specified
by the destination operand. The source data is not affected by the operation.

Source and destination operands may be a register in the register file, an indirect address specified
by a pointer register, an indirect address specified by a pointer register added to an immediate
offset of 8 or 16 bits, or a direct address. Source operands may also be specified as immediate data
contained within the instruction. Auto-increment of the indirect pointers is available for simple
indirect (not offset) addressing.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

MOV Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (RS)
Encoding:
1,0/ 0| 0|SZ|0|O0|1 d|{d|d|d|s|s]|s]|s
MOV Rd, [Rs]
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (WS:Rs))
Encoding:
100 0|SZz|0]|1]|O0 d|{d|d|d|O0O|s |s |s

XA User Guide 6-110 4/17/98

MOV [Rd], Rs

Bytes: 2
Clocks: 3
Operation: ((WS:Rd)) <-- (Rs)
Encoding:
10 0|0|Sz|]O0|1]|0O0 s|s|s|s|l|d|d]|d

MOV Rd, [Rs+offset8]

Bytes: 3
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset8)
Encoding:
1]10]0|0|Sz|1|0]O0 d|{d|d|d]|O0O|s |s |s

byte 3: offset8

MOV [Rd+offset8], Rs

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- (Rs)
Encoding:
10/ 0|0|Sz|]1|0/|O s|s|s|s|1|d|d]|d

byte 3: offset8

MOV Rd, [Rs+offsetl6]

Bytes: 4
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset16)
Encoding:
10/ 0|0|SZ|]1|0|1 d|{d|d|d|O0O|s |s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

4/17/98 6-111 Addressing Modes and Data Types

MOV [Rd+offsetl6], Rs

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offsetl6) <-- (Rs)
Encoding:
1|1 0|0, 0(Sz|1|]0]|1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOV Rd, [Rs+]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

1100, 0(SZ| 0] 1|1 d|{d|d|d|O|s |s |s

MOV [Rd+], Rs

Bytes: 2
Clocks: 4

Operation: ((WS:Rd)) <-- (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1|1 0| 0| O|SZz| 0| 1|1 s|s|s|s|1|d|d]|d

MOV [Rd+], [Rs+]

Bytes: 2
Clocks: 6
Operation: ((WS:Rd)) <-- (WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

110|]0|1(SZ{] 0| 0| O Ol d| d| d|O0|s |s |s

XA User Guide 6-112 4/17/98

MOV direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (Rs)
Encoding:
11 0|0 0(Szj1]|1]|0 s| s| s | s |1 |direct3bits

byte 3: lower 8 bits of direct

MOV Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (direct)
Encoding:
100 0(SZzj1|1|0 d| d| d| d| O |direct:3 bits

byte 3: lower 8 bits of direct

MOV direct, [Rs]

Bytes: 3
Clocks: 4
Operation: (direct) <-- (WS:Rs))
Encoding:
101 0|Sz|]0|O0]|O 1| s| s| s | O |direct:3 bits

byte 3: lower 8 bits of direct

MOV [Rd], direct

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (direct)
Encoding:
1 (01| 0|SZz|]0|0|O O|d | d| d| O |direct:3 bits

byte 3: lower 8 bits of direct

4/17/98 6-113 Addressing Modes and Data Types

MOV Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- #data8
Encoding:
1,00 1|]0|0]O0|12 d|{d|d|d|1| 0| 0] O

byte 3: #data8

MOV Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- #datal6
Encoding:
1700 1|]1|{0]0|12 d|{d|d|d|1] 0] 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MOV [Rd], #datas8

Bytes: 3
Clocks: 3
Operation: ((WS:Rd)) <-- #data8
Encoding:
1,00 1|]0|0]1]|0O 0O|d|d|d|1| 0] 0] O

byte 3: #data8

MOV [Rd], #datal6

Bytes: 4
Clocks: 3
Operation: ((WS:Rd)) <-- #datal6
Encoding:
1700 1|]1|{0]1]|0O O|d|d|d|1| 0] 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide 6-114 4/17/98

MOV [Rd+], #data8

Bytes: 3

Clocks: 4

Operation: ((WS:Rd)) <-- #data8
(Rd) <-- (Rd) + 1

Encoding:

10/ 0|1]0|0(1 |12 O|d|d|d| 1| 0] 0O
byte 3: #data8

MOV [Rd+], #datal6

Bytes: 4

Clocks: 4

Operation: ((WS:Rd)) <-- #datal6
(Rd) <-- (Rd) + 2

Encoding:

1700 21{0]1]|1 O|d|d|d| 1| 0] 0O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MOV [Rd+offset8], #data8

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #data8
Encoding:
1100/ 1]0|1|0]|0O0 O, d|{d|jd| 1] 0] 0| O

byte 3: offset8
byte 4: #data8

MOV [Rd+offset8], #datal6

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #datal6
Encoding:
1 /00| 1|]1]10|0 0O, d|d|d| 1/ 0| 0| O

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-115 Addressing Modes and Data Types

MOV [Rd+offsetl6], #data8

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offsetl6) <-- #data8
Encoding:
100 1|]0]1 d| d| d
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8
MOV [Rd+offsetl6], #datal6
Bytes: 6
Clocks: 5
Operation: ((WS:Rd)+offsetl6) <-- #datal6
Encoding:
1100 1] 1]1 d| d| d
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6
MOV direct, #data8
Bytes: 4
Clocks: 3
Operation: (direct) <-- #data8
Encoding:
1|00 2|0]1 direct: 3 bits
byte 3: lower 8 bits of direct
byte 4: #data8
MOV direct, #datal6
Bytes: 5
Clocks: 3
Operation: (direct) <-- #datal6
Encoding:
110|012 1|1 direct: 3 bits

byte 3: lower 8 bits of direct

byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide

6-116

4/17/98

MOV direct, direct

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct)
Encoding:
110 0|1|Sz|1 d dir: 3 bits | 0 | sdir: 3 bits
byte 3: lower 8 bits of direct (dest)
byte 4: lower 8 bits of direct (src)
MOV Rd, USP (move from user stack pointer)
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (USP)
Encoding:
1(/0(0|1]|]0]|0 d|(d|d|1l1|1]|1]1
MOV USP, Rs (move to user stack pointer)
Bytes: 2
Clocks: 3
Operation: (USP) <-- (Rs)
Encoding:
1(0(0|11]|1]|0 s|s|s|1l]|1|1]|1
4/17/98 6-117 Addressing Modes and Data Types

MOV Move Bit to Carry

Syntax: MOV C, bit

Operation: (C) <-- (bit)

Description: Copies the specified bit to the carry flag.
Size Bit
Flags Updated:none

Note: C is written as the destination of the move, not as a status flag

Bytes 3
Clocks: 4
Encoding:
O 0[O0l O0OL2j0]|]0]O0 0O, 0| 1] 0| 0| O bhit:2

byte 3: lower 8 bits of bit address

XA User Guide 6-118 4/17/98

MOV

Move Carry to Bit

Syntax:

Operation:

Description: Copies the carry flag to the specified bit.

Size Bit

Flags Updated:none

MOV bit, C

(bit) < (C)

Bytes 3
Clocks: 4
Encoding:
0|0 0] 0|12|O0 11 0| O hit: 2

byte 3: lower 8 bits of bit address

4/17/98

6-119

Addressing Modes and Data Types

MOVC Move Code

Syntax: MOVC Rd, [Rs+]

Operation: (Rd) <-- code memory ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Description: Contents of code memory are copied to an internal register. The byte or word
specified by the source operand is copied to the variable specified by the destination operand. In
the case of MOVC, the pointer segment selection gives the choices {4 CS segment

(currentworking segmenteferred here as WS), rather than DS or ES as is used for all other
instructions.
Size: Byte-Byte, Word-Word

Flags Updated:N, Z

Bytes 2
Clocks: 4
Encoding:
100 0|SZz|]0O0]jO0O0]|O d|{d|d|d|O0O|s|s |s

XA User Guide 6-120 4/17/98

MOVC Move Code to A (DPTR)

Syntax: MOVC A, [A+DPTR]

Operation: PC <- PC+2
(A) <-- code memory (PC.23-16:(A) + (DPTR))

Description: The byte located at the code memory address formed by the sum of A and the DPTR
is copied to the A register. The A and DPTR registers are pre-defined registers used for 80C51
compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Size Byte-Byte

Flags Updated:N, Z

Bytes: 2
Clocks: 6
Encoding:
100 1|0]0|0]|O o|j1(0(0(212|1]|1]|0

4/17/98 6-121 Addressing Modes and Data Types

MOVC Move Code to A (PC)

Syntax: MOVC A, [A+PC]

Operation: PC <- PC+2
(A) <-- code memory [PC.23-16: (A +PC.15-0)]

Note: Only 16-bits of A+PC are used

Description: The byte located at the code memory address formed by the sum of A and the current
Program Counter value is copied to the A register. The A register is a pre-defined register used for
80C51 compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for
details of 80C51 compatibility features.

Size Byte-Byte

Flags Updated:N, Z

Bytes: 2
Clocks: 6
Encoding:
110|020]0]|0]O o(2(0(0j1|2|0]0

XA User Guide 6-122 4/17/98

MOVS Move Short

Syntax: MOVS dest, #data

Description: Four bits of signed immediate data are moved to the destination. The immediate data
is sign-extended to the proper size, then moved to the variable specified by the destination operand,
which may be a byte or a word. The immediate data range is +7 to -8. This instruction is used to
save time and code space for the many instances where a small data constant is moved to a
destination.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

MOVS Rd, #datad

Bytes: 2
Clocks: 3
Operation: (Rd) <-- sign-extended #data4
Encoding:
1/0(1|1|sz{]0|0]|1 d|d|d|d #datad

MOVS [Rd], #datad

Bytes: 2
Clocks: 3
Operation: ((WS:Rd)) <-- sign-extended #data4
Encoding:
1 (01| 1|Szj0o|1]|0O 0, d|d| d #datad

MOVS [Rd+], #data4

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- sign-extended #data4
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

1 (01| 1|SZ|]0|1]|1 O d|d| d #data4

4/17/98 6-123 Addressing Modes and Data Types

MOVS [Rd+offset8], #data4

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)+offset8) <-- sign-extended #data4
Encoding:

10| 1| 1|Ssz|{1|0]|0 Ol d| d| d #datad

byte 3: offset8

MOVS [Rd+offsetl6], #datad

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)+offsetl6) <-- sign-extended #data4
Encoding:

1101 1(SZ{1|0]|1 0| d| d| d #data4

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOVS direct, #data4

Bytes: 3
Clocks: 3
Operation: (direct) <-- sign-extended #data4
Encoding:
1|10|1|1|szj1|1]|0 0 |direct: 3 bits #data4

byte 3: lower 8 bits of direct

XA User Guide 6-124

4/17/98

MOVX Move External Data

Syntax: MOVX dest, src

Description: Move external data to or from an internal register. The byte or word specified by the
source operand is copied into the variable specified by the destination operand. This instruction
allows access to data external to the microcontroller in the address range of 0 to 64K. The standard
indirect move may access external data only above the boundary where internal data RAM ends,
whereas MOVX always forces an external access. MOVX only operates on the first 64K of
external data memory. This instruction is included to allow compatibility with 80C51 code.

Note that in the 80C51 MOVX instruction using @Ri as a pointer (where i could be 0 or 1), the
pointer was eight bits in length and the upper address lines were not driven on the external bus. The
XA always drives all of the enabled external bus address lines. The use of the pointer depends on
whether compatibility mode is in use. If CM = 0 (compatibility mode off, the default), 16 bits of

RO or R1 are used as the address within data segment 0. If CM = 1 (compatibility mode on), 8 bits
of ROL or ROH are used as the bottom eight bits of the address, while the remainder of the address
bits, including those corresponding to the data segment are 0.

Size Byte-Byte, Word-Word

Flags Updated:N, Z

MOVX Rd, [RS]

Bytes: 2
Clocks: 6
Operation: (Rd) <-- external data memory ((Rs))
Encoding:
1 (01| 0|SZz|]1|1]|1 d|{d|d|d|O|s |s |s

MOVX [Rd], Rs

Bytes: 2
Clocks: 6
Operation: external data memory ((Rd)) <-- (Rs)
Encoding:
10|11 0(Szj1|1]|1 s|s|s|s|1l|d|d]|d

4/17/98 6-125 Addressing Modes and Data Types

MUL.w 16x16 Signed Multiply
MULU.b 8x8 Unsigned Multiply
MULU.w 16x16 Unsigned Multiply

Description: The byte or word specified by the source operand is multiplied by the variable
specified by the destination operand.

The destination operand must be the first half of a double size register (word for a byte multiply
and double word for a word multiply). The result is stored in the double size register.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4,
and R7:R6).

Size: Byte-Byte, Word-Word
Flags Updated:C, V, N, Z

The carry flag is always cleared by a multiply instruction. The V flag is set in the following
cases, otherwise it is cleared:

- MULU.b: V is set if the result of the multiply is greater than FFh (the upper byte is not equal to
0).

- MULU.w: V is set if the result of the multiply is greater than FFFFh (the upper word is not
equal to 0).

- MUL.w: V is set if the absolute value of the result of the multiply is greater than 7FFFh (the
upper word is not a sign extension of the lower word).

Examples:
a) MUL.w RO,R5 stores the product of word register O and word register 5 in double word
register O (least significant word in word register RO, most significant word in word register R1).

b) MULU.b R4L, R4H will store the MS byte of the product of R4L and R4H in R4H and the LS
byte in R4L.

XA User Guide 6-126 4/17/98

MUL.w Rd, Rs
(signed 16 bits * 16 bits --> 32 bits)

Bytes:
Clocks:

Operation:

Encoding:

2

12

(Rd+1)<-- Most significant word of (Rd) * (Rs)
(Rd) <-- Least significant word of (Rd) * (Rs)

(signed multiply)

1

MUL.w Rd, #datal6
(signed 16 bits * 16 bits --> 32 bits)

Bytes:
Clocks:

Operation:

Encoding:

4
12

(Rd+1) <-- Most significant word of (Rd) * #datal6 (signed multiply)
(Rd) <-- Least significant word of (Rd) * #datal6

1

11,0 1| 0] 0] 1 d|d|d

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MULU.b Rd, Rs
(unsigned 8 bits * 8 bits --> 16 bits)

(unsigned multiply)

Bytes: 2
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * (Rs)
(RdL) <-- Least significant byte of (RdL) * (Rs)
Encoding:
111, 0|]0]0]0|O d|d|d S| s|s|s
4/17/98 6-127

Addressing Modes and Data Types

MULU.b Rd, #data8
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 3
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * #data8 (unsigned multiply)
(RdL) <-- Least significant byte of (RdL) * #data8
Encoding:
111, 0| 1|{0]0|O0 d|{d|d|d[O0O|0]|O0]|O

byte 3: #data8

MULU.w Rd, Rs
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 2
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (unsigned multiply)
(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:
1|11, 00| 1|]0|O0 d|{d|d|d|s|s]|s]|s

MULU.w Rd, #datal6
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 4
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #datal6 (unsigned multiply)
(Rd) <-- Least significant word of (Rd) * #datal6
Encoding:
1 /211, 0] 1|{0]0|1 d|{d|d|d|0|l 0] 0| O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide 6-128 4/17/98

NEG Negate

Syntax: NEG Rd
Operation: Rd <-- Rd) + 1

Description: The destination register is negated (twos complement). The destination may be a byte
or a word.

Size Byte, Word
Flags Updated:V, N, Z

The V flag is set if a twos complement overflow occurred: the original value = result = 8000 hex
for a word operation or 80 hex for a byte operation.

Bytes: 2
Clocks: 3
Encoding:
10| 0| 1(Sz|{0 |0 |O d|d|d|d|] 1] 0|11

4/17/98 6-129 Addressing Modes and Data Types

NOP No Operation

Syntax: NOP

Operation: PC<-PC+1

Description: Execution resumes at the following instruction. This instruction is defined as being
one byte in length in order to allow it to be used to force word alignment of instructions that are
branch targets, or for any other purpose. It may also be used to as a delay for a predictable amount
of time.

Size None

Flags Updated:none

Bytes: 1
Clocks: 3
Encoding:

Ooj0oj0(0|0j0]0fO

XA User Guide 6-130 4/17/98

NORM Normalize

Syntax NORM Rd, Rs

Operation:
(Rd)
MSB<€t——LSB<—0

Description: Logically shifts left the contents of the destination until the MSB is set, storing the
number of shifts performed in the count (source) register. The data size may be 8, 16, or 32 bits.

If the destination value already has the MSB set, the count returned will be 0. If the destination
value is 0, the count returned will be 0, the N flag will be cleared, and the Z flag will be set. For all
other conditions, the N flag will be 1 and the Z flag will be O.
Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).
The last pair, i.e, R7:R6 is probably not a good idea as R7 is the current stack pointer.
Size Byte, Word, Double Word
Flags Updated:N, Z
Bytes: 2
Clocks: For 8 or 16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding:

1| 10| 0|Sz1|Sz0|1 | 1] |d|d |d|d | s| s| s | s

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operation;
SZ1/SZ0 = 11: double word operation.

4/17/98 6-131 Addressing Modes and Data Types

OR Logical OR

Syntax: OR dest, src

Description: Bitwise logical OR the contents of the source to the destination. The byte or word
specified by the source operand is logically ORed to the variable specified by the destination
operand. The source data is not affected by the operation.

Size Byte-Byte, Word-Word

Flags Updated:N, Z

OR Rd,Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:
0|1, 1| 0(SZz{ 0| 0|1 d|d|d|d| s|s]|s]|s
OR Rd, [Rs]
Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:
O| 11, 01Sz,0| 1|0 d|{d|d|d|O0O|s |s |s
OR [Rd], Rs
Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)
Encoding:
O| 11| 0|1sz,0|1]|0 s|s|s|s|1|d|d]|d

XA User Guide 6-132 4/17/98

OR Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:
O| 1| 1] 0(Ssz;1|0]|0 d|{d|d|d|O0O|s |s |s

byte 3: offset8

OR [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs)
Encoding:
0|11 0|Szj1|0/|0O0 s|s|s|s|1l|dj|d]|d

byte 3: offset8

OR Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:
O| 1| 1] 0(Ssz|j1|0]1 d|d|d|d|O0O]|s |s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

OR [Rd+offsetl6], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + (RS)
Encoding:
O| 1| 1] 0(Szj1|0]1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6

4/17/98 6-133 Addressing Modes and Data Types

OR Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

O|1|1(0|SZ|0|1]|1 S |s |s
OR [Rd+], Rs
Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

O| 11| 0|szj0]|1]1 d|d|d
OR direct, Rs
Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (RS)
Encoding:

O|1|1(0(Sz|j1|1/|0 direct: 3 bits
byte 3: lower 8 bits of direct
OR Rd, direct
Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:

O| 1,1 0(Sz|1|1/|0 d direct: 3 bits
byte 3: lower 8 bits of direct
XA User Guide 6-134

4/17/98

OR Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:
1,0/ 0|1 0]0|O0]|12 d|d|d|d| 0] 1] 1|0

byte 3: #data8

OR Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #datal6
Encoding:
1,0/ 0|1| 100|121 d|d|d|d| 0] 1] 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

OR [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data8
Encoding:
1,00 1|]0]0j1|0O0 O|d|d|d| 0] 1] 1|0

byte 3: #data8

OR [Rd], #datal6

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6
Encoding:
17001 2(212]0]1|0 O|d|d|d| 0] 1] 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

4/17/98 6-135 Addressing Modes and Data Types

OR [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8
(Rd) <-- (Rd) +1

Encoding:

110|010/ 0] 1|1 O|d|d|d|O0] 1] 1|0
byte 3: #data8

OR [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #datal6
(Rd) <-- (Rd) + 2

Encoding:

1,00 1]1|]0] 1|1 O|d|d|d| 0] 1] 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

OR [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data8
Encoding:
1,00 1|]0|1]0|0O 0O,d|{d|d|O| 1/ 1| O

byte 3: offset8
byte 4: #data8

OR [Rd+offset8], #datal6

Bytes: S
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datal6
Encoding:
1,00 121211]|0]0 O,d|{d|{d|jO|1|1]|0

byte 3: offset8
byte 4. upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-136 4/17/98

OR [Rd+offsetl6], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #data8
Encoding:
1|10]0|1j0|1|0]1 O d| djd|Oo|1]1|0O0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

OR [Rd+offsetl6], #datal6

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #datal6
Encoding:
1100 1j1|1|0]1 O d|djd|Oo|1]1|0O0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

OR direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:
170|012/ 0l2]1]O0 O |direct: 3bits| O| 2| 1| O

byte 3: lower 8 bits of direct
byte 4: #data8

OR direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #datal6
Encoding:
1770|0221]|1]0 O |direct: 3bits| O| 21| 1| O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-137 Addressing Modes and Data Types

ORL Logical OR bit

Syntax ORL C, bit

Operation:(C) <-- (C) + (bit)

Description: Logical (inclusive) OR a bit to the Carry flag. Read the specified bit and logically OR
it to the Carry flag.

(C is written as the destination of the ORL, not as a status flag)

Size:Bit

Flags Updated:none

Bytes: 3
Clocks: 4
Encoding:
oOo|jo0L 00 1|{0]|0]|O Ol 1| 10| 0| O hit:2

byte 3: lower 8 bits of bit address

XA User Guide 6-138 4/17/98

ORL Logical OR complement of bit

Syntax ORL C, /bit
Operation: (C) <-- (C) + pit)
Description: Logically OR the complement of a bit to the Carry flag. Read the specified bit,

complement it, and logically OR it to the Carry flag.
(C is written as the destination of the move, not as a status flag)

Flags Updated:none

Bytes: 3
Clocks: 4
Encoding:
0|0y 0] 0] 1|0|0]O O| 1| 1| 212] 0| O hit:2

byte 3: lower 8 bits of bit address

4/17/98 6-139 Addressing Modes and Data Types

POP Pop
POPU Pop User

Syntax: POP dest

Description: The stack is popped and the data written to the specified directly addressed location.
The data size may be byte or word. POP uses the current stack pointer, while POPU forces an
access to the user stack.

Size:Byte, Word

Flags Updated:none

POP direct
Bytes: 3
Clocks: 5

Operation: (direct) <-- ((SP))
(SP) <-- (SP) + 2
Encoding:

1|1 0|0l 0(Sz|1]|1]|1 0|0 |0 |1 |O |direct:3bits
byte 3: 8 bits of direct

POPU direct
Bytes: 3
Clocks: 5

Operation: (direct) <-- (USP))
(USP) <-- (USP) + 2
Encoding:

1,0/ 0|0|SZz|1]1]|1 0| 0| 0| 0| O [|direct: 3 bits
byte 3: 8 bits of direct

XA User Guide 6-140 4/17/98

POP Pop Multiple

POPU Pop User Multiple
Syntax: POP Rlist
POPU Rilist

Description: Pop the specified registers (one or more) from the stack. The stack is popped (from

1 to 8 times) and the data stored in the specified registers. Any combination of word registers in
the group RO to R7 may be popped in a single instruction in a word operation. Or, any combination
of byte registers in the group ROL to R3H or the group R4L to R7H may be popped in a single
instruction in a byte operation. POP uses the current stack pointer, while POPU forces an access to
the user stack.

Note: Rlist is a bit map that represents each register to be popped. The registers are in the order R7,
R6, R5,......, RO, for word registers or R3H.... ROL, or R7H... R4L for byte registers. The pop order

is from right to left, i.e., the register specified by the rightmost one in Rlist will be popped first, etc.
The order must be the reverse of that used by the preceding PUSH instruction. Note that if the same
register list is used first with a PUSH, then with a POP, the original register contents will be
restored. The order in which the registers are called out in the source code is notimportant because
the Rlist operand is encoded as a fixed order bit map (see below).

Size Byte, Word

Flags Updated:none

POP Rlist
Bytes: 2
Clocks: 4 + 2 per additional register

Operation: Repeat for all selected registers (Ri):
(Ri) <-- ((SP))
(SP) <-- (SP) + 2

Encoding:
O/HL 1 |0(SZ|1 |1 |1 Rlist
POPU Rlist
Bytes: 2
Clocks: 4 + 2 per additional register

Operation: Repeat for all selected registers (Ri):
(Ri) <-- ((USP))
(USP) <-- (USP) + 2

Encoding:

OfHL|1|11lSz|1 |1 |1 Rlist

4/17/98 6-141 Addressing Modes and Data Types

Rlist bit definitions for a byte POP from register(s) in the upper register group (R4L through R7H):

R7H R7L R6H R6L R5H R5L R4H R4L

Rlist bit definitions for a byte POP from register(s) in the lower register group (ROL through R3H):

R3H R3L R2H R2L R1H R1L ROH ROL

Rlist bit definitions for a word POP from any register(s) (RO through R7):

R7 R6 R5 R4 R3 R2 R1 RO

XA User Guide 6-142 4/17/98

PUSH Push
PUSHU Push User

Syntax: PUSH src
PUSHU src

Description: The specified directly addressed data is pushed onto the stack. The data size may be
byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to the user stack.

Size:Byte, Word

Flags Updated:none

PUSH direct
Bytes: 3
Clocks: 5

Operation: (SP) <-- (SP) -2
((SP)) <-- (direct)
Encoding

1 0Ol 0| 0O|SZzl 111 O[O (1 |1 |0 |direct: 3 bits

byte 3: 8 bits of direct

PUSHU direct

Bytes: 3

Clocks: 5

Operation: (USP) <-- (USP) -2
((USP)) <-- (direct)

Encoding:

10|01 0(SzZz]j1]|1]|1 O |0 |1 |0 |0 |direct: 3 bits
byte 3: 8 bits of direct

4/17/98 6-143 Addressing Modes and Data Types

PUSH Push Multiple
PUSHU Push User Multiple

Syntax: PUSH Rlist
PUSHU Rlist

Description: Push the specified registers (one or more) onto the stack. The specified registers are
pushed onto the stack. Any combination of word registers in the group RO to R7 may be pushed in
a single instruction in a word operation. Or, any combination of byte registers in the group ROL to
R3H or the group R4L to R7H may be pushed in a single instruction in a byte operation. The data
size may be byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to
the user stack.

Note: Rlist is a bit map that represents each register to be pushed. The registers are in the order R7,
R6, R5,......, RO, for word registers or R3H.... ROL, or R7H... R4L for byte registers. The push order
is from left to right, i.e., the register specified by the leftmost one in Rlist will be pushed first, etc.
The order must be the reverse of that used by the corresponding POP instruction. Note that if the
same register list is used first with a PUSH, then with a POP, the original register contents will be
restored. The order in which the registers are called out in the source code is not important because
the Rlist operand is encoded as a fixed order bit map (see below).

Size Byte, Word

Flags Updated:none

PUSH Rlist
Bytes: 2
Clocks: 3 + 3 per additional register

Operation: Repeat for all selected registers (Ri):
(SP) <-- (SP) - 2
((SP)) <-- (Ri)

Encoding:
OHLIO|OISZ|1 |1 |1 Rlist
PUSHU Rlist
Bytes: 2
Clocks: 3 + 3 per additional register

Operation: Repeat for all selected registers (Ri):
(USP) <-- (USP) - 2
((USP)) <-- (Ri)

Encoding:

O|HL/O|1(SZ|1 |1 |1 Rlist

XA User Guide 6-144 4/17/98

Rlist bit definitions for a byte PUSH from register(s) in the upper register group
(R4L through R7H):

R7H

R7L

R6H

R6L

R5H

R5L

R4H

R4L

Rlist bit definitions for a byte PUSH from register(s) in the lower register group
(ROL through R3H):

R3H R3L R2H R2L R1H R1L ROH ROL
Rlist bit definitions for a word PUSH from any register(s) (RO through R7):
R7 R6 R5 R4 R3 R2 R1 RO
6-145

4/17/98

Addressing Modes and Data Types

RESET Software Reset

Syntax: RESET

Operation: (PC) <-- vector(0)
(PSW) <-- vector(0)
(SFRs) <-- reset values (refer to the description of reset for details)

Description: The chip is reset exactly as if the external hardware reset has been asserted with the
exception that it does not sample inputs for configuration,BAy.BUSW, etc. When a RESET
instruction is executed, the chip is internally reset, but no extREEAET pulse is generated.

The above inputs which are latched during rising edgeRESET pulse, hence does not affect

the chip configuration.

Flags Updated:The entire PSW is set to the value specified in the reset vector.

Bytes: 2
Clocks: 18
Encoding:
11|02 (0| 1|10 ojojo0oj1;0]0]0]O0

XA User Guide 6-146 4/17/98

RET Return from Subroutine

Syntax RET

Operation: (PC) <-- ((SP))
(SP) <~ (SP) +4

Description: A 24-bit return address is popped from the stack and used to replace the entire
program counter value (BG.g. This instruction is used to return from a subroutine that was called

with a CALL or Far Call (FCALL).
Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.
Size None

Flags Updated none

Bytes: 2
Clocks: 8/6 (P2)
Encoding:
1(2(0|212]|0]1j1|0O0 1|1]0{0]0|O0O|O0O|O0]|O

4/17/98 6-147 Addressing Modes and Data Types

RETI Return from Interrupt

Syntax: RETI

Operation: (PSW) <-- ((SSP))
(PC.23-0) <-- ((SSP))
(SSP) < (SSP) + 6

Description: A 24-bit return address is popped from the stack and used to replace the entire
program counter value. The Program Status Word is also restored by being popped from the stack.

This instruction is a privileged instruction (limited to system mode) and is used to return from an
interrupt/exception. An attempt to use RETI in user mode will generate a trap.

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.
Size None

Flags Updated:All PSW bits are written by the POP of the PSW value in System mode.

Bytes: 2
Clocks: 10/8 (P2)
Encoding:
1/12(0|2|0|1]1|0 1/{0(0|1(0]0|0]O

XA User Guide 6-148 4/17/98

RL Rotate Left

Syntax: RL Rd, #datad

Operation:
(Rd)

r MSB<«—LSB 4—‘

count <- #data4

Do While (count not equal to 0)
(desp) <- (desfysp

(dest) <- (desf.y)

(count) <- count -1

End While

Description: The variable specified by the destination operand is rotated left by the number of bits
specified in the immediate data operand. The data size may be 8 or 16 bits. The number of bit
positions shifted may be from 0 to 15.

Size Byte, Word

Flags Updated:N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift
Encoding:
11| 0| 1(sz|0| 1|1 d|d|d]|d #datad

4/17/98 6-149 Addressing Modes and Data Types

RLC Rotate Left Through Carry

Syntax: RLC Rd, #data4

Operation:
(Rd)

’7 C = MSB<7LSB<—‘

count <- #data4

Do While (count not equal to 0)
(temp) <- (C)

(C) <- (deshsp

(dest) <- (dest.q)

(desp) <- (temp)

(count) <- count -1

End While

Description: The variable specified by the destination operand is rotated left through the carry flag
by the number of bits specified in the immediate data operand. The data size may be 8 or 16 bits.
The number of bit positions shifted may be from 0 to 15.

Size:Byte, Word

Flags Updated:C, N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift
Encoding:
1 (10| 1|Sz|1|1]|1 d|d|d]|d #datad

XA User Guide 6-150 4/17/98

RR Rotate Right

Syntax: RR Rd, #data4

Operation:
(Rd)

’—P MSB———— L SB —|

count <- #data4

Do While (count not equal to 0)
(destygp <- (desp)

(dest.y) <- (des)

(count) <- count -1

End While

Description: If the count operand is greater than 0, the destination operand is rotated right by the
number of bits specified in the immediate data operand. The data size may be 8 or 16 bits. The
number of bit positions shifted may be from 0 to 15. If the count operand is 0, no rotate is
performed.

Size: Byte, Word

Flags Updated:N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift
Encoding:
1101l 1|Sszi0|0]|0O d|d|d]|d #datad

4/17/98 6-151 Addressing Modes and Data Types

RRC Rotate Right Through Carry

Syntax: RRC Rd, #data4

Operation:
(Rd)

’—> C ¥ MSB—VLSB—‘

count <- #data4

Do While (count not equal to 0)
(temp) <- (C)

(C) <- (desy)

(dest) <- (deshy1)

(destgp <- (temp)

(count) <- count -1

End While

Description: If the count operand is greater than 0, the destination operand is rotated right through
the carry flag by the number of bits specified in the immediate data operand. The data size may be
8 or 16 bits. The number of bit positions shifted may be from 0 to 15.

If the count operand is 0, no rotate is performed.

Size Byte, Word

Flags Updated:C, N, Z

Bytes 2
Clocks: 4 + 1 for each 2 bits of shift
Encoding:
1)1 0| 1| 1(Sz| 1|11 d|d|d]|d #datad

XA User Guide 6-152 4/17/98

SETB Set Bit

Syntax: SETB bit

Operation: (bit) <-- 1

Description: Writes (sets) a 1 to the specified bit.
Size:Bit

Flags Updatednone

Bytes 3
Clocks: 4
Encoding:
0|00 0l2|]0]|0]O 0| 0| O] 1| O] O hit:2

byte 3: lower 8 bits of bit address

4/17/98 6-153 Addressing Modes and Data Types

SEXT Sign Extend

Syntax: SEXT Rd

Operation: ifN=1
then (Rd) <-- FF in byte mode or FFFF in word mode

fN=0
then (Rd) <-- 00 in byte mode or 0000 in word mode

Description: Copies the N flag (the sign bit of the last ALU operation) into the destination register.
The destination register may be a byte or word register.

Example:

SEXT.b R1

if the result of the previous operation left the N flag set, then R1 <-- FF
Size: Byte, word

Flags Updated:none

Bytes 2
Clocks: 3
Encoding:
1 /0,0|]1|Sz0|0]|O d|{d|d|d|1 0|]0]|1

XA User Guide 6-154 4/17/98

SUB Integer Subtract

Syntax: SUB dest, src

Operation: dest <- dest - src

Description: Performs a twos complement binary subtraction of the source and destination
operands, and the result is placed in the destination operand. The source data is not affected by the
operation.

Size Byte-Byte, Word-Word

Flags Updated:C, AC, V, N, Z

SUB Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs)
Encoding:
0|01 0|Sz|0|0]|1 d|d|d|d|s|s]|s]|s
SUB Rd, [Rs]
Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - ((WS:Rs))
Encoding:
0| 0| 1]0(Sszi0|1]|0 d|d|d|d|O0O]|s |s |s
SUB [Rd], Rs
Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) - (Rs)
Encoding:
0| 0| 1]0(Szf0|1]|0 s|s|s|s|1|d|d]|d

4/17/98 6-155 Addressing Modes and Data Types

SUB Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - (WS:Rs)+offset8)
Encoding:
O| 01| 0|1Sz,1|0]|O0 d|{d|d|d|O0O|s |s |s

byte 3: offset8

SUB [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (RS)
Encoding:
O| 0] 1|0|1Sz,1|0]|0 s|s|s|s|1|d|d]|d

byte 3: offset8

SUB Rd, [Rs+offsetl6]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16)
Encoding:
O| 0] 1|0|SZzI1|0]1 d|{d|d|d|O0O|s|s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUB [Rd+offsetl6], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) - (RS)
Encoding:
0| 01| 0|SZzI1|0]1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide 6-156 4/17/98

SUB Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:RS))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

0|01 0|SZ| 0|11 d|{d|d|d|O|s |s |s

SUB [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

Ol 0|l 1] 0|SZz]0| 1)1 s|s|s|s|1|d|d]|d

SUB direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs)
Encoding:
O|O0|1j0|Sz|1|1|0 s| s| s | s |1 |direct 3hbits

byte 3: lower 8 bits of direct

SUB Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) - (direct)
Encoding:
0| 0| 1]0(Sz|1|1]|0 d|d|d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

4/17/98 6-157 Addressing Modes and Data Types

SUB Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8
Encoding:
1,00 1|]0]0]O0|12 d

byte 3: #data8

SUB Rd, #datal6

Bytes: 4

Clocks: 3

Operation: (Rd) <-- (Rd) - #datal6
Encoding:

1,00 1j2,0]0]1] |d

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUB [Rd], #data8

Bytes: 3

Clocks: 4

Operation: ((WS:Rd)) <-- (WS:Rd)) - #data8
Encoding:

1,100, 200|100 |O

byte 3: #data8

SUB [Rd], #datal6

Bytes: 4

Clocks: 4

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #datal6
Encoding:

1,001 10]2|0| |O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide 6-158

4/17/98

SUB [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) - #data8
(Rd) <-- (Rd) + 1

Encoding:

1100 1]0|]0|1]1 O(d|d|d| 0|l 0] 1|0
byte 3: #data8

SUB [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #datal6
(Rd) <-- (Rd) + 2

Encoding:

1,001 1]0|1|1 O(d|d|d| Ol 0] 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUB [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8
Encoding:
1100/ 1]0|1|0]0O0 O, d{djd|l O] O] 1] O

byte 3: offset8
byte 4: #data8

SUB [Rd+offset8], #datal6

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #datal6
Encoding:
100 1]1]|1(0{|0O O, d{d|{d| 0| 0] 1|0

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-159 Addressing Modes and Data Types

SUB [Rd+offsetl6], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offsetl6) - #data8
Encoding:
1,00 1]011]|0]1 0O,d|d|{d|O|O| 1|0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUB [Rd+offsetl6], #datal6

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offsetl6) - #datal6
Encoding:
1700 1]1|1]0|1 0Ol d|{d{d|j 0| O0|] 1|0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

SUB direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8
Encoding:
1,002/ 0]1]|1]0O0 O |direct:3bits| 0 |0 |1 | O

byte 3: lower 8 bits of direct
byte 4: #data8

SUB direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #datal6
Encoding:
110|012 212j1]|1]0 O |direct: 3bits| 0 | O |1 | O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-160 4/17/98

SUBB Subtract with Borrow

Syntax SUBB dest, src

Operation: dest<-dest-src-C

Description: Performs a twos complement binary addition of the source operand and the
previously generated carry bit (borrow) with the destination operand. The result is stored in the
destination operand.The source data is not affected by the operation.

If the carry from previous operation is zero (C =0, i.e., Borrow = 1), the result is exact difference
of the operands; if itis one (C = 1, i.e., Borrow = 0), the result is 1 less than the difference in
operands.

This form of subtraction is intended to support multiple-precision arithmetic. For this use, the carry
bit is first reset, then SUBB is used to add the portions of the multiple-precision values from least-
significant to most-significant.

Size: Byte-Byte, Word-Word

Flags Updated:C, AC, V, N, Z

SUBB Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs) - (C)
Encoding:
O| 0| 1] 1|sz|]0|0]|1 d|d|d|d| s|s|s]|s

SUBB Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - (WS:Rs)) - (C)
Encoding:
0| 0| 1]1(szf0|1]|0 d|{d|d|d|O0O|s |s |s

4/17/98 6-161 Addressing Modes and Data Types

SUBB [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) - (Rs) - (C)
Encoding:
O| 0] 1|11Ssz,0|1]|0 s|s|s|s|1|d|d]|d

SUBB Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8) - (C)
Encoding:
O| 0] 1|1|1sz,1|0]|0 d|{d|d|d|O0O|s|s |s

byte 3: offset8

SUBB [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - (Rs) - (C)
Encoding:
O| 0] 1|1|Sz,1|0]|0 s|s|s|s|1|d|d]|d

byte 3: offset8

SUBB Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offsetl6) - (C)
Encoding:
O| 0] 1|1|szj1]|0]1 d|{d|d|d|O0O|s|s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide 6-162 4/17/98

SUBB [Rd+offsetl6], Rs

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- (WS:Rd)+offsetl6) - (Rs) - (C)
Encoding:

Ol 0| 1| 1|sz|1|0]1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6

SUBB Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs)) - (C)
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

O} 0|1l 1|sz|0]| 1|1 d|d|d|d]|O0O]|s |s |s

SUBB [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

O} 0| 1|1|sz|0| 1|1 s|s|s|s|1|d|d]|d

SUBB direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs) - (C)
Encoding:
oO|O0|1]1|szj1|1|0 S| s|s|s |1 |direct 3bits

byte 3: lower 8 bits of direct

4/17/98 6-163 Addressing Modes and Data Types

SUBB Rd, direct

Bytes: 3

Clocks: 4

Operation: (Rd) <-- (Rd) - (direct) - (C)
Encoding:

O| 0] 1|1ISsz,1|1]|0 direct: 3 bits
byte 3: lower 8 bits of direct
SUBB Rd, #data8
Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8 - (C)
Encoding:
1700 1|]0]0]O0|12 0| 1|1
byte 3: #data8
SUBB Rd, #datal6
Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) - #datal6 - (C)
Encoding:
110|021 0]|]0|12 0| 1|1
byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6
SUBB [Rd], #data8
Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C)
Encoding:
1,00 1|]0]0]1|O0 0| 1|1

byte 3: #data8

XA User Guide

4/17/98

SUBB [Rd], #datal6

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) - #datal6 - (C)
Encoding:
17001 2(212]0]1|0 O|d|d|d|O0|l 0| 1]|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUBB [Rd+], #datas8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) - #data8 - (C)
(Rd) <-- (Rd) + 1

Encoding:

1100 1]0|]0|1]1 O|d|d|d| 0] 0| 1|1
byte 3: #data8

SUBB [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #datal6 - (C)
(Rd) <-- (Rd) + 2

Encoding:

1,001 1]0|1|1 O|d|d|d| 0] 0| 1|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUBB [Rd+offset8], #data8

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8 - (C)
Encoding:

170|021/ 0(2]0]O0 0| dj{d|d| 0| Of 1] 1

byte 3: offset8
byte 4: #data8

4/17/98 6-165 Addressing Modes and Data Types

SUBB [Rd+offset8], #datal6

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #datal6 - (C)
Encoding:

1,00 1|11 (0|0 O d| d|{d| O] 0| 1]1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

SUBB [Rd+offsetl6], #data8

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) - #data8 - (C)
Encoding:

1,0/ 010|101 0| dj{d|d|O0] 0| 1|1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUBB [Rd+offsetl6], #datal6

Bytes: 6

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- (WS:Rd)+offsetl6) - #datal6 - (C)
Encoding:

1,0/ 0|1]1]1(0]|1 0| dj{d|d|O0|] 0| 1|1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

SUBB direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8 - (C)
Encoding:
110021201 |1]O0 O |direct:3bits| 0 | O |1 |1

XA User Guide 6-166 4/17/98

byte 3: lower 8 bits of direct
byte 4: #data8

SUBB direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #datal6 - (C)
Encoding:
1770|0221]|1]0 O |direct:3bits| 0 | O |1 |1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-167 Addressing Modes and Data Types

TRAP Software Trap

Syntax: TRAP #data4

Operation: (PC) <-- (PC) + 2
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (trap vector (#data4))
(PC15-0) <-- code memory (trap vector (#data4))
(PC23-16) <-- 0; (PCo) <-- 0

Description: Causes the specified software trap. The invoked routine is determined by branching

to the specified vector table entry point. The RETI, return from interrupt, instruction is used to
resume execution after the trap routine has been completed. A trap acts like an immediate interrupt,
using a vector to call one of several pieces of code that will be executed in system mode. This may
be used to obtain system services for application code, such as altering the data segment register.
This is described in more detail in the section on interrupts and exceptions.

Note: The address of the exception handling routine must be word aligned as the PC is forced to
an even address before vectoring to the service routine.

Size None

Flags Updated:none

Bytes: 2
Clocks: 23/19 (P2)
Encoding:
11,0110 1|1]|0 0|0 |1 |1 #datad

XA User Guide 6-168 4/17/98

XCH Exchange

Syntax: XCH dest, src

Operation: dest <--> src

Description: The data specified by the source and destination operands is exchanged.
Size:Byte-Byte, word-word.

Flags Updated:none

XCH Rd, Rs
Bytes: 2
Clocks: 5
Operation: (Rd) <--> (Rs)
Encoding:
O| 1| 1] 0(szf0]|0]|O0 d|d|d|d|s|s]|s]|s
XCH Rd, [Rs]
Bytes: 2
Clocks: 6
Operation: (Rd) <--> ((WS:Rs))
Encoding:
0|1 0] 1(sz/0|0]|O0 d|{d|d|d| O| s|s]|s

XCH Rd, direct

Bytes: 3
Clocks: 6
Operation: (Rd) <--> (direct)
Encoding:
11 0|1, 0(Sz|]0|0]|O d|d|d|d |1 |direct:3bits

byte 3: lower 8 bits of direct

4/17/98 6-169 Addressing Modes and Data Types

XOR Exclusive OR

Syntax: XOR dest, src
Operation: dest <- dest (XOR) src

Description: The byte or word specified by the source operand is bitwise logically XORed to the
variable specified by the destination operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

XOR Rd, Rs
Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) (Rs)
Encoding:
O| 1} 1|1|sz/0|0]1 d|{d|d|d|s|s]|s]|s
XOR Rd, [Rs]
Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))
Encoding:
O| 1} 1|11sz,0|1]|0 d|{d|d|d|O0O|s |s |s
XOR [Rd], Rs
Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) (XOR) (Rs)
Encoding:
O|1|1(1|Sz{0|1|0O0 s|s|s|s|1|d|d]|d

XA User Guide 6-170 4/17/98

XOR Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset8)
Encoding:
O| 1| 1]1(sz;1|0]|0 d|{d|d|d|O0O|s |s |s

byte 3: offset8

XOR [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) (Rs)
Encoding:
O| 11} 1|szj1|0|0O0 s|s|s|s|1l|dj|d]|d

byte 3: offset8

XOR Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset16)
Encoding:
O(1| 1] 1|SZz|1|0|1 d|{d|d|d]|O|s |s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XOR [Rd+offsetl6], Rs

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- (WS:Rd)+offsetl6) (XOR) (Rs)
Encoding:

O 1|1 1|sz|1|0]1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6

4/17/98 6-171 Addressing Modes and Data Types

XOR Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

Ol 1| 1| 1Sz 0| 1|1 d|d|d]|d]|O]|s |s |s

XOR [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

O 1| 1| 1(sz| 0| 1|1 s|s|s|s|1|d|d]|d

XOR direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) (XOR) (Rs)
Encoding:
O|1|21(1|szj1|1/|0 S| s| s | s |1 |direct3bits

byte 3: lower 8 bits of direct

XOR Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) (direct)
Encoding:
O| 1| 1(1|Szj1|1/|0 d|d|d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

XA User Guide 6-172 4/17/98

XOR Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #data8
Encoding:
1,0/ 0|1 0]0|O0]|12 d|{d|d|d|O0| 1| 1]|1

byte 3: #data8

XOR Rd, #datal6

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #datal6
Encoding:
1,0/ 0|1| 100|121 d|{d|d|d|O0| 1| 1]|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XOR [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) (XOR) #data8
Encoding:
1,00 1|]0]0j1|0O0 O|d|d|d|O0| 1| 1]|1

byte 3: #data8

XOR [Rd], #datal6

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #datal6
Encoding:
17001 2(212]0]1|0 O|d|(d|d| 0] 1|11

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

4/17/98 6-173 Addressing Modes and Data Types

XOR [Rd+], #data8

Bytes: 3

Clocks: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) (XOR) #data8
(Rd) <-- (Rd) + 1

Encoding:

1,00 1|]0]0] 1|12 O|d|d|d|O0| 1] 1|1
byte 3: #data8

XOR [Rd+], #datal6

Bytes: 4

Clocks: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #datal6
(Rd) <-- (Rd) + 2

Encoding:

1,00 1]1|]0] 1|1 O|d|d|d| 0] 1] 11

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XOR [Rd+offset8], #data8

Bytes: 4

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data8
Encoding:

110|012/ 0{1]|]0]O0 O d| d|d| O] 1] 1| 1

byte 3: offset8
byte 4: #data8

XOR [Rd+offset8], #datal6

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #datal6
Encoding:

1,00 1]1|1]0|O0 O|d{d|d| O] 1|1]|1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 6-174 4/17/98

XOR [Rd+offset16], #data8

Bytes: 5

Clocks: 6

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) (XOR) #data8
Encoding:

1,0/ 010|101 0jd|d|d| 0] 1|11

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

XOR [Rd+offsetl6], #datal6

Bytes: 6

Clocks: 6

Operation: ((WS:Rd)+offsetl16) <-- ((WS:Rd)+offset16) (XOR) #datal6
Encoding:

1(0/0|1]1]1(0]|1 0|d|{d|d|O0]|]1 1|1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

XOR direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #data8
Encoding:
170|012/ 0l2]1]O0 O |direct:3bits| 0 |1 |1 |1

byte 3: lower 8 bits of direct
byte 4: #data8

XOR direct, #datal6

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #datal6
Encoding:
1770|0221]|1]0 O |direct:3bits| 0O |1 |1 |1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

4/17/98 6-175 Addressing Modes and Data Types

6.6 Summary Of lllegal Operand Combinations On The XA

All but one case are instructions that specify or imply 2 write operations to a single register file
location within a single instruction. The other case is a possible corruption of the source register
data by an auto-increment before itis read. These conditions are not detected by XA hardware. The
instruction/operand combinations indicated should not be used when writing XA code.

Instruction(s) affected Reason for illegal combination
(any op) RX, [Rx+] Auto-increment plus explicit write 1
mov [Rx+], [Rx+] Double auto-increment of one register 2
(any op) [Rx+], Rx Auto-increment write may corrupt the source register before it is read 2
NORM RXx, Rx Result and shift count stored in the same register 4
XCH Rx, Rx Double write of a single register 4
(any op) [Rx+], Ry Auto-increment plus indirect write to same register 5
(any op) [Rx+], [Ry+] Auto-increment plus indirect write to same register 5
(any op) [Rx+], #data Auto-increment plus indirect write to same register °
XCH RXx, [RX] Indirect write plus explicit write to the same register ©
XCH Rx, direct Direct write plus explicit write to the same register ’
POP R7 Stack pointer auto-increment plus explicit write to R7/SP 8
NOTES:

1 This addressing mode is illegal when the source and destination are the same register. This would cause
both a data write and an auto-increment operation to the same register.

2 This instruction is illegal when the source and destination pointer registers are the same register. This
would cause two auto-increment operations to the same register.

3 This instruction is illegal when the source and destination are the same register. The source register would
be auto-incremented and read at the same time, with an undefined resuilt.

4 This instruction is illegal when the source and destination are the same register. This would cause two
writes to the same register.

5 This addressing mode is illegal when the indirect address of the destination points to the pointer register
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause both a data write and an auto-increment operation to the same register.

6 Thisinstruction is illegal when the indirect address of the source operand points to the destination register
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

7 This instruction is illegal when the direct address of the source operand points to the destination register
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

8 A POP to R7 (the stack pointer) would cause both a data write and an auto-increment operation to the
same register.

XA User Guide 6-176 4/17/98

7 External Bus

Most XA derivatives have the capability of accessing external code and/or data memory through
the use of an external bus. The external bus provides address information to external devices that
are to be accessed, then generates a strobe for the required operation, with data passing in or out
on the data bus. Typical bus operations are code read, data read, and data write. The standard XA
external bus is designed to provide flexibility, simplicity of connection, and optimization for
external code fetches.

The following discussion is based on the standard version of the XA external bus. Some specific
XA derivatives may have a different implementation of the external bus, or no external bus at all.

7.1 External Bus Signals

For flexibility, the standard XA external bus supports 8 or 16-bit data transfers and a user
selectable number of address bits. The maximum number of address lines varies by derivative
but may be up to 24. A standard set of bus control signals coordinates activity on the bus. These
are described in the following sections.

7.1.1 PSEN - Program Store Enable

The program store enable signal is used to activate an external code memory, such as an
EPROM. This active low signal is typically connected to the Output En@id} gin of an
external EPROMPSEN remains high when a code read is not in progress.

7.1.2 RD - Read

The bus read signal is also active low. Activity of this signal indicates data read operations on the
external busRD is typically connected to the pin of the same name on an external peripheral
device.

7.1.3 WRL - Write Low Byte

WRL is the external bus data write strobe. It is typically connected Wkhein of an external
peripheral device. When the XA external bus is used in the 16-bit mode, this strobe applies only
to the lower data byte, allowing byte writes on the 16-bit busWRe signal is active low.

7.1.4 WRH - Write High Byte

For a 16-bit data bus, a signal similaM@RL, but for the upper data byte is needed. The active
low signalWRH serves this purpose.

7.1.5 ALE - Address Latch Enable

Since a portion of the XA external bus is used for multiplexed address and data information, that
part of the address must be latched outside of the XA so that it will remain constant during the

4/17/98 7-1 External Bus

subsequent read or write operation. The active high ALE signal directs the external latch to allow
information to be stored for a data address or a code address. The external latch must close and
retain this address when the ALE signal ends, by going low (inactive).

7.1.6 Address Lines

Some of the address lines used by the external bus interface are driven during a complete bus
operation and do not need to be latched. In the standard XA bus interface, the lower four address
lines are always driven and unlatched in this manner. This is done specifically as part of the
optimization of the bus for fetching instructions from external code memory at high speed. This
feature will be explained in detail in a later section.

7.1.7 Multiplexed Address and Data Lines

The part of the bus that is used for data transfer is also used for address output from the XA.
Prior to asserting the strobe for the bus operation about to be performed, the XA outputs the
address for the operation. On the multiplexed portion of the bus, this address is captured by an
external latch, as commanded by the ALE signal. After that is done, this part of the bus is free to
be used for data transfer either into or out of the XA. The control siB&&®l,RD, WRL, and

WRH determine what type of bus operation takes place.

7.1.8 WAIT - Wait

The WAIT input allows wait states to be inserted into any external bus operation. If WAIT is
asserted (high) after a bus control strdP8EN,RD, WRL, or WRH) is driven by the XA, that

bus operation is stretched, and that control strobe continues to be driven by the XA until WAIT
goes low again. For this feature to be used, an external circuit must be present to generate the
WAIT signal at the appropriate times.

The XA has an internal bus configuration feature that allows programming the various types of
external bus cycles to different lengths, so that in most applications the WAIT line will not be
needed. This feature will be explained in detail in a later section.

7.1.9 EA - External Access

TheEA input determines whether the XA operates in single-chip mode, or begins running code
from the internal program memory after reseEAfis low as Reset goes high, the first code

fetch (and all others after that) is made off-chifeAfis high as Reset goes high, the XA will
execute the on-chip code first, but will still attempt to execute instructions from external memory
at addresses above the limit of on-chip code. The level daAhgn is latched as reset goes

high, so whatever mode is selected remains valid until the next reset.

On some XA derivatives, the pin used for Eé& function may be shared with another function
that becomes active after the XA begins code execution.

XA User Guide 7-2 4/17/98

7.1.10 BUSW - Bus Width

The external XA bus may be configured to be 8 or 16 bits in width. The XA allows the bus width
to be programmed in 2 ways. In a system where instructions are initially fetched from on-chip
code memory, the user program can configure the external bus size (and many other aspects of
the bus) prior to the bus actually being used.

When the initial code fetches must be done using off-chip code memory, however, the XA must
know the bus width before the first off-chip code fetch can begin.

On some XA derivatives, the BUSW function may share a pin with some other function. In this
case, the level on the BUSW pin is latched as Reset is released and that selection is kept until the
next Reset. The secondary function on that pin will be active after Reset when the processor
begins executing code normally.

Unlike theEA function, the bus width set by the BUSW pin at reset may be over-ridden by a
user program, making setting by use of the BUSW pin unnecessary in most systems. Settings in
the Bus Configuration Register allow changing the bus size under program control. This feature
is covered in more detail in the next section.

7.2 Bus Configuration

The standard XA external bus has a number of configuration options. In addition to the data bus
width selection discussed previously, the number of address lines used for external accesses is
programmable, as is the bus timing.

7.2.1 8-Bit and 16-Bit Data Bus Widths

The standard XA external bus allows both 8-bit and 16-bit bus widths. BUSW=0 selects an 8-bit
bus and BUSW=1 selects a 16-bit bus. On power-up, the XA defaults to the 16-bit bus (due to an
on-chip weak pull-up on BUSW). The bus width is determined by the value of the BUSW pin as
Reset is released, unless a user program overrides that setting by writing to the Bus
Configuration Register (BCR), shown in Figure7.1.

4/17/98 7-3 External Bus

BCR -

- - WAITD | BUSD BC2 BC1 BCO

WAITD:

BUSD:

BC2 - BCO:

WAIT disable. Causes the XA external bus interface to ignore the value on the
WAIT input. This allows tying the WAIT input high for applications that use
internal code and do not need the WAIT function.

Bus disable. Causes XA external bus functions to be disabled permanently.
The primary purpose of this is to allow prevention of inadvertent activation of
the bus by an instruction pre-fetch when the XA is executing code near the end
of the on-chip code memaory.

These bits select the XA external bus configuration, specifically the number of
data bits and the number of address lines. The supported combinations are
shown below.

000 : 8-bit data bus, 12 address lines
001 : 8-bit data bus, 16 address lines
010 : 8-bit data bus, 20 address lines
011 : 8-bit data bus, 24 address lines
100 : < function reserved >

101 : < function reserved >

110 : 16-bit data bus, 20 address lines
111 : 16-bit data bus, 24 address lines

Reserved for possible future use. Programs should take care when writing to
registers with reserved bits that those bits are given the value 0. This will
prevent accidental activation of any function those bits may acquire in future
XA CPU implementations.

XA User Guide

Figure 7.1 Bus Configuration Register (BCR)

7-4

4/17/98

Figures 7.2 and 7.3 show the address and data functions present on XA bus related pins when
used with each available bus width.

4 low order address lines,
A3 -A0 ﬁ always driven

8 multiplexed address

A4 - A11/ ,
DO - D7 e .\ Gata lines

Up to 12 high order address

Al2 - A23 _> lines, always driven

Figure 7.2 8-Bit External Bus Configuration

4 low order address lines,
A3 - Al ﬁ always driven

A4 - A19/ 16 multiplexed address

DO - D15 <_> and data lines

Up to 4 high order address

A20 - A23 p—— lines, always driven

Figure 7.3 16-Bit External Bus Configuration

7.2.2 Typical External Device Connections

Many possibilities exist for connecting and using external devices with the XA bus. The bus will
support EPROMs, RAMs, and other memory devices, as well as peripheral devices such as
UARTS, and parallel port expanders. The following diagrams show a generalized connection of
devices for 8-bit and 16-bit XA bus modes.

4/17/98 7-5 External Bus

ALE

A4DO-
Al11D7

XA

A3 - AO,
(A12 - A19)

|

8-bit
address latch

Address
decode

Yy

A4 - A1l
8-bit

peripheral
device

DO - D7

A3 - AD,
(A12 - A19)

CS

WR | for data
RD device
— for code
OE } device

Figure 7.4 Typical XA External Bus Connections for 8-Bit Peripheral Devices

Address
decode
ALE }+———]I E
5 3
- - 8
A1A94DDlOS 2 o A4-Al9
© o
5 8-bit
X A © Device
(low byte)
DO - D7
A3 -Al ﬁ A3-A1l
H
RL | WR | for data
ﬁ > ﬁ device
ray=i f d
PSEN > OF } e’

D8 -

i

OE

5 &
>

CS

b | A% - A19

8-bit

Device
(high byte)

D15

for data
device

for code
device

Figure 7.5 Typical XA External Bus Connections for 16-Bit Peripheral Devices

XA User Guide

7-6

4/17/98

7.3 Bus Timing and Sequences

The standard XA external bus allows programming the widths of the bus control signals ALE,
PSEN, WRL, WRH, and RD. There is also an option to extend the data hold time after a write
operation. The combinations available will allow interfacing most devices to the XA directly
without the need for special buffers or a WAIT state generator. Note that there is always a "rest
clock" after any type of bus cycle except part of a burst mode code read. That is, when a bus
cycle is completed and the bus strobe de-asserted, no new bus cycle will be begun until one clock
has passed with no bus activity.

7.3.1 Code Memory

Interfacing with external code memory, typically in the form of EPROMSs, is enabled by the
PSEN control signal. If the XA is configured to execute internal code memory at reset, by the
setting of theEA pin, it will automatically begin to fetch external code if the program crosses the
boundary from internal to external code space. The location of this boundary varies for different
XA derivatives, depending on the size of the internal code memory for each part.

Since the XA employs a pre-fetch queue in order to optimize instruction execution times,
fetching of external instructions may begin before program execution actually crosses the on/off-
chip code memory boundary. If a branch or subroutine return is located near the end of on-chip
code memory, the off-chip fetch would be unnecessary, and may in fact cause problems if the
XA ports that implement the external bus are being used for other purposes. For this reason, the
BUSD (bus disable) bit in the Bus Configuration Register (BCR) is provided to prevent the XA
from using the external bus for code or data operations.

Note also that external code read cycles may sometimes be aborted by the XA. This happens
when a code pre-fetch is occurring on the bus and the XA must execute a branch. The instruction
data from the code pre-fetch will not be needed, so the bus cycle will be terminated immediately.
This may appear as an ALE with no subsequent PSEN strobe, or a PSEN strobe that is shorter
than that specified by the bus timing registers.

Code Read with ALE

The classic operation of a multiplexed address and data bus involves the issuance of an address,
along with its associated control signal, for every bus cycle. The XA uses the bus control signal
ALE to indicate that an address is on the bus that must be latched through the following code or
data operation. The following diagram shows a code memory fetch in a cycle using ALE.

Burst Code Read (No ALE)

The XA does not always require an ALE cycle for every code fetch. This feature is included
specifically to improve performance when the XA executes code from external memory, while
increasing the access time available for the external memory device. Because the lower four
address lines of the external bus are always driven, not multiplexed, the XA can access up to 16
bytes (or 8 words) of sequential code memory each time an ALE is issued. This type of fast
sequential code read is called a burst read. Of course, any type of jump, branch, interrupt, or
other change in sequential program flow will require an ALE in order to change the code fetch
address in a non-sequential manner. Any data operation (read or write) on the XA external bus
also requires an ALE cycle and will cause any subsequent external code fetch to begin with an
ALE cycle also.

4/17/98 7-7 External Bus

XTAL1 } \ / _/__/_\ / \ /

A o W S S R B
Address bus >< ><
gggebsjsl Xaddress) (inst%uction data ><

PSEN \ 5 /

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, CRA1/0 = 01.

Figure 7.6 Typical External Code Read Using ALE

The following diagram shows a typical sequential code fetch where no ALE is issued between
code reads. Also note that tREEN bus control signal does not toggle, but remains asserted
throughout the burst code read

we [\ 5 | | |
Address bus >< >< >< '
e ooy D G

PSEN \

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, CR1/0 = 01, CRA1/0 = 00.

Figure 7.7 Burst Mode (Sequential) External Code Read

XA User Guide 7-8 4/17/98

7.3.2 Data Memory

Reads and writes on the XA external bus are controlled through the usér@f,A&RL, and

WRH signals. Since the XA bus supports both 8-bit and 16-bit widths, as well as byte and word
read and write operations, several different versions of the basic bus cycles are possible. These
are described in the following sections.

Data memory, like code memory, has a boundary where the internal data memory ends, and
above which the XA will switch to the external bus in order to act on data memory. This on/off-
chip data memory boundary may be in a different place for various XA derivatives, depending
upon the amount of internal data memory built into a specific derivative.

Typical Data Read

A simple byte read on an 8-bit bus or any read on a 16-bit bus both begin with an ALE cycle,
where the XA presents the address of the data location that is to be read on the bus. This is
followed by the assertion of thRD strobe, that causes the external device to present its data on
the bus. This process is shown in the diagram below.

XTAL1 //_\ //__/__/ _/ \—/
ALE ;/_\ ? ? E E E
Address bus >< ><

Address/ : \ :
Data bus :><addreSSY :

da:taintoXA I ><

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, DRA1/0 = 01.

Figure 7.8 Typical External Data Read

4/17/98 7-9 External Bus

Word Read on an 8-Bit Data Bus

When the XA external bus is configured for an 8-bit data width, a word read operation is
automatically performed as two byte reads at sequential addresses. Since the XA CPU requires
word operations to be performed at even addresses, the second half of any word read on a byte-
wide bus always uses the same upper address latched by ALE. for this operation, the low order
byte first is read at the even byte address, then the high order byte is read at the next (odd)
address. So, only one ALE is required in this case. The diagram below shows this sequence.

N\ N\ N\
ae [/ \ | | : |
Address bus !>< even address >< odd aiddress ><:
Address/ : — I)/ data in
pata bus __ddresy—(__datainoxa | NI 3L X

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW =0, DRA1/0 =01, DR1/0 = 01.

Figure 7.9 Word Read on 8-Bit Data Bus

Byte Read on a 16-Bit Data Bus

When an instruction causes a read of one byte of data from the external bus, when it is
configured for 16-bit width, a simple read operation is performed. This results in 16 bits of data
being received by the XA, which uses only the byte that was requested by the program. There is
no way to distinguish a byte read from a word read on the external bus when it is configured for
a 16-bit width.

XA User Guide 7-10 4/17/98

Typical Data Write

A data write operation begins with an ALE cycle, like a read operation, followed by the assertion
of one or both of the write strob@¥RL andWRH. This simple bus cycle applies to byte writes

on an 8-bit data bus and all writes on a 16-bit data bus.

A byte write on an 8-bit data bus will always use onlyWHRRL strobe. A byte write on a 16-bit
data bus will always use either tWRL or WRH strobe, depending on whether the byte is at an
even or odd address. A word write on a 16-bit bus requires the assertion of MWRLtread

WRH strobes. The simple data write cycle is shown below.

ALE /_\ E E E
Address bus >< ><

Address/ : data out
Data bus :><address - from XA

WRL and/or I I '
WRH : A /

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW =0, DWA1/0 = 00, WMO0 =0, WM1 =0.

Figure 7.10 Typical External Data Write

4/17/98 7-11 External Bus

Word Write on an 8-Bit Data Bus

When a word write operation is done with the bus configured to an 8-bit width, the XA
automatically performs two byte writes. First, the low order byte is written (at the even byte
address), then the high order byte is written at the next (odd) address. As with a word read on an

8-bit bus, this requires only a single ALE cycle at the beginning of the process. This sequence is
shown in the following diagram.

s T\ T\

we T\ 5 | i 5
Address bus >< evejn address X o;JId address X
s ey (o (Y T

WRL

Note: the timing of this type of bus operation is user programmable. The timing shown here

is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, DW1/0 = 00,
WMO =0, WM1 = 0.

Figure 7.11 Word Write on 8-Bit Data Bus

XA User Guide 7-12 4/17/98

External Bus Signal Timing Configuration

The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width, data read and write cycle lengths, and data hold time. These
times are programmable in a range that will support most RAMs, ROMs, EPROMSs, and
peripheral devices over a wide range of oscillator frequencies without the need for additional
external latches, buffers, or WAIT state generators.

Programmable bus timing is controlled by settings found in the Bus Timing Register SFRs,
named BTRH, and BTRL, shown in Figures 7.12 and 7.13.

BTRH Dw1 DwWO DWA1 | DWAO DR1 DRO DRA1 DRAO

Dw1, DWO: Data Write without ALE. Applies only to the second half of a 16-bit write operation when
the bus is configured to 8 bits.
00 : Data write cycle is 2 clock in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DWA1, DWAQ: Data Write with ALE. Selects the length (in CPU clocks) of the entire data write cycle,
including ALE.
00 : Data write cycle is 2 clocks in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DR1, DRO: Data Read without ALE. Applies only to the second half of a 16-bit read operation when
the bus is configured to 8 bits.
00 : Data read cycle is 1 clock in duration.
01 : Data read cycle is 2 clocks in duration.
10 : Data read cycle is 3 clocks in duration.
11 : Data read cycle is 4 clocks in duration.

DRAL, DRAO: Data Read with ALE. Selects the length (in CPU clocks) of the entire data read cycle,
including ALE.
00 : Data read cycle is 2 clocks in duration.
01 : Data read cycle is 3 clocks in duration.
10 : Data read cycle is 4 clocks in duration.
11 : Data read cycle is 5 clocks in duration.

Notes:

- See text regarding disallowed bus timing combinations.

- The bit pairs DW1:0, DWA1:0, DR1:0, DRA1:0, CR1:0, and CRAL:0 determine the length of entire
bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time
is completed (in the case of a data write with extra hold time, see bit WMO).

Figure 7.12 Bus Timing Register High Byte (BTRH)

4/17/98 7-13 External Bus

BTRL

WM1:

WMO:

ALEW:

CR1, CRO:

CRAL, CRAO:

Notes:

WM1 WMO ALEW - CR1 CRO CRA1

CRAO

Write Mode 1. Selects the width of the write pulse.
0 : Write pulse (WR) width is 1 CPU clock.
1 : Write pulse (WR) width is 2 CPU clocks.

Write Mode 0. Selects the data hold time.
0 : Data hold time is minimum (0 clocks).
1 : Data hold time is 1 CPU clock.

ALE width selection. Determines the duration of ALE pulses.
0 : ALE width is one half of one CPU clock.
1 : ALE width is one and a half CPU clocks.

Code Read. Selects the length of a code read cycle when ALE is not used.

00 : Code read cycle is 1 clocks in duration.
01 : Code read cycle is 2 clocks in duration.
10 : Code read cycle is 3 clocks in duration.
11 : Code read cycle is 4 clocks in duration.

Code Read with ALE. Selects the length of a code read cycle when ALE is used prior

to PSEN being asserted.
00 : Code read cycle is 2 clocks in duration.
01 : Code read cycle is 3 clocks in duration.
10 : Code read cycle is 4 clocks in duration.
11 : Code read cycle is 5 clocks in duration.

Reserved for possible future use. Programs should take care when writing to registers
with reserved bits that those bits are given the value 0. This will prevent accidental
activation of any function those bits may acquire in future XA CPU implementations.

- See text regarding disallowed bus timing combinations.

- The bit pairs DW1:0, DWAL1:0, DR1:0, DRAL:0, CR1:0, and CRAL:0 determine the length of entire
bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time

is completed (in the case of a data write with extra hold time, see bit WMO).

XA User Guide

Figure 7.13 Bus Timing Register Low Byte (BTRL)

7-14

4/17/98

Disallowed Bus Timing Configurations

Some possible combinations of bus timing register settings do not make sense and the XA cannot
produce working bus signals that match those settings. The disallowed combinations occur
where the sum of the specified components of a bus cycle exceed the specified length of the
entire cycle. Two simple rules define the allowed/disallowed combinations. Violating these rules
may result in incomplete bus cycles, for example a data read cycle in which an address and ALE
pulse are output, but no read stroB® is produced.

For data write cycles on the external bus there are two conditions that must be met. The first
applies to data write cycles with no ALE:

WM1 + WMO < DW1:0

This says that the sum of the timing values defined by the WM1 and WMO fields must be less
than or equal to the timing value defined by the DW field. Note that this is the value of the

timing durations that they specify. For example, if the WM1 field specifies a 2 clock write pulse
and the WMO field specifies a 1 clock data hold time, those two times together (3 clocks) must
be less than or equal to the timing specified by the DW1:0 field. In this case the DW1.:0 field
must specify a total bus cycle duration of at least 3 clocks. The other rule uses the same structure,
as follows.

A second requirement applies to write cycles with ALE:
ALEW + WM1 + WMO0< DWA1:0

The configuration for data read has only one requirement, which applies to data read cycles with
ALE:

ALEW + 1< DRA1:0

The configuration for code read also has only one requirement, which applies to code read cycles
with ALE:

ALEW + 1< CRA1:.0

7.3.3 Reset Configuration

Upon reset, at the time of power up or later, the XA bus is initially configured in certain ways.
As previously discussed, the piBA and BUSW select whether the XA will begin operation
from internal code, and whether the bus will be 8-bits or 16-bits.

The values for the programmable bus timing are also set to a default value at reset. All of the
timing values are set to their maximum, providing the slowest bus cycles. This setting allows for
the slowest external devices that may be sued with the XA without WAIT generation logic. The
user program should set the bus timing to the correct values for the specific application in the
system initialization code. Refer to the data sheet for a particular XA derivative for details of the
values found in registers and SFRs after reset.

4/17/98 7-15 External Bus

7.4 Ports

I/O ports on any microcontroller provide a connection to the outside world. The capabilities of
those I/O ports determine how easily the microcontroller can be interfaced to the various external
devices that make up a complete application. The standard XA I/O ports provide a high degree of
versatility through the use of programmable output modes and allow easy connection to a wide
variety of hardware.

7.4.1 1/0O Port Access

The standard on-chip 1/0O ports of the XA are accessed as SFRs. The SFR names used for these
ports begin with port 0, called PO. Port numbers and names go up in sequence from there, to the
number of ports on a specific XA derivative. Ports are normally identified by their names in
assembler source code, such as: "MOV P1,#0". This instruction causes the value 0 to be written
to port 1.

XA 1/0 ports are typically bit addressable, meaning that individual port bits are readable,
writable, and testable. An instruction using a port bit looks like this: "SETB P2.1". This
particular example would result in the second lowest bit in port 2 (bit 1) having a 1 written to it.

Reading of a Port Pin Versus the Port Latch

Each I/O port has two important logic values associated with it. The first is the contents of the
port latch. When data is written to a port, it is stored in the port latch. The second value is the
logic level of the actual port pin, which may be different than the port latch value, especially if a
port pin is being used as an input.

When a port is explicitly read by an instruction, the value returned is that from the pin. When a
port is read intrinsically, in order to perform some operation and store the value back to the port,
the port latch is read. This type of operation is called a read-modify-write.

1) The following instructions cause read-modify- 2) The following instruction reads the
write operations, and read the port latch when a port pins when a port is specified as
port or port bit is specified as the destination: the destination operand:

ADD Px, ... CMP Px, ...

ADDC PX, ...

ADDS PX, ...

AND Px, ...

DJINZ PX, ...

OR Px, ... 3) When a port or port bit is specified
SUB Px, ... as a source in any instruction, the port
SUBB Px, ... pin is always read.

XOR Px, ...

CLR Px.y

JBC Px.y, rel8

MOV Px.y, C

SETB Px.y

Figure 7.14 How ports are read.

XA User Guide 7-16 4/17/98

7.4.2 Port Output Configurations

Standard XA 1/O ports provide several different output configurations. One is the 80C51 type
guasi-bidirectional port output. Others are open drain, push-pull, and high impedance (input
only). It is important to note that the port configuration applies to a pin even if that pin is part of
the external bus. Bus pins should normally be configured to push-pull mode. Also, the port
latches for pins that are to be used as part of the external bus must be set to one (which is the
reset state). A zero in a port latch will override bus operations and force a zero on the
corresponding bus position.

The port configuration is controlled by settings in two SFRs for each port. One bit in each port
configuration register is associated with a port pin in the corresponding bit position. These port
configuration SFRs are called: PnCFGA and PnCFGB, where "n" is the port number. So, the
configuration registers for port 1 are named P1CFGA and P1CFGB. The table below shows the
port control bit combinations and the associated port output modes.

Table 7.1
PnCFGB PnCFGA Port Output Mode
0 0 Open drain.
0 1 Quasi-bidirectional (default).
1 0 High impedance.
1 1 Push-pull.

7.4.3 Quasi-Bidirectional Output

The default port output configuration for standard XA 1/O ports is the quasi-bidirectional output
that is common on the 80C51 and most of its derivatives. This output type can be used as both an
input and output without the need to reconfigure the port. This is possible because when the port
outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. When

the pin is pulled low, it is driven strongly and able to sink a fairly large current. These features
are somewhat similar to an open drain output except that there are three pullup transistors in the
guasi-bidirectional output that serve different purposes.

One of these pullups, called the "very weak" pullup, is turned on whenever the port latch for a
particular pin contains a logic 1. The very weak pullup sources a very small current that will pull
the pin high if it is left floating.

A second pullup, called the "weak" pullup, is turned on when the port latch for its associated pin
contains a logic 1 and the pin itself is a logic 1. This pullup provides the primary source current
for a pin that is outputting a 1, and can drive several TTL loads. If a pin that has a logic 1 on it is
pulled low by an external device, the weak pullup turns off, and only the very weak pullup
remains on. In order to pull the pin low under these conditions, the external device has to sink
enough current to overpower the weak pullup and pull the voltage on the port pin below its input
threshold.

4/17/98 7-17 External Bus

The third (and final) pullup is referred to as the "strong"” pullup. This pullup is included to speed
up low-to-high transitions on a port pin when the port latch changes from 0 to 1. When this
occurs, the strong pullup turns on for a brief time, two CPU clocks, pulling the port pin high
quickly, then turning off again.

The quasi-bidirectional output structure normally provides a means to have mixed inputs and
outputs on port pins without the need for special configurations. However, it has several
drawbacks that can be problems in certain situations. For one thing, quasi-bidirectional outputs
have a very small source current and are therefore not well suited to driving certain types of
loads. They are especially unsuited to directly drive the bases of external NPN transistors, a
common method of boosting the current of 1/0 pins.

Also, since the weak pullup turns off when a port pin is actually low, and the strong pullup turns
on only for a brief time, it is possible that under certain port loading conditions, the port pin will
get "stuck” low and cannot be driven high. This tends to happen when an external device being
driven by the port pin has some leakage to ground that is larger than the current supplied by the
very weak pullup of the quasi-bidirectional port output. If there is also a fairly large capacitance
on the pin, from a combination of the wiring itself and the pin capacitance of the device(s)
connected to the pin, the strong pullup may not succeed in pulling the pin high enough while it is
turned on. When the strong pullup is then turned off, the leakage of the external device pulls the
pin low again, since only the very weak pullup is turned on at that point and the leakage is
greater than the very weak pullup source current. These issues are the reason for enhancing the
port configurations of the XA.

A diagram of the quasi-bidirectional output structure is shown in the figure below.

Vvdd

2 clock

P P|[very P
delay strong ~| weak ~| weak
port
- in
port latch Dc N| p

data - [|g7
input
data

Figure 7.15 Structure of the Quasi-Bidirectional Output Configuration

XA User Guide 7-18 4/17/98

Open Drain Output

Another port output configuration provided by the standard XA 1/O ports is open drain. This
configuration turns off all pullups and only drives the pulldown transistor of the port driver when
the port latch contains a logic 0. To be used as a logic output, a port configured in this manner
must have an external pullup, typically a resistor tied to Vdd. The pulldown for this mode is the
same as for the quasi-bidirectional mode.

An advantage of the open drain output is that is may be used to create wired AND logic. Several
open drain outputs of various devices can be tied together, and any one of them can drive the
wire low, creating a logical AND function without using a logic gate. The figure below show the
structure of the open drain output.

port
pin

port latch N|
data |
input
data OQ 4

Figure 7.16 Structure of the Open Drain Output Configuration

Push-Pull Output

The push-pull output mode has the same pulldown structure as both the open drain and the quasi-
bidirectional output modes, but provides a continuous strong pullup when the port latch contains

a logic 1. This mode uses the same pullup as the strong pullup for the quasi-bidirectional mode.
The push-pull mode may be used when more source current is needed from a port output. The
output structure for this mode is shown below.

vdd

port
pin

port latch N|
data |

input
data OQ 4

Figure 7.17 Structure of the Push-Pull Output Configuration

4/17/98 7-19 External Bus

High Impedance Output

The final XA port output configuration is called high impedance mode. This mode simply turns
all output drivers on a port pin off. Thus, the pin will not source or sink current and may be used
effectively as an input-only pin with no internal drivers for an external device to overcome.

7.4.4 Reset State and Initialization

Upon chip reset, all of the port output configurations are set to quasi-bidirectional, and the port
latches are written with all ones. The quasi-bidirectional output type is a good default at power-
up or reset because it does not source a large amount of current if it is driven by an external
device, yet it does not allow the port pin to float. A floating input pin on a CMOS device can
cause excess current to flow in the pin’s input circuitry, and of course all port pins have input
circuits in addition to outputs.

7.4.5 Sharing of 1/0 Ports with On-Chip Peripherals

Since XA on-chip peripheral devices share device pins with port functions, some care must be
taken not to accidentally disable a desired pin function by inadvertently activating another
function on the same pin. A peripheral that has an output on a pin will use the I/O port output
configuration for that pin (quasi-bidirectional, open drain, push-pull, or high impedance).

The method of sharing multiple functions on a single pin involves a logic AND of all of the
functions on a pin. So, if a port latch contains a zero, it will drive that port pin low, and any
peripheral output function on that pin is overridden. Conversely, an on-chip peripheral outputting
a zero on a pin prevents the contents of the port latch from controlling the output level. It is
usually not an issue to avoid turning on an alternate peripheral function on a pin accidentally,
since most peripherals must be either explicitly turned on or activated by a write to one of their
SFRs. Itis more likely that a user program could erroneously write a zero to a port latch bit
corresponding to a pin with a peripheral function that is being used and therefore disable that
function. The simple rule to follow is: never write a zero to a port bit that is associated with an
active on-chip peripheral, or that should only be used an input.

When an XA 1/O port pin is used as an input for a peripheral function, it is sampled at the
oscillator rate divided by 2. For example, if an XA is running at a 20 MHz clock (giving a 50 ns
clock period), an external timer input would have to remain in the same state for at least 100 ns
in order to guarantee that it is sampled correctly. This gives a maximum frequency for such
inputs as the oscillator rate divided by 4. In this example, the maximum external timer input rate
would be 5 MHz.

XA User Guide 7-20 4/17/98

8 Special Function Register Bus

The Special Function Register Bus or SFR Bus is the means by which all Special Function
Registers are connected to the XA CPU so that they may be read and written by user programs.
This includes all of the registers contained in peripherals such as Timers and UARTS, as well as
some CPU registers such as the PSW. CPU registers communicate functionally with the CPU via
direct connections, but read and write operations performed on them are routed through the SFR
bus.

The SFR bus provides a common interface for the addition of any new functions to the XA core,
thus supplying the means for building a large and varied microcontroller derivative family. This
is illustrated in Figure 8.1.

XA CPU Core
SFR bus

—>

4P| oror UART | q
] >

H I/0 Port Timer <
4— 12c - -——>
— | Interface imer ¢

Figure 8.1. Example of peripheral functions connected to the XA SFR bus.

8.1 Implementation and Possible Enhancements

The SFR bus interface is itself not part of the XA CPU core, but a separate functional block.
Since the SFR bus controller is a separate block, writes to SFRs may occur simultaneously with
the beginning of execution of the next instruction. If the next instruction attempts to access the
SFR bus while it is still busy, the instruction execution will stall until the SFR bus becomes
available. SFR bus read and write clocks each take 2 CPU clocks to complete. However, the
starting time of those 2 clocks has a one clock uncertainty, so the time from the SFR bus
controller receiving a request until it is completed can be either 2 or 3 clocks.

3/24/97 8-1 Special Function Register Bus

The SFR bus implementation on initial XA derivatives is an 8-bit interface. This means that
word reads and writes are not allowed. In the future, higher performance XA architecture
implementations may expand the capabilities of the SFR bus by supporting 16-bit accesses.

One enhancement to the SFR bus would be to have it divide 16-bit access requests into two 8-bit
accesses. This leaves the actual SFR bus width at 8 bits, but allows a user program to act as if it
was 16-bits. The highest performance alternative is a full 16-bit SFR bus. This would require
extra hardware in the XA to implement, but may eventually become necessary on order to
achieve very high performance with some future enhanced XA core implementation.

8.2 Read-Modify-Write Lockout

Some of the SFRs that are accessed via the SFR bus contain interrupt flags and other status bits
that are set directly by the peripheral device. When a read-modify-write operation is done on
such an SFR, there is a possibility that a peripheral write to a flag bit in the same SFR could
occur in the middle of this process. A standard mechanism is defined for the XA to deal with
such cases, which is called Read-Modify-Write lockout. A read- modify-write is defined as an
operation where a particular SFR is read, altered and written during the execution of a single XA
instruction.

The instructions that fit this description are those that write to bits in SFRs and those that modify
an entire SFR, except for the MOV instruction. This happens to be the same operations as those
that read port latches rather than port pins as specified in Chapter 7, only the SFRs involved are
different.

The mechanism used throughout XA peripherals to avoid losing status flags during a read-
modify-write operation first involves detecting that such an operation is in progress. A signal

from the CPU to the peripherals indicates such a condition. When a peripheral detects this, it
prevents the CPU write to just those status flags that the peripheral has already updated since the
beginning of the read-modify-write operation. This basically makes it look as if the peripheral

flag update happened just after the read-modify-write operation completed, rather than during it.
Once the read-modify-write operation is completed, a CPU write may affect all bits in these

SFRs.

XA User Guide 8-2 3/24/97

9 80C51 Compatibility

Many architectural decisions and features were guided by the goal of 80C51 compatibility when
the XA core specification was written. The processor's memory configuration, memory
addressing modes, instruction set, and many other things had to be taken into account.

9.1 Compatibility Considerations

Source code compatibility of the XA to the 80C51 was chosen as a goal for many reasons.
Complete compatibility with an existing processor is not possible if the new processor is to have
substantially higher performance.

The XA architecture makes use of a number of rules for 80C51 compatibility. An 80C51 to XA
source code translator program is intended to be the means of providing compatibility between
the architectures. For the translator software to be fairly simple, a one-to-one translation for all
80C51 instructions is a major consideration. The XA instruction set includes many instructions
that are more powerful than 80C51 instructions and yet perform roughly the same function.
80C51 instruction can therefore be translated into those XA instructions. When this is not the
case, an 80C51 instruction may be included in its original form in the XA. The XA memory map
and memory addressing modes are also a superset of the 80C51, making source code translation
easy to accomplish. Other CPU features are made compatible to the extent that such is possible.
In rare cases, when this compatibility could not be provided for some important reason, the
changes were kept to the minimum while maintaining the XA goals of high performance and low
cost.

9.1.1 Compatibility Mode, Memory Map, and Addressing

Specific XA registers are reserved for use as 80C51 registers when translating code. The A
register, the B register, and the data pointer all map to a pre-determined place in the XA register
file (see figure 9.1). The accumulator (A) is the only one of these that required special hardware
support in the XA, because the accumulator can be read or tested directly by certain instructions
and in order to generate the parity flag.

The 4 banks of 8 byte registers that are found in the 80C51 are duplicated in the XA. The only
difference is that in the XA, these registers do not normally overlap the lower 32 bytes of data
memory space as they do in the 80C51. To allow code translation, a special 80C51 compatibility
mode causes the XA register file to copy the 80C51 mapping to data memory. This mode is
activated by the CM bit in the System Configuration Register (SCR).

3/24/97 9-1 8051 Compatibility

L ssp
R7 R7H USP R7L
R6 R6H=DPH DPTR R6L=DPL
) > Global registers.
R5 R5H : R5L
R4 R4H =B . R4L=A (ACC)
R3 R3H R3L 1
R?2 R2H R2L]
Banked Registers
R1 R1H R1L
RO ROH ROL
| 7
|
|

Figure 9.1. XA Register File

Other important registers of the 80C51 are provided in other ways. The program status word
(PSW) of the XA is slightly different than the 80C51 PSW, so a special SFR address is reserved
to provide an 80C51 compatible "view" of the PSW for use by translated code. This alternate
PSW, called PSW51, is shown in the figure 9.2. The FO flag and the F1 flag are simply readable

T T T | T T T
PSW51 C AC FO RS1 I RSO OV F1 P
| | | | |

Figure 9.2. PSW CPU status flags

and writable bits. The P flag provides an even parity bit for the 80C51 A register and always
reflects the current contents of that register. Note that the P flag, the FO flag, and the F1 flag only
appear in the PSW51 register.

The 80C51 indirect data memory access mode, using RO or R1 as pointers, requires special
support on the XA, where pointers are normally 16 bits in length. The 80C51 compatibility mode
also causes the XA to mimic the 80C51 indirect scheme, using the first two bytes of the register
file as indirect pointers, each zero extended to make a 16-bit address. Due to this and the
previously mentioned register overlap to memory feature, the compatibility mode must be turned
on in order to execute most translated 80C51 code on the XA. Other than the two
aforementioned effects, nothing else about XA functioning is affected by the compatibility mode.

XA User Guide 9-2 3/24/97

The 80C51 mapped the special function registers (SFRs) into the direct address space, from
address 80 hex to FF hex. SFRs were only accessed by instruction that contain the entire SFR
address, so translation to the XA is fairly simple. Since references to SFRs are normally done by
their name in 80C51 source code, the translation just copies the name into the XA code output. If
an SFR happened to be referred to by its address, its name must be found so that it can be
inserted into the XA code. This would require that an SFR table be available for the 80C51
derivative for which the code was originally written.

The XA has another mode which may be useful for translated 80C51 code. In order to save stack
space as well as speed up execution, a Page Zero (PZ) mode causes return addresses on the stack
to be saved as 16 bits only, instead of the usual 24 bits (which occupy 32 bits due to word
alignment on the XA stack). All other program and data addresses are also forced to be 16-bits.

If an entire 80C51 application program is translated to the XA, it will very likely fit within this

64K limit, allowing the use of this mode.

Other aspects of the processor stack have been altered on the XA. For one, the standard direction
of stack growth for 16 bit processors has been adopted. So, the XA stack grows downward, from
higher to lower addresses in data memory. The stack can now be nearly 64K in size if necessary,
and begin anywhere in its data segment so may be easily moved to a new location for translated
80C51 applications. This stack direction change is important to match the stack contents to
normal data memory accesses on the XA.

80C51 code translated to run on the XA will also tend to use more stack space for two reasons.
First, the PSW is automatically saved during interrupt and exception processing on the XA. The
original 80C51 code should have also saved the PSW explicitly, but the XA PSW is 16 bits in
length. Secondly, the initial implementation of the XA allows only word writes to the stack. Both
byte and word operations may be performed, but both types of operations use 16 bits of stack
space.

The tendency for stack size increase, in addition to the stack growth direction will require some
changes to be made if a complete 80C51 application program is translated to run on the XA.

9.1.2 Interrupt and Exception Processing

Interrupt handling on the XA is inherently much more powerful than it was on the 80C51. Along
with this added power and flexibility comes some difference that must be taken into account for
80C51 code conversion.

Previously noted was the fact that the XA automatically saves the PSW during interrupt
processing. If an 80C51 program relied on this not being the case somehow, it would not work
without alteration. This type of reliance is not found in code using common programming
practices and should be very rare.

The XA allows up to 15 interrupt priority levels, compared to only 2 in the standard 80C51,

although up to 4 levels are available in a few of the newer 80C51 variations. These priorities are
stored as 4-bit values, with the priority for 2 interrupts found in the same SFR byte. This is

3/24/97 9-3 8051 Compatibility

different (and much more powerful) than any 80C51 derivative, and will require minor changes
to code that is translated.

The method of entering an interrupt routine in the XA uses a vector table stored in low addresses
of the code memory. Each interrupt or exception source has a vector which consists of the
address of the handler routine for that event and a new PSW value that is loaded when the vector
is taken. This differs from the 80C51 approach of fixed addresses for the interrupt service
routines, and again is a much more flexible and powerful method. So, if a complete 80C51
application program is converted for the XA, the interrupt service routines must be re-located
above the XA vector table and the new address stored in the table, a very simple process.

9.1.3 On-Chip Peripherals

Compatibility with standard on-chip peripherals found in the 80C51 has been kept in the XA
whenever possible and reasonable, but not to the extent that some enhancements are not made.
The set of standard peripheral devices includes the UART, Timers 0 and 1, and Timer 2 from the
80C52.

The XA UART has been enhanced in a way that does not affect translated 80C51 code. Some
additional features are added through the use of a new SFR, such as framing error detection,
overrun detection, and break detection.

Timers 0 and 1 remain the same except for one difference in the function, and a difference in
timing. The functional change was to remove the 8048 timer mode (mode 0) and replace it with
something much more useful: a 16-bit auto-reload mode. Sixteen bit reload registers (formed by
RTHn and RTLn) had to be added to Timers 0 and 1 to support the new mode 0. In mode 2,
RTLn also replaces THn as the 8-bit reload register.

The relationship of all timer count rates to the microcontroller oscillator has also been changed.
This adds flexibility since this is now a programmable feature, allowing oscillator divided by 4,
16, or 64 to be used as the base count rate for all of the timers. Since XA performance is much
higher (on a clock-by clock basis), an application converted to the XA from the 80C51 would
likely not use the same oscillator frequency anyway.

9.1.4 Bus Interface

The customary 80C51 bus control signals are all found on the standard external XA bus. To
provide the best performance, the details of some of these signals have changed somewhat, and a
few new ones have been added. In addition to the well known REEN,RD, WR, andEA,

there are now also WAIT anfRH. The WAIT signal causes wait states to be inserted into any

XA bus clock as long as it is asserted. WiBH signal is used to distinguish writes to the high

order byte when the XA bus is configured to be 16 bits wide.

The multiplexed address/data bus has undergone some renovations on the XA as well. To get the
most performance in a system executing code from the external bus, the XA separates the 4 least
significant address lines on to their own pins. Since these lines normally change the most often,
an ALE clock would be required on every external code fetch if these lines were multiplexed as
they are on the 80C51. The 80C51 had time to do this since its performance was not that high.

XA User Guide 9-4 3/24/97

The XA, however, uses only as many clocks as are needed to execute each instruction, so an
ALE for every fetch would slow things down considerably. With this change, up to 16 bytes (or
8 words) of code may be accessed without the need to insert an ALE cycle on the XA bus.

The number of XA clocks used for each type of bus cycle (code read, data read, or data write)
can also be programmed, so that slower peripheral devices can work with the XA without the
need for an external WAIT state generator.

Due to the various changes to the bus just mentioned, an XA device cannot be completely pin
compatible with an 80C51 derivative if the external bus is used. The changes to application
hardware needed are relatively small and easy to make.

9.1.5 Instruction Set

The simplest goal of the XA for instruction set compatibility was to have every 80C51

instruction translate to one XA instruction. That has been achieved but for a single exception.
The 80C51 instruction, XCHD or exchange digits, cannot be translated in that manner. XCHD is
an instruction that is rarely used on the 80C51 and could not be implemented on the XA, due to
its internal architecture, without adding a great deal of extra circuitry. So, if this instrgction
encountered when 80C51 source code is being translated, a sequence of XA instructions is used
to duplicate the function:

PUSH R4H ; Save temporary register.
MOV R4H,(Ri) ; Get second operand.
RR R4H,#4 ; Swap one byte.
RR R4L #4 ; Swap second byte (the "A" register).
RL R4 #4 ; Swap word.
; Result is swapped nibbles in A and R4H.
MOV (Ri),R4H ; Store result.
POP R4H ; Restore temporary register.

If the application requires this sequence to not be interruptible, some additional instruction must
be added in order to disable and re-enable interrupts. The table at the end of this section shows
all of the other XA code replacements for 80C51 instructions.

The XA instruction set is much more powerful than the 80C51 instruction set, and as a direct
consequence, the average number of bytes in an instruction is higher on the XA. In code written
for the XA, the capability of a single instruction is high, so the size of an entire XA program will
normally be smaller than the same program written for an 80C51. Of course, this depends on
how much the application can take advantage of XA features. When code is translated from
80C51 source, however, the size change can be an issue.

In the case of a jump table, where the IMP @A+DPTR instruction is used to jump into a table of
other jumps composed of the 80C51 AJMP instruction, the XA cannot always duplicate the
function of the jumps in the table with instructions that are 2 bytes in length, as in the case of the
AJMP instruction. An adjustment to the calculation of the table index will be required to make

the translated code work properly. For a data table, accessed using MOVC @A+PC, the distance
to the table may change, requiring a similar index adjustment.

3/24/97 9-5 8051 Compatibility

Since the XA optimizes the timing of each instruction, there will be very little correspondence to
the original 80C51 timing for the same code prior to translation to the XA. If the exact timing of
a sequence of instructions is important to the application, the translated code must be altered,
perhaps by adding NOPs or delay loops, to provide the necessary timing.

To show how a simple 80C51 to XA source code translator might work, a subroutine was
extracted from a working 80C51 program and translated using the table at the end of this
document and the other rules presented here. The original 80C51 source code was:

;StepCal - Calculates a trip point value for motor movement based on
; a percent of pointer full scale (0 - 100%).
; Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,A ; Save step target for later use.
MOV B,#Steplow ; Get low byte of step increment.
MUL AB ; Multiply this by the step target.
MOV StepResult,B ; Save high byte as partial result.
MOV Templ,A ; Save low byte to use for rounding.
MOV A, Temp2 ; Get back the step target.
MOV B,#StepHigh ; Get high byte of step increment,
MUL AB ; and multiply the two.

ADD A,StepResult ; Add the two partial results.
JNB Templ.7,Exit ; Least significant byte > 80h?

INC A ; If so, round up the final result.
Exit: ADD A, #MotorBot ; Add in the O step displacement.

MOV StepResult,A ; Save final step target.

RET

The same code as translated for the XA is as follows:

;StepCal - Calculates a trip point value for motor movement based on
; a percent of pointer full scale (0 - 100%).
; Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,R4L ; Save step target for later use.
MOV R4H,#Steplow ; Get low byte of step increment.
MULU.b R4,R4H ; Multiply this by the step target.
MOV StepResult,R4H ; Save high byte as partial result.
MOV Templ,R4L ; Save low byte to use for rounding.
MOV R4L,Temp2 ; Get back the step target.
MOV R4H,#StepHigh ; Get high byte of step increment,
MULU.b R4,R4H ; and multiply the two.

ADD R4L,StepResult ; Add the two partial results.
JNB Templ.7,Exit ; Least significant byte > 80h?

ADDS RA4L#1 ; If so, round up the final result.
Exit: ADD R4L,#MotorBot ; Add in the O step displacement.

MOV StepResult,R4 ; Save final step target.

RET

XA User Guide 9-6 3/24/97

In this case, the translated code actually changed very little. Primarily, the 80C51 register names
have been replaced by the new ones reserved for them in the XA. The increment (INC)
instruction became a short add (ADDS), and the mnemonic for multiply (MUL) changed to
MULUS.

Some basic statistical information about these code samples may be found in table 9.1. These
statistics show a large performance increase for the XA code. This is significant because the code
is only simple translated 80C51 code and therefore does not take any advantage of the XA’s
unique features.

Table 9.1: 80C51 to XA Code Translation Statistics

Statistic 80C51 XA. Comments
code translation

Code bytes 28 40 - one NOP added for branch
alignment on XA

Clocks to execute 300 78 - includes XA pre-fetch queue
analysis, raw execution is 66
clocks

Time to execute 15 psec 3.9 usec - a nearly 4x improvement

@ 20MHz without any optimization

3/24/97 9-7 8051 Compatibility

9.2 Code Translation

Table 9.2 shows every 80C51 instruction type and the XA instruction that replaces it. An actual
80C51 to XA source code translator can make use of this table, but must also flag the
compatibility exceptions noted in this section, so that any necessary adjustments may be made to
the resulting XA source code.

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
Arithmetic operations

ADD A, Rn ADD.b R, R
ADD A, #data8 ADD.b R, #data8
ADD A,dir8 ADD.b R, direct
ADD A, @RI ADD.b R, [R]
ADDC A, Rn ADDC.bR, R
ADDC A, #data8 ADDC.bR, #data8
ADDC A,dir8 ADDC.bR, direct
ADDC A, @RI ADDC.bR, [R]
SUBB A, Rn SUBB.bR, R
SUBB A, #data8 SUBB.bR, #data8
SUBB A, dir8 SUBB.bR, direct
SUBB A, @RI SUBB.bR, [R]
INC Rn ADDS.bR, #1

INC dir8 ADDS.bdirect, #1
INC @RI ADDS.b[R], #1
INC A ADDS.bR, #1

INC DPTR ADDS.wWR, #1
DEC Rn ADDS.bR, #-1
DEC dir8 ADDS.bdirect, #-1
DEC @RI ADDS.b[R], #-1
DEC A ADDS.bR, #-1
MUL AB MULU.bR, R

DIV AB DIVUb R, R

DA A DA R

XA User Guide

9-8

3/24/97

3/24/97

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction

XA Translation

Logical operations
ANL A, Rn AND.b R, R
ANL A, #data8 AND.b R, #data8
ANL A, dir8 AND.b R, direct
ANL A, @RI AND.b R, [R]
ANL dir8, A AND.b direct, R
ANL dir8, #data8 AND.b direct, #data8
ORL A, Rn ORb R,R
ORL A, #data8 OR.b R, #data8
ORL A, dir8 OR.b R, direct
ORL A, @RI OR.b R, [R]
ORL dir8, A OR.b direct, R
ORL dir8, #data8 OR.b direct, #data8
XRL A, Rn XOR.b R, R
XRL A, #data8 XOR.b R, #data8
XRL A, dir8 XOR.b R, direct
XRL A, @RI XOR.b R, [R]
XRL dir§, A XOR.b direct, R
XRL dir8, #data8 XOR.b direct, #data8
CLR A MOVS R, #0
CPL A CPLb R
SWAP A RLb R,#4
RL A RLb R,#1
RLC A RLC.b R, #1
RR A RRb R,#1
RRC A RRC.b R, #1
CLR C CLR bit
CLR it CLR bit
SETB C SETB bit
SETB bit SETB bit
CPL C XOR.b PSWL, #data8
CPL it XOR.b direct, #data8
ANL C, bit AND C, bit
ANL C, /bit AND C, /bit
ORL C, hit OR C, bit
ORL C, /bit OR C, /bit
MOV C, bit MOV C, bit
MOV bit, C MOV bit, C

9-9

8051 Compatibility

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction

XA Translation

Data transfer

MOV A, Rn

MOV A, #data8
MOV A, dir8

MOV A, @RI
MOV Rn, A

MOV Rn, #data8
MOV Rn, dir8
MOV dir8, A

MOV dir8, #data8
MOV dir8, Rn
MOV dir8, dir8
MOV dir8, @RI
MOV @RI, A
MOV @RI, dir8
MOV @RI, #data8
MOV DPTR, #datal6

MOV.b R, R
MOV.b R, #data8
MOV.b R, dire
MOV.b R, [R]
MOV.Db R, R

MOV.b R, #data8
MOV.b R, direct
MOV.b direct, R
MOV.b direct, #data8
MOV.b direct, R
MOV.b direct, direct
MOV.b direct, [R]
MOV.b [R], R
MOV.b [R], direct
MOV.b [R], #data8
MOV.w R, #datal6

XCH A/ Rn XCH.b R,R

XCH A, dir8 XCH.b R, direct
XCH A, @Ri XCH.b R,R

XCHD A, @RI a sequence (see text)
PUSH dir8 PUSH.bdirect

POP dir8 POP.b direct

MOVX A, @Ri MOVX.bR, [R]

MOVX A, @DPTR MOVX.bR, [R]
MOVX @Ri, A MOVX.b[R], R
MOVX @DPTR, A MOVX.b[R], R

MOVC A, @A+DPTR
MOVC A, @A+PC

MOVC.bA, [A+DPTR]
MOVC.bA, [A+PC]

XA User Guide

9-10

3/24/97

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction

XA Translation

Relative branches

SIJMP rel8 BR rel8

CJINE A, dir8, rel CJINE.b R, direct, rel
CJINE A, #data8, rel CJINE.b R, #data8, rel
CJIJNE Rn, #data8, rel CJINE.b R, #data8, rel
CINE @RI, #data8, rel | CINE.b[R], #data8, rel
DJNZ Rn, rel DJIJNZ.b R, rel

DJNZ dir8, rel DJNZ.b direct, rel

JZ rel JZ rel

JNZ rel JNZ rel

JC rel BCS rel

JNC rel BCC rel

Jumps, Calls, Returns,

and Misc.

NOP NOP

AJMP addrll JMP rell6

LIMP addrl6 JMP rell6

JMP @A+DPTR JUMP [A+DPTR]
ACALL addr11 CALL rell6

LCALL addrl6 CALL rell6

RET RET

RETI RETI

9.3 New Instructions on the XA

While the XA instructions that are similar to 80C51 instructions have a larger addressing range,
more status flags, etc., the XA also has many entirely new instructions and addressing modes that
make writing new code for the XA much easier and more efficient. The new addressing modes
also make the XA work very well with high level language compilers. A complete list of the new

XA instructions and addressing modes is shown in Table 9.3.

3/24/97

9-11

8051 Compatibility

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

aluw ..., ... All of the 80C51 arithmetic and logic instructions
with a 16-bit data size.

SUBB R, Subtract (without borrow), all addressing modes.

alu [R], R Arithmetic and logic operations (ADD, ADDC,
SUB, SUBB, CMPAND, OR, XOR, and MOV)
from a register to an indirect address.

alu R, [R+] Arithmetic and logic operations from an indirect
address to a register, with the indirect pointer
automatically incremented.

alu R,[R+o0ffset8/16] Arith/Logic operations from an indirect offset
address (with 8 or 16-bit offset) to a register.

alu direct, R The 80C51 has only MOV direct, R.

alu [R], R The 80C51 has only MOV [R], R.

alu [R+], R Arith/Logic operations from a register to an
indirect address, with the indirect pointer
automatically incremented.

alu [R+offset8/16], R Arith/Logic operations from a register to an
indirect offset address (with 8 or 16-bit offset).

alu direct, #data8/16 Arith/Logic operations to a direct address with 8
or 16-bit immediate data.

alu [R], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data.

alu [R+], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data with the indirect
pointer automatically incremented.

alu [R+offset8/16], #data8/16 | Arith/Logic operations to an indirect offset
address (with 8 or 16-bit offset), with 8 or 16-bit
immediate data.

MOV direct, [R] Move data from an indirect to a direct address.

ADDS R, #data4

The 80C51 can only increment or decrement a
register by 1. ADDS has a range of +7 to -8.

ADDS [R], #data4

Add a short value to an indirect address.

XA User Guide

9-12

3/24/97

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

ADDS

[R+], #datad

Add a short value to an indirect offset address,
with the indirect pointer automatically
incremented.

ADDS

[R+offset8/16], #datad

Add a short value to an indirect offset address
(with 8 or 16-bit offset).

ADDS direct, #datad Add a short value to a direct address.

MOVS ..., #data4 Move short data to destination using any of the
same addressing modes as ADDS.

ASL R,R Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from register.

ASR R,R Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from register.

LSR R,R Logical shift right a byte, word, or double word,
up to 31 places, shift count read from register.

ASL R, #DATAA4/5 Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from instruction.

ASR R, #DATA4/5 Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

LSR R, #DATA4/5 Logical shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

DIV R, R Signed divide of 32 bits register by 16 bit register,
or 16 bit register by 8 bit register.

DIVU R,R Unsigned divide of 32 bit register by 16 bit
register, or 16 bit register by 8 bit register.

MUL R,R Signed multiply of 16 bit register by 16 bit
register, or 8 bit register by 8 bit register.

MULU R, R Unsigned multiply of 16 bit register by 16 bit
register.

DIV R, #data8/16 Signed divide of 32 bits register by 16 bit

immediate, or 16 bit register by 8 bit immediate.

DIVU R, #data8/16 Unsigned divide of 32 bit register by 16 bit
immediate, or 16 bit register by 8 bit immediate.
MUL R, #data8/16 Signed multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.
3/24/97 9-13 8051 Compatibility

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

MULU R, #data8/16 Unsigned multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.

LEA R, R+offset8/16 Load effective address, duplicates the offset8 or
16-bit addressing mode calculation but saves the
address in a register.

NEG R Negate, performs a twos complement operation
on a register.

SEXT R Sign extend, copies the sign flag from the last
operation into an 8 or 16-bit register.

NORM R, R Normalize. Shifts a byte, word, or double word
register left until the MSB becomes a 1. The
number of shifts used is stored in a register.

RL, RR, RLC, RRC R,#data4 All of the 80C51 rotate modes with 16-bit data
size and a variable number of bit positions (up to
15 places).

MOV [R+], [R+] Block move. Move data from an indirect address
to another indirect address, incrementing both
pointers.

MOV R, USP and USP, R Allows system code to move a value to or from
the user stack pointer. Handy in multi-tasking
applications.

MOVC R, [R+] Move data from an indirect address in the code
space to a register, with the indirect pointer
automatically incremented.

PUSH and POP Rlist PUSH and POP up to 8 word registers in one
instruction.

PUSHU and POPU RIlist or direct | Allows system code to write to or read the user
stack. Handy in multi-tasking applications.

conditional branches A complete set of conditional branches, including
BEQ, BNE, BG, BGE, BGT, BL, BLE, BMI, BPL,
BNV, and BOV.

CALL [R] Call indirect, to an address contained in a
register.

CALL rell6 Call anywhere in a +/- 64K range.

XA User Guide 9-14 3/24/97

Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

FCALL addr24

Far call, anywhere within the XA 16Mbyte code
address space.

JMP [R] Jump indirect, to an address contained in a
register.
JMP rell6 Jump anywhere in a +/- 64K range.

FIMP addr24

Far jump, anywhere within the XA 16Mbyte code
address space.

JMP [[R+]] Jump double indirect with auto-increment. Used
to branch to a sequence of addresses contained
in a table.

BKPT Breakpoint, a debugging feature.

RESET Allows software to completely reset the XA in one

instruction.

TRAP #data4d

Call one of up to 16 system services. Acts like an
immediate interrupt.

3/24/97

9-15 8051 Compatibility

XA User Guide 9-16 3/24/97

	XA User Guide
	1 The XA Family - High Performance, Enhanced Architecture 80C51-Compatible 16-Bit CMOS Microcontr...
	1.1 Introduction
	1.2 Architectural Features of XA

	2 Architectural Overview
	2.1 Introduction
	2.2 Memory Organization
	2.2.1 Register File
	2.2.2 Data Memory
	2.2.3 Code Memory
	2.2.4 Special Function Registers

	2.3 CPU
	2.3.1 CPU Blocks
	CPU Performance Features
	ALU
	Core Registers
	Execution and Control
	Execution Unit
	Interrupt Controller
	Exception Controller
	Interrupt and Exception Processing
	Reset
	Oscillator and Power Saving Modes
	Stack
	Debugging Features

	2.4 Task Management
	2.5 Instruction Set
	2.5.1 Instruction Syntax
	2.5.2 Instruction Set Summary
	Basic Arithmetic, Logic, and Data Movement Instructions
	Additional arithmetic instructions
	Additional logic instructions
	Other data movement instructions
	Bit manipulation instructions
	Jump, branch, and call instructions
	Other instructions

	2.6 External Bus
	2.6.1 External Bus Signals
	2.6.2 Bus Configuration
	2.6.3 Bus Timing

	2.7 Ports
	2.8 Peripherals
	2.9 80C51 Compatibility
	2.9.1 Software Compatibility
	2.9.2 Hardware Compatibility

	3 XA Memory Organization
	3.1 Introduction
	3.2 The XA Register File
	3.2.1 Register File Overview
	Register File Detail

	3.3 The XA Memory Spaces
	3.3.1 Bytes, Words, and Alignment

	3.4 Data Memory
	3.4.1 Alignment in Data Memory
	3.4.2 External and Internal Overlap
	3.4.3 Use and Read/Write Access
	3.4.4 Data Memory Addressing
	Addressing through Segment Registers
	Addressing Modes
	Indirect Addressing
	Direct Addressing
	SFR Addressing
	Bit Addressing

	3.5 Code Memory
	3.5.1 Alignment in Code Memory
	3.5.2 External and Internal Overlap
	3.5.3 Access
	MOVC addressing in Code Memory

	3.6 Special Function Registers (SFRs)
	3.7 Summary of Bit Addressing

	4 CPU Organization
	4.1 Introduction
	4.2 Program Status Word
	4.2.1 CPU Status Flags
	4.2.2 Operating Mode Flags
	4.2.3 Program Writes to PSW
	4.2.4 PSW Initialization

	4.3 System Configuration Register
	4.3.1 XA Large-Memory Model Description
	4.3.2 XA Page 0 Memory Model Description

	4.4 Reset
	4.4.1 Reset Sequence Overview
	4.4.2 Power-up Reset
	4.4.3 Internal Reset Sequence
	4.4.4 XA Configuration at Reset
	Selecting Internal or External Program Memory
	Selecting External Bus Width

	4.4.5 The Reset Exception Interrupt
	4.4.6 Startup Code
	4.4.7 Reset Interactions with XA Subsystems
	4.4.8 An External Reset Circuit

	4.5 Oscillator
	4.6 Power Control
	4.6.1 Idle Mode
	4.6.2 Power-Down Mode

	4.7 XA Stacks
	4.7.1 The Stack Pointers
	Segments and Protection

	4.7.2 PUSH and POP
	4.7.3 Stack-Based Addressing
	4.7.4 Stack Errors
	Stack Overflow
	Stack Underflow
	Stack Pointer Misalignment

	4.7.5 Stack Initialization

	4.8 XA Interrupts
	4.8.1 Interrupt Type Detailed Descriptions
	Exception Interrupts
	Event Interrupts
	Software Interrupts
	Trap Interrupts

	4.8.2 Interrupt Service Data Elements
	Interrupt Stack Frame
	Interrupt Vector Table

	4.9 Trace Mode Debugging
	4.9.1 Trace Mode Operation
	4.9.2 Trace Mode Initialization and Deactivation

	5 Real-time Multi-tasking
	5.1 Multi-tasking Support in XA
	5.1.1 Dual stack approach
	5.1.2 Register Banks
	5.1.3 Interrupt Latency and Overhead
	5.1.4 Protection
	Protected Features in the XA
	Protection Via Data Memory Segmentation
	Protection Via Dual Stack Pointers

	6 Instruction Set and Addressing
	6.1 Addressing Modes
	Table 6.1 Basic Addressing Modes

	6.2 Description of the Modes
	6.2.1 Register Addressing
	6.2.2 Indirect Addressing
	6.2.3 Indirect-Offset Addressing
	6.2.4 Direct Addressing
	6.2.5 SFR Addressing
	6.2.6 Immediate Addressing
	6.2.7 Bit Addressing

	6.3 Relative Branching and Jumps
	6.4 Data Types in XA
	6.5 Instruction Set Overview
	General:
	Operation encoding fields:
	Mnemonic text:
	Pseudocode:
	Execution time:
	Syntax For Operand size:
	Others
	Table 6.2 Instruction Set in XA
	Table 6.3 Instruction Addressing Modes
	Table 6.4 Status Flag Updates
	Instruction Set Summary
	Table 6.5
	Arithmetic Operations
	Logical Operations
	Data transfer
	Program Branching
	Bit Manipulation
	Exception / Trap

	ADD Integer Addition
	ADDC Integer addition with Carry
	ADDS Add Short
	AND Logical AND
	ANL Logical AND a bit to the Carry flag
	ANL Logical AND the complement of a bit to the Carry flag
	ASL Arithmetic Shift Left
	ASR Arithmetic Shift Right
	BCC Branch if carry clear
	BCS Branch if carry set
	BEQ Branch if zero
	BG Branch if greater than (unsigned)
	BGE Branch if greater than or equal to (signed)
	BGT Branch if greater than (signed)
	BKPT Breakpoint
	BL Branch if less than or equal to (unsigned)
	BLE Branch if less than or equal (signed)
	BLT Branch if less than (signed)
	BMI Branch if negative
	BNE Branch if not equal
	BNV Branch if no overflow
	BOV Branch if overflow flag
	BPL Branch if positive
	BR Unconditional Branch
	CALL Call Subroutine Relative
	CALL Call Subroutine Indirect
	CJNE Compare and jump is not equal
	CLR Clear Bit
	CMP Integer Compare
	CPL Integer Ones Complement
	DA Decimal Adjust
	Table 6.6

	DIV.w 16x8 Signed Division
	DIV.d 32x16 Signed Division
	DIVU.b 8x8 Unsigned Division
	DIVU.w 16x8 Unsigned Division
	DIVU.d 32x16 Unsigned Division
	DJNZ Decrement and jump if not zero
	DJNZ Rd, rel 8
	FCALL Far Call Subroutine Absolute
	FJMP Far Jump Absolute
	JB Relative Jump if bit set
	JBC Jump is bit is set then clear bit
	JMP Relative Jump
	JMP Jump Indirect through Register
	JMP Jump indirect through register
	JMP Jump double indirect
	JNB Jump if bit not set
	JNZ Jump is the A register is not zero
	JZ Jump if the A register is zero
	LEA Load effective address
	LSR Logical Shift Right
	MOV Move Data
	MOV Move Bit to Carry
	MOV Move Carry to Bit
	MOVC Move Code
	MOVC Move Code to A (DPTR)
	MOVC Move Code to A (PC)
	MOVS Move Short
	MOVX Move External Data
	MUL.w 16x16 Signed Multiply
	MULU.b 8x8 Unsigned Multiply
	MULU.w 16x16 Unsigned Multiply
	NEG Negate
	NOP No Operation
	NORM Normalize
	OR Logical OR
	ORL Logical OR bit
	ORL Logical OR complement of bit
	POP Pop
	POPU Pop User
	POP Pop Mulitple
	POPU Pop User Multiple
	PUSH Push
	PUSHU Push User
	PUSH Push Multiple
	PUSHU Push User Multiple
	RESET Software Reset
	RET Return from Subroutine
	RETI Return from Interrupt
	RL Rotate Left
	RLC Rotate Left Through Carry
	RR Rotate Right
	RRC Rotate Right Through Carry
	SETB Set Bit
	SEXT Sign Extend
	SUB Integer Subtract
	SUBB Subtract with Borrow
	TRAP Software Trap
	XCH Exchange
	XOR Exclusive OR

	6.6 Summary Of Illegal Operand Combinations On The XA

	7 External Bus
	7.1 External Bus Signals
	7.1.1 PSEN - Program Store Enable
	7.1.2 RD - Read
	7.1.3 WRL - Write Low Byte
	7.1.4 WRH - Write High Byte
	7.1.5 ALE - Address Latch Enable
	7.1.6 Address Lines
	7.1.7 Multiplexed Address and Data Lines
	7.1.8 WAIT - Wait
	7.1.9 EA - External Access
	7.1.10 BUSW - Bus Width

	7.2 Bus Configuration
	7.2.1 8-Bit and 16-Bit Data Bus Widths
	7.2.2 Typical External Device Connections

	7.3 Bus Timing and Sequences
	7.3.1 Code Memory
	Code Read with ALE
	Burst Code Read (No ALE)

	7.3.2 Data Memory
	Typical Data Read
	Word Read on an 8-Bit Data Bus
	Byte Read on a 16-Bit Data Bus
	Typical Data Write
	Word Write on an 8-Bit Data Bus
	External Bus Signal Timing Configuration
	Disallowed Bus Timing Configurations

	7.3.3 Reset Configuration

	7.4 Ports
	7.4.1 I/O Port Access
	Reading of a Port Pin Versus the Port Latch

	7.4.2 Port Output Configurations
	7.4.3 Quasi-Bidirectional Output
	Open Drain Output
	Push-Pull Output
	High Impedance Output

	7.4.4 Reset State and Initialization
	7.4.5 Sharing of I/O Ports with On-Chip Peripherals

	8 Special Function Register Bus
	8.1 Implementation and Possible Enhancements
	8.2 Read-Modify-Write Lockout

	9 80C51 Compatibility
	9.1 Compatibility Considerations
	9.1.1 Compatibility Mode, Memory Map, and Addressing
	9.1.2 Interrupt and Exception Processing
	9.1.3 On-Chip Peripherals
	9.1.4 Bus Interface
	9.1.5 Instruction Set
	Table 9.1: 80C51 to XA Code Translation Statistics

	9.2 Code Translation
	Table 9.2: 80C51 to XA Instruction Translations

	9.3 New Instructions on the XA
	Table 9.3: Instructions and addressing modes new to the XA

