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1   The XA Family - High Performance, Enhanced
Architecture 80C51-Compatible 16-Bit CMOS
Microcontrollers

1.1  Introduction
The role of the microcontroller is becoming increasingly important in the world of electronic
systems which in the past relied on mechanical or simple analog electrical control systems
microcontrollers embedded in them that dramatically improve functionality and reliability, w
reducing size and cost. Microcontrollers also provide the general purpose solutions need
that common software and hardware can be shared among multiple designs to reduce
design-in time and costs.

The requirements of systems using microcontrollers are also much more demanding now
few years ago. Whether called by the name “microcontrollers”, “embedded controllers
“single-chip microcomputers”, the systems that use these devices require a much higher le
performance and on-chip integration.

As microcontrollers begin to enter into more complex control environments, the deman
increased throughput, increased addressing capability, and higher level of on-chip integrati
led to the development of 16-bit microcontrollers that are capable of processing much
information than 8-bit microcontrollers. However, simply integrating more bits or m
peripheral functions does not solve the demand of the control systems being developed
New microcontrollers must provide high-level-language support, powerful debug
environments, and advanced methods of real time control in order to meet the more str
functionality and cost requirements of these systems.

To meet the above goals The XA or “eXtended Architecture” family of general-purp
microcontrollers from Philips is being introduced to provide the highest performance/cost
for a variety of high performance embedded-systems-control applications including real-
multi-tasking environments. The XA family members add to the CPU core a spe
complement of on-chip memory, I/Os, and peripherals aimed at meeting the requireme
different application areas. The core-based architecture allows easy expansion of the
according to a wide variety of customer requirements. The powerful instruction set sup
faster computing power, faster data transfer, multi-tasking, improved response to external
and efficient high-level language programming.

Upward (assembly-level) code compatibility with the Philips 80C51 family of controll
provides a smooth design transition for system upgrades by providing tremendously enh
performance.
XA User Guide 1-1 3/24/97



1.2  Architectural Features of XA
• Upward compatibility with the standard 8XC51 core (assembly source level)
• 24-bit address range (16 Megabytes code and data space)
• 16-bit static CPU
• Enhanced architecture using both 16-bit words and 8-bit bytes
• Enhanced instruction set
• High code efficiency; most of the instructions are 2-4 bytes in length
• Fast 16X16 Multiply and 32x16 Divide Instructions
• 16-bit Stack Pointers and general pointer registers
• Capability to support 32 vectored interrupts - 31 maskable and 1 NMI
• Supports 16 hardware and 16 software traps
• Power Down and Idle power reduction modes
• Hardware support for multi-tasking software

Automotive Electronics

Data Processing Industrial Control
- Disk Drives
- Laser Printers

- Copiers

- Mass Storage
- Computer Peripherals

- Multi-processor Communications

- Protocol Handling

- Power train Electronics

XA

- Robotic Control

- Stepper Motor Control

- Asynchronous Motor Control

- Process Automation
- Drive Control

- Fuzzy Control

- Vehicle Control Electronics
- Ignition Control
- Fuel Injection Control
- Anti-lock Braking
- Active Suspension

Figure 1.    Applications of Philips XA microcontrollers
3/24/97 1-2 The XA Family
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2   Architectural Overview

2.1  Introduction
The Philips XA (eXtended Architecture) has a general purpose register-register architectur
provide the best cost-to-performance trade-off available for a high speed microcontroller us
today’s technology. Intended as both an upward compatibility path for 80C51 users who ne
greater performance or more memory, and as a powerful, general-purpose 16-bit controlle
XA also incorporates support for multi-tasking operating systems and high-level languages
as C, while retaining the comprehensive bit-oriented operations that are the hallmark of the
80C51.

This overview introduces the concepts and terminology of the XA architecture in preparatio
the detailed descriptions in the following sections of this manual.

2.2  Memory Organization
The XA architecture has several distinct memory spaces. The architecture and the instruct
encoding are optimized for register based operations; in addition, arithmetic and logical
operations may be done directly on data memory as well. Thus, the XA architecture avoids
bottleneck of having a single accumulator register.

2.2.1  Register File

The register file (Figure 2.1) allows access to 8 words of data at any one time; the eight wo
are also addressable as 16 bytes. The bottom 4 word registers are “banked”. That is, there
four groups of registers, any one of which may occupy the bottom 4 words of the register fi
any one time. This feature may be used to minimize the time required for context switching
during interrupt service, and to provide more register space for complicated algorithms.

For some instructions –32-bit shifts, multiplies, and divides– adjacent pairs of word register
referenced as double words.

The upper four words of the register file are not banked. The topmost word register is the s
pointer, while any other word register may be used as a general purpose pointer to data m

The entire register file is bit addressable. That is, any bit in the register file (except the 3
unselected banks of the bottom 4 words) may be operated on by bit manipulation instructio

The XA instruction encoding allows for future expansion of the register file by the addition o
word registers. If implemented, these additional registers will be word data registers only a
cannot be used as pointers or addressed as bytes.

The overall XA register file structure provides a superset of the 80C51 register structure. F
details, refer to the section on 80C51 compatibility.
XA User Guide 2-1 3/24/97
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2.2.2  Data Memory

The XA architecture supports a 16 megabyte data memory space with a full 24-bit address.
derivative parts may implement fewer address lines for a smaller range. The data space
beginning at address 0 is normally on-chip and extends to the limit of the RAM size of a
particular XA derivative. For addresses above that on a derivative, the XA will automatically
over to external data memory.

Data memory in the XA is divided into 64K byte segments (Figure 2.2) to provide an intrins
protection mechanism for multi-tasking systems and to improve performance. Segment reg
provide the upper 8 address bits needed to obtain a complete 24-bit address in application
require large data memories (Figure 2.3).

The XA provides 2 segment registers used to access data memory, the Data Segment reg
(DS) and the Extra Segment register (ES). Each pointer register is associated with one of t
segment registers via the Segment Select (SSEL) register. Pointer registers retain this asso
until it is changed under program control.

The XA provides flexible data addressing modes. Most arithmetic, logic, and data moveme
instructions support the following modes of addressing data memory:

Figure 2.1  XA register file diagram
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Figure 2.2  XA data memory segments

Figure 2.3  Simplified XA data memory diagram
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Direct. The first 1K bytes of data on each segment may be accessed by an address contain
within the instruction.

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with 16-bits from a pointer register.

Indirect with offset. An 8-bit or 16-bit signed offset contained within the instruction is added t
the contents of a pointer register, then concatenated with an 8-bit segment register to prod
complete address. This mode allows access into a data structure when a pointer register c
the starting address of the structure. It also allows subroutines to access parameters passe
stack.

Indirect with auto-increment. The address is formed in the same manner as plain indirect, but
pointer register contents are automatically incremented following the operation.

Data movement instructions and some special purpose instructions also have additional da
addressing modes.

The XA data memory addressing scheme provides for upward compatibility with the 80C51
details, refer to Chapter 9.

2.2.3  Code Memory

The XA is a Harvard architecture device, meaning that the code and data spaces are sepa
The XA provides a continuous, unsegmented linear code space that may be as large as 16
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the

Figure 2.4  XA code memory map

0
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code memory
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chip space always begins at code address 0 and extends to the limit of the on-chip code m
Above that, code will be fetched from off-chip. Most XA derivatives will support an external b
for off-chip data and code memory, and may also be used in a ROM-less mode, with no co
memory used on-chip.

In some cases, code memory may be addressed as data. Special instructions provide acce
entire code space via pointers. Either a special segment register (CS or Code Segment) or
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code mem
referenced by the pointer.

2.2.4  Special Function Registers

Special Function Registers (SFRs) provide a means for the XA to access Core registers, in
control registers, peripheral devices, and I/O ports. Any SFR may be accessed by a progra
any time without regard to any pointer or segment. An SFR address is always contained en
within an instruction. See Figure 2.5.

The total SFR space is 1K bytes in size. This is further divided into two 512 byte regions. T
lower half is assigned to on-chip SFRs, while the second half is reserved for off-chip SFRs
allows provides a means to add off-chip I/O devices mapped into the XA as SFRs. Off-chip
access is not implemented on all XA derivatives.

On-chip SFRs are implemented as needed to provide control for peripherals or access to C
features and functions. Each XA derivative may have a different number of SFRs impleme

Figure 2.5  SFR Address Space

Bit-Addressable

1 K bytes

Off-Chip
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On-Chip
SFRs

512 bytes

512 bytes

64 bytes
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because each has a different set of peripheral functions. Many SFR addresses will be unus
any particular XA derivative.

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral registe
allows bit access will be allocated an address within that range.

2.3  CPU
Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described 
section.

Figure 2.6  The XA Architecture
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2.3.1  CPU Blocks

The XA processor is composed of several functional blocks: Instruction fetch and decode;
Execution unit; ALU; Exception controller; Interrupt controller; Register File and core regist
Program memory (ROM or EPROM), Data memory (RAM); SFR and external bus interface
Oscillator; and on-chip peripherals and I/O ports.

Certain functional blocks that exist on most XA derivatives are not part of the CPU core and
vary in each derivative. These are: the external bus interface, the Special Function Registe
(SFR bus) interface, specific peripherals, I/O ports, code and data memories, and the inter
controller.

CPU Performance Features
The XA core is partially pipelined and performs some CPU functions in parallel. For instanc
instruction fetch and decode, and in some cases data write-back, are done in parallel with
instruction execution. This partial pipelining gives very fast instruction execution at a very lo
cost. For instance, the instruction execution time for most register-to-register operations on
XA is 3 CPU clocks, or 100 nanoseconds with a 30 MHz oscillator.

ALU
Data operations in the XA core are accomplished with a 16-bit ALU, providing both 8-bit an
16-bit functions. Special circuitry has been included to allow some 32-bit functions, such as
shifts, multiply, and divide.

Core Registers
The XA core includes several key Special Function Registers which are accessed by progr

The System Configuration Register (SCR) sets up the basic operating modes of the XA. Th
Program Status Word (PSW) contains status flags that show the result of ALU operations, 
register select bits for the four register file banks, the interrupt mask bit, and other system f
The Data Segment (DS), Extra Segment (ES), and Code Segment (CS) registers contain t
segment numbers of active data memory segments. The Segment Select register (SSEL),
contains bits that determine which segment register is used by each pointer register in the re
file. Bits in the Power Control register (PCON) control the reduced power modes of the
processor.

Execution and Control
The Execution and Control block fetches instructions from the code memory and decodes 
instructions prior to execution. The XA normally attempts to fetch instructions from the cod
memory ahead of what is immediately needed by the execution unit. These pre-fetched
instructions are stored in a 7 byte queue contained in the fetch and decode unit.

If the fetch unit has instructions in the queue, the execution unit will not have to wait for a fe
to occur when it is ready to begin execution of a new instruction. If a program branch is tak
the queue is flushed and instructions are fetched from the new location. This block also de
whether to attempt instruction fetches from on or off-chip code memory.
XA User Guide 2-7 3/24/97
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The instruction at the head of the queue is decoded into separate functional fields that tell 
other CPU blocks what to do when the instruction is executed. These fields are stored in st
registers that hold the information until the next instruction begins executing.

Execution Unit
The execution unit controls many of the other CPU blocks during instruction execution. It ro
addressing information, sends read and write commands to the register file and memory co
blocks, tells the fetch and decode unit when to branch, controls the stack, and ensures tha
these operations are performed in the proper sequence. The execution unit obtains control
information for each instruction from a microcode ROM.

Interrupt Controller
The interrupt controller can receive an interrupt request from any of the sources on a partic
XA derivative. It prioritizes these based on user programmable registers containing a priori
each interrupt source. It then compares the priority of the highest pending interrupt (if any) t
interrupt mask bits from the PSW. If the interrupt has a higher priority than the currently runn
code, the interrupt controller issues a request to the execution unit.

The interrupt controller also contains extra registers for processing software interrupts. The
used to run non-critical portions of interrupt service routines at a decreased priority without
risking “priority inversion.”

While the interrupt controller is not part of the XA core, it is present in some form on all XA
derivatives.

Exception Controller
The exception controller is similar to the interrupt controller except that it processes CPU
exceptions rather than hardware and software interrupt requests. Sources of exceptions ar
overflow; divide by zero; user execution of an RETI instruction; hardware breakpoint; trace
mode; and non-maskable interrupt (NMI).

Exceptions are serviced according to a fixed priority ranking. Generally, exceptions must b
serviced immediately since each represents some important event or problem that must be
with before normal operation can resume.

The Exception Controller is part of the XA core and is always present.

Interrupt and Exception Processing
Interrupt and exception processing both make use of a vector table that resides in the low
addresses of the code memory. Each interrupt and exception has an entry in the vector tab
includes the starting address of the service routine and a new PSW value to be used at the
beginning of the service routine. The starting address of a service routine must be within th
64K of code memory.

When the XA services an exception or interrupt, it first saves the return address on the sta
followed by the PSW contents. Next, the PC and the PSW are loaded with the starting add
the appropriate service routine and the new PSW contents, respectively, from the vector ta
3/24/97 2-8 Architectural Overview
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When the service routine completes, it returns to the interrupted code by executing the RE
(return from interrupt) instruction. This instruction loads first the PSW and then the Program
Counter from the stack, resuming operation at the point of interruption. If more than the PC
PSW are used by the service routine, it is up to that routine to save and restore those regis
other portions of the machine state, normally by using the stack, and often by switching reg
banks.

Reset
Power up reset and any other external reset of the XA is accomplished via an active low re
pin. A simple resistor and capacitor reset circuit is typically used to provide the power-on re
pulse. the reset pin is a Schmitt trigger input, in order to prevent noise on the reset pin from
causing spurious or incomplete resets.

The XA may be reset under program control by executing the RESET instruction. This
instruction has the effect of resetting the processor as if an external reset occurred, except
some hardware features that are latched following a hardware reset (such as the state of th
pin and bus width programming) are not re-latched by a software reset. This distinction is
necessary because external circuitry driving those inputs cannot determine that a reset is i
progress.

Some XA derivatives also have a hardware watchdog timer peripheral that will trigger an
equivalent chip reset if it is allowed to time out.

Oscillator and Power Saving Modes
XA derivatives have an on-chip oscillator that may be used with crystals or ceramic resonato
provide a clock source for the processor.

The XA supports two power saving modes of operation: Idle mode and Power Down mode
Either mode is activated by setting a bit in the Power Control (PCON) register. The Idle mo
shuts down all processor functions, but leaves most of the on-chip peripherals and the exte
interrupts functioning. The oscillator continues to run. An interrupt from any operating sourc
will cause the XA to resume operation where it left off.

The Power Down mode goes one step further and shuts down everything, including the on
oscillator. This reduces power consumption to a tiny amount of CMOS leakage plus whate
loads are placed on chip pins. Resuming operation from the power down mode requires th
oscillator to be restarted, which takes about 10 milliseconds. Power down mode can be
terminated either by resetting the XA or by asserting one of the external interrupts, if one w
left enabled when power down mode was entered. In Power Down mode, data in on-board
is retained. Further power savings may be made by reducing Vdd in Power Down mode; se
device data sheet for details.

Stack
The processor stack provides a means to store interrupt and subroutine return addresses, 
as temporary data. The XA includes 2 stack pointers, the System Stack Pointer (SSP) and
User Stack Pointer (USP), which correspond to 2 different stacks: the system stack and the
stack. See Figure 2.7. The system stack always resides in the first data memory segment,
XA User Guide 2-9 3/24/97
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segment 0. The user stack resides in the data memory segment identified by the current va
the data segment (DS) register. Executing code has access to only one of these stacks at 
via the Stack Pointer, R7. Since each stack resides in a single data memory segment, its
maximum size is 64K bytes. The purpose of having two stack pointers will be discussed in 
detail in the section on Task Management below.

The XA stack grows downwards, from higher addresses to lower addresses within data me
The current stack pointer always points to the last item pushed on the stack, unless the sta
empty. Prior to a push operation, the stack pointer is decremented by 2, then data is writte
memory. When the stack is popped, the reverse procedure is used. First, data is read from
memory, then the stack pointer is incremented by 2. Data on the stack always occupies an
number of bytes and is word aligned in data memory.

Debugging Features
The XA incorporates some special features designed to aid in program and system debugg
There is a software breakpoint instruction that may be inserted in a user’s program by a deb
program, causing the user program to break at that point and go to the breakpoint service ro
which can transmit the CPU state so that it can be viewed by the user.

The trace mode is similar to a breakpoint, but is forced by hardware in the XA after the
execution of every instruction. The trace service routine can then keep track of every instru
executed by a user program and transmit information about the CPU state to a serial port or
peripheral for display or storage. Trace mode is controlled by a bit in the PSW. The XA is ab
alter the trace mode bit whenever an interrupt or exception vector is taken. This gives very
flexible use of trace mode, for instance by allowing all interrupts to run at full speed to com
with system hardware requirements, while single stepping through mainline code.

Figure 2.7  XA Stacks
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With these two features, a simple monitor debugger routine can allow a user to single step
through a program, or to run a program at full speed, stopping only when execution reache
breakpoint, in either case viewing the CPU state before continuing.

2.4  Task Management
Several features of the XA have been included to facilitate multi-tasking. Multi-tasking can 
thought of as running several programs at once on the same processor, with a supervisory
program determining when each program, or task, runs, and for how long. Since each task
the same CPU, the system resources required by each must be kept separate and the CPU
restored when switching execution from one task to another. The problem is much simpler
microcontroller than it is for a microprocessor, because the code executed by a microcontr
always comes from the same source: the designers of the system it runs on. Thus, this cod
be considered to be basically trustworthy and extreme measures to prevent misbehavior a
necessary. The emphasis in the XA design is to protect against simple accidents.

The first step in supporting multi-tasking is to provide two execution contexts, one for the b
tasks –on the XA termed “user mode”– and one for the supervisory program –"system mode
program running in system mode has access to all of the processor’s resources and can set
launch tasks.

Code running in system and user mode use different stack pointers, the System Stack Poin
(SSP) and the User Stack Pointer (USP) respectively. The system stack is always located 
first 64K data memory segment, where it can take advantage of the fast on-chip RAM. The
stack is located within each task’s local data segment, identified by the DS register. The fa
user mode code uses a different stack than system mode code prevents tasks from accide
destroying data on the system stack and in other task spaces.

Additional protection mechanisms are provided in the form of control bits and registers that
only writable by system mode code. For instance the DS register, that identifies the local d
segment for user mode code, is only writable in the system mode. While tasks can still writ
the other segment register, the ES register, they cannot write to memory via the ES registe
unless specifically allowed to do so by the system. The data memory segmentation schem
prevents tasks from accessing data memory in unpredictable ways.

Other protected features include enabling of the Trace Mode and alteration of the Interrupt M

The 4 register banks are a feature that can be useful in small multi-tasking systems by using
bank for a different task, including one for system code. This means less CPU state that m
saved during task switching.
XA User Guide 2-11 3/24/97
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2.5  Instruction Set
The XA instruction set is designed to support common control applications. The instruction
encoding is optimized for the most commonly used instructions: register to register or regis
with indirect arithmetic and logic operations; and short conditional and unconditional branc
These instructions are all encoded as 2 bytes. The bulk of XA instructions are encoded as e
or 3 bytes, although there are a few 1 byte instructions as well as 4, 5, and 6 byte instructio

The execution of instructions normally overlaps instruction fetch, and sometimes write-bac
operations, in order to further speed processing.

2.5.1  Instruction Syntax

The instruction syntax chosen for the XA is similar in many ways to that of the 80C51. A ty
XA instruction has a basic mnemonic, such as "ADD", followed by the operands that the
operation is to be performed on. The basic syntax is illustrated in Figure 2.8. The direction 
operation flow is determined by the order in which operands occur in the source line. For
instance, the instruction: "ADD  R1, R2" would cause the contents of R1 and R2 to be adde
together and the result stored in R1. Since R1 and R2 are word registers in the XA, this is 
bit operation.

An indirect reference (a reference to data memory using the contents of a register as an ad
is specified by enclosing the operand in square brackets, as in: "ADD  R1, [R2]". See Figur
This instruction causes the contents of R1 and the data memory location pointed to by R2
(appended to its associated segment register) to be added together and the result stored in
Reversing the operand order ("ADD [R2], R1") causes the result to be stored in data memo
shown in Figure 2.10.

Most instructions support an additional feature called auto-increment that causes the regis
used to supply the indirect memory address to be automatically incremented after the mem
access takes place. The source line for such an operation is written as follows: "ADD  R1,
[R2+]". As illustrated in Figure 2.11, the auto-increment amount always matches the data s
used in the instruction. In the previous example, R2 will have 2 added to it because this wa
word operation.

Figure 2.8  Basic Instruction Syntax

op-code
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operand

ADD R1      ,    R2

operand delimiter (comma)
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Another version of indirect addressing is called indirect with offset mode. In this version, an
immediate value from the instruction word is added to the contents of the indirect register i
order to form the actual address. This result of the add is 16 bits in size, which is then appe
to the segment register for that pointer register. If the offset calculation overflows 16 bits, th
overflow is ignored, so the indirect reference always remains on the same segment. The
immediate data from the instruction is a signed 8-bit or 16-bit offset. Thus, the range is +12
bytes to -128 bytes for an 8-bit offset, and +32,767 to -32,768 bytes for a 16-bit offset. Note
since the address calculation is limited to 16-bits, the 16-bit offset mode allows access to a
entire data segment.

When an instruction requires an immediate data value (a value stored within the instruction
itself), it is written using the "#" symbol. For example: "ADD  R1, #12" says to add the value
to register R1.

Figure 2.9  Basic Indirect Addressing Syntax, to register

Figure 2.10  Basic Indirect Addressing Syntax, from Register

ADD  R1, [R2]R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000

Before

R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1045

After

ADD  [R2], R1R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000

Before

R1

R2

register file

data memory

1000

1002

1004

1006

1004

1045

1000

After
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Since indirect memory references and immediate data values do not implicitly identify the si
the operation to be performed, a few XA instructions must have an operation size explicitly
called out. An example would be the instruction: "MOV [R1], #1". The immediate data value
does not specify the operation size, and the value stored in memory at the location pointed
R1 could be either a byte or a word. To clarify the intent of such an instruction, a size ident
is added to the mnemonic as follows: "MOV.b  [R1], #1". This tells us that the operation sh
be performed on a byte. If the line read "MOV.w  [R1], #1", it would be a word operation.

If a direct data address is used in an instruction, the address is simply written into the instruc
"ADD 123, R1", meaning to add the contents of register R1 to the data memory value store
direct address 123. In an actual program, the direct data address could be given a name to
the program more readable, such as "ADD Count, R1".

Operations using Special Function Registers (SFRs) are written in a way similar to direct
addresses, except that they are normally called out by their names only: "MOV PSW,#12". U
actual SFR addresses rather than their names in instructions makes the code both harder 
and less transportable between XA derivatives.

Bit addresses within instructions may be specified in one of several ways. A bit may be giv
unique name, or it may be referred to by its position within some larger register or entity. A
example of a bit name would be one of the status flags in the PSW, for instance the carry (
flag. To clear the carry flag, the following instruction could be used: "CLR C". The same bit
could be addressed by its position within the PSW as follows: "CLR PSWL.7", where the p
(".") character indicates that this is a bit reference. A program may use its own names to id
bits that are defined as part of the application program.

Finally, code addresses are written within instructions either by name or by value. Again, a
program is more readable and easier to modify if addresses are called out by name. Exam
are: "JMP  Loop" and "JMP 124".

Figure 2.11  Indirect Addressing with Auto-Increment

ADD  R1, [R2+]R1

R2

register file

data memory

1000

1002

1004

1006

1004

45

1000
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R1

R2
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data memory

1000
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1004
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1006

45

1045

After
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2.5.2  Instruction Set Summary
The following pages give a summary of the XA instruction set. For full details, consult Chapte

Basic Arithmetic, Logic, and Data Movement Instructions
The most used operations in most programs are likely to be the basic arithmetic and logic
instructions, plus the MOV (move data) instruction. The XA supports the following basic
operations:

ADD Simple addition.
ADDC Add with carry.
SUB Subtract.
SUBB Subtract with borrow.
CMP Compare.
AND Logical AND.
OR Logical OR.
XOR Exclusive-OR.

These instructions support all of the following standard XA data addressing mode combina

Operands Description

R, R The source and destination operands are both registers.

R, [R] The source operand is indirect, the destination operand is a
register.

[R], R The source operand is a register, the destination operand is
indirect.

R, [R+] The source operand is indirect with auto-increment, the destination
operand is a register.

[R+], R The source operand is a register, the destination operand is
indirect with auto-increment.

R, [R+offset] The source operand is indirect with an 8 or 16-bit offset, the
destination operand is a register.

[R+offset], R The source operand is a register, the destination operand is
indirect with an 8 or 16-bit offset.

direct, R The source operand is a register, the destination operand is a
direct address.

R, direct The source operand is a direct address, the destination operand is
a register.

R, #data The source operand is an 8 or 16-bit immediate value, the
destination operand is a register.

[R], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect.
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Other instructions on the XA use different operand combinations. All XA instructions are
covered in detail in the Instruction Set section. Following is a summary of other instruction
types:Additional arithmetic instructions

Additional arithmetic instructions
ADDS Add short immediate (4-bit signed value).
NEG Negate (twos complement).
SEXT Sign extend.
MUL Multiply.
DIV Divide.
DA Decimal adjust.
ASL Arithmetic shift left.
ASR Arithmetic shift right.
LEA Load effective address.

Additional logic instructions
CPL Complement (ones complement or logical inverse).
LSR Logical shift right.
NORM Normalize.
RL Rotate left.
RLC Rotate left through carry.
RR Rotate right.
RRC Rotate right through carry.

Other data movement instructions
MOVS Move short immediate (4-bit signed value).
MOVC Move to or from code memory.
MOVX Move to or from external data memory.
PUSH Push data onto the stack.
POP Pop data from the stack.
XCH Exchange data in two locations.

Bit manipulation instructions
SETB Set (write a 1 to) a bit.
CLR Clear (write a 0 to) a bit.
MOV Move a bit to or from the carry flag.
ANL Logical AND a bit (or its inverse) to the carry flag.
ORL Logical OR a bit (or its inverse) to the carry flag.

[R+], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with auto-increment.

[R+offset], #data The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with an 8 or 16-bit offset.

direct, #data The source operand is an 8 or 16 bit immediate value, the
destination operand is a direct address.

Operands Description
3/24/97 2-16 Architectural Overview



Jump, branch, and call instructions
BR Branch to code address (plus or minus 256 byte range).
JMP Jump to code address (range depends on specific JMP variation).
CALL Call subroutine (range depends on specific CALL variation).
RET Return from subroutine or interrupt.
Bcc Conditional branches with 15 possible condition variations.
JB, JNB Jump if a bit set or not set.
CJNE Compare two operands and jump if they not equal.
DJNZ Decrement and jump if the result is not zero.
JZ, JNZ Jump on zero or not zero (included for 80C51 compatibility).

Other instructions
NOP No operation (used mainly to align branch targets).
BKPT Breakpoint (used for debugging).
TRAP Software trap (used to call system services in a multitasking system).
RESET Reset the entire chip.
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2.6  External Bus
Most XA derivatives have the capability of accessing external code and/or data memory th
the use of an external bus. The external bus provides address information to external device
initiates code read, data read, or data write strobes. The standard XA external bus is desig
provide flexibility, simplicity of connection, and optimization for external code fetches.

As described in section 4.4.4, the initial external bus width is hardware settable, and the XA
determines its value (8 or 16 bits) during the reset sequence.

2.6.1  External Bus Signals

The standard XA external bus supports 8 or 16-bit data transfers and up to 24 address line
precise number of address lines varies by derivative. The standard control signals and thei
functions for the external bus are as follows:

2.6.2  Bus Configuration

The standard XA bus is user configurable in several ways. First, the bus size may be confi
to either 8 bits or 16 bits. This may be configured by the logic level on a pin at reset, or und
firmware control (if code is initially executed from on-chip code memory) prior to any actua
external bus operations. As on the 80C51, theEA pin determines whether or not on-chip code
memory is used for initial code fetches.

Signal name Function

ALE Address Latch Enable. This signal directs an external address
latch to store a portion of the address for the next bus operation.
This may be a data address or a code address.

PSEN Program Store Enable. Indicates that the XA is reading code
information over the bus. Typically connected to the Output
Enable pin of external EPROMs.

RD Read. The external data read strobe. Typically connected to the
RD pin of external peripheral devices.

WRL Write. The low byte write strobe for external data. Typically
connected to the WR pin of external peripheral devices. For an 8-
bit data bus, this is the only write strobe. For a 16-bit data bus,
this strobe applies only to the lower data byte.

WRH Write High. This is the upper byte write strobe for external data
when using a 16-bit data bus.

WAIT Wait. Allows slowing down any type external bus cycle. When
asserted during a bus operation, that operation waits for this
signal to be de-asserted before it is completed.
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Second, the number of address lines may be configured in order to make optimal use of I/O
ports. Since external bus functions are typically shared with I/O ports and/or peripheral I/O
functions, it is advantageous to set the number of address lines to only what is needed for 
particular application, freeing I/O pins for other uses.

2.6.3  Bus Timing

The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width,PSEN width,RD andWRL/WRH width, and data hold time
from WRL/WRH. These times are programmable in a range that will support most RAMs,
ROMs, EPROMs, and peripheral devices over a wide range of oscillator frequencies witho
need for additional external latches, buffers, or WAIT state generators.

The following figures show the basic sequence of events and timing of typical XA bus acce
For more detailed information, consult Section 7 and the device data sheet.

Figure 2.12  Typical External Code Read.

Figure 2.13  Optimized (Sequential Burst) External Code Read.

ALE

PSEN

Address bus

Data bus address instruction data

code address

ALE

PSEN

Address bus

Data bus instruction datainstruction data

code addresscode address
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Figure 2.14  Typical External Data Read.

Figure 2.15  Typical External Data Write.

2.7  Ports
Standard I/O ports on the XA have been enhanced to provide better versatility and
programmability than was previously available in the 80C51 and most of its derivatives. Ac
to the I/O ports from a program is through SFR addresses assigned to those ports. Ports m
read and written is the same manner as any other SFR.

The XA provides more flexibility in the use of I/O ports by allowing different output
configurations. See Figure 2.16. Port outputs may be programmed to be quasi-bidirectiona
(80C51 style ports), open drain, push-pull, and high impedance (input only).

ALE

RD

Address bus

Data bus address data in to XA

data address

ALE

WRL/WRH

Address bus

Data bus address data out from XA

data address
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2.8  Peripherals
The XA CPU core is designed to make derivative design fast and easy. Peripheral devices a
part of the core, but are attached by means of a Special Function Register bus, called the S
bus, which is distinct from the CPU internal buses. So, a new XA derivative may be made b
designing a new SFR bus compatible peripheral function block, if one does not already exi
then attaching it to the XA core.

2.9  80C51 Compatibility
The 80C51 is the most extensively designed-in 8-bit microcontroller architecture in the wor
and a vast amount of public and private code exists for this device family. For customers w
use the 80C51 or one of its derivatives, preservation of their investment in code developme
an important consideration. By permitting simple translation of source code, the XA allows
existing 80C51 code to be re-used with this higher-performance 16-bit controller. At the sa
time, the XA hardware was designed with the clear goal of upward compatibility. 80C51 des
may be migrated to the XA with very few changes necessary to software source or hardwa

Figure 2.16  XA Port Pins with Driver Option Detail

input output

hi-Z
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+V+V

R

Write
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Write Write

Quasi-bidirectional open drain push-pull
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The XA provides an 80C51 Compatibility Mode, which essentially replicates the 80C51 reg
architecture for the best possible upward compatibility. In the alternative Native Mode, the 
operates as an optimized 16-bit microcontroller incorporating the best conceptual features 
original 80C51 architecture.

Many trade-offs and considerations were taken into account in the creation of the XA
architecture. The most important goal was to make it possible for a software translator to co
80C51 assembler source code to XA source code on a 1:1 basis, i.e., one XA instruction fo
80C51 instruction.

Some specific compatibility issues are summarized in the following two sections. See Chap
for a complete description of compatibility.

2.9.1  Software Compatibility

Several basic goals were observed in order to design 80C51 software compatibility for the 
while avoiding over-complicating the XA design. Following are some key issues for XA
software:

• Instruction mapping. Each 80C51 instruction translates into one XA instruction. Multi-
instruction combinations that could result in problems if split by an interrupt were avoided a
much as possible. Only one 80C51 instruction does not have a one-to-one direct replacem
with an XA instruction (this instruction, XCHD, is extremely rarely used).

• "As-is" instructions. Most XA instructions are more powerful supersets of 80C51 instructio
Where this was not possible, the original 80C51 instruction is included "as-is" in the XA
instruction set.

• Timing. Instruction timing must necessarily change in order to improve performance. The
does not attempt to retain timing compatibility with the 80C51; rather, the design simply
maximizes instruction execution speed. When 80C51 code that is timing critical is translate
the XA, the user must re-analyze the timing and make adjustments.

• SFR Access. Translation of SFR accesses is usually simple, since SFRs are normally
referenced by name. Such references are simply retained in the translated XA code. If prog
source code from a specific 80C51 derivative references an SFR by its address, the transla
directly substitute the appropriate XA SFR, provided both the 80C51 and the XA derivative
correctly identified to the translator.

2.9.2  Hardware Compatibility

The key goal for hardware was to produce a familiar architecture with a good deal of upwa
compatibility.

• Memory Map. A major consideration in hardware compatibility of the XA with the 80C51 i
the memory map. The XA approaches this issue by having each memory area (registers, d
memory, code memory, stack, SFRs) be a superset of the corresponding 80C51 area.
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• Stack. One area where a functional change could not be avoided is in the use of the proc
stack. Due to the fact that the XA supports 16-bit operations in memory, it was necessary t
change the direction of stack growth to downward –the standard for 16-bit processors– in o
to match stack usage with efficient access of 16-bit variables in memory. This is an importa
consideration for support of high-level language compilers such as C.

• Pin-for-pin compatibility. XA derivatives are not intended to be exactly pin-compatible with
other 80C51 derivatives that have similar features. Many on-chip XA peripherals, for exam
have improved capabilities, and maintaining pin-for-pin compatibility would limit access to th
capabilities. In general, peripherals have been made upward compatible with the original 8
devices, and most enhancements are added transparently. In these cases, 80C51 code will
correctly on the 80C51 functional subset.

• Bus Interface. The external bus on the XA is an example of a trade-off between 80C51
compatibility and performance. In order to provide more flexibility and maximum performan
the 80C51 bus had to be changed somewhat. The differences are described in detail in the
on the external bus.
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3   XA Memory Organization

3.1  Introduction
The memory space of XA is configured in a Harvard architecture which means that code a
data memory (including sfrs) are organized in separate address spaces. The XA architectu
supports 16 Megabytes (24-bit address) of both code and data space. The size and type o
memory are specific to an XA derivative.

The XA supports different types of both code and data memory e.g.,code memory could be
Eprom, EEProm, OTP ROM, Flash, and Masked ROM whereas data memory could be RA
EEProm or Flash.

This chapter describes the XA Memory Organization of register, code, and data spaces; ho
each of these spaces are accessed, and how the spaces are related.

3.2   The XA Register File
The XA architecture is optimized for arithmetic, logical, and address-computation operation
the contents of one or more registers in the XA Register File.

3.2.1  Register File Overview

The XA architecture defines a total of 16 word registers in the Register File:
In the baseline XA core, only R0 through R7 are implemented. These registers are availab
unrestricted use except R7– which is the XA stack pointer, as illustrated in Figure 3.1. In ef
the XA registers provide users with at least 7 distinct “accumulators” which may be used fo
operations. As will be seen below, the XA registers are accessible at the bit, byte, word, an
doubleword level.

Additional global registers, R8 through R15, are reserved and may be implemented in spec
XA derivatives. These registers, when available, are equivalent to R0 through R7 except b
access and use as pointers will not be possible (only word, double-word, and bit-addressab.
The Register File is independent of all other XA memory spaces (except in Compatibility M
see chapter 9).

Register File Detail
Figure 3.2 describes R0 through R7 in greater detail.

Byte, Word, and Doubleword Registers
All registers are accessible as bits, bytes, words, and –in a few cases– doublewords. Bit acc
registers is described in the next section. As for byte and word accesses, R1 –for example
word register that can be word referenced simply as “R1”. The more significant byte is labele
“R1H” and the less significant byte of R1 is referenced as “R1L”. Double-word registers are
always formed by adjacent pairs of registers and are used for 32 bit shifts, multiplies, and
divides. The pair is referenced by the name of the lower-numbered register (which contains
XA User Guide 3-1 3/24/97
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less significant word), and this must have an even number. Thus valid double-register pairs
(R0,R1), (R2,R3), (R4,R5) and (R6, R7).

As described in section 4.7, there are two stack pointers, one for user mode and another fo
system mode. At any given instant only one stack pointer is accessible and its value is in R
When PSW.SM is 0, user mode is active and the USP is accessible via R7. When PSW.SM
the XA is operating in system mode, and SSP is in SP (R7). (Note however, as described i
Chapter 4, all interrupts save stack frames on the system stack, using the SSP, regardless
current operating mode.)

There are four distinct instances of registers R0 through R3. At any given time, only 1 set o
4 banks is active, referenced as R0 through R3, and the contents of the other banks are
inaccessible. This allows high-speed context-switching, for example, for interrupt service
routines.PSW bitsRS1 andRS0 select the active register bank:

RS1  RS0 visible register bank
----   ----- ------------------------
0 0 bank 0
0 1 bank 1
1 0 bank 2
1 1 bank 3

Figure 3.1    XA Register File Overview

16 bits
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R15
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general registers

general registers
derivative-optional

present in all
XA derivatives
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PSW.RSn are writable when the XA is operating in system or user mode, and programs ru
in either mode may explicitly change these bits to make selected banks visible one at a tim
More commonly, the interrupt mechanism, as described in Chapter 4, provides automatic
implicit register bank switching so interrupt handlers may immediately begin operating in a
reserved register context.

Figure 3.2    XA Register File
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Bit Access to Registers
The XA Registers are all bit addressable. Figure 3.3 shows how bit addresses overlie the b
register file map. In general, absolute bit references as given in this map are unnecessary.
software development tools provide symbolic access to bits in registers. For example, bit 7
be designated as “R0.7” with no ambiguity

Bit references to banked registers R0 through R3 access the currently accessible register b
set byPSW bitsRS1, RS0and the currently selected stack pointer USP or SSP. The unselec
registers are inaccessible..

3.3  The XA Memory Spaces
The XA divides physical memory into program and data memory spaces. Twenty-four addr
bits, corresponding to a 16MB address space, are defined in the XA architecture. In any gi
XA implementation, fewer than all twenty-four address bits may actually be used, and there
provision for a small-memory mode which uses only 16-bit addresses; see Chapter 4.

Code and data memory may be on-chip or external, depending on the XA variant and the u
implementation. Whether a specific region is on-chip or external does not, in general, affec
access to the memory.

Figure 3.3    Bit Address to Registers

0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00R0

1F 1E 1D 1C 1B 1A 19 18 17 16 15 14 13 12 11 10R1
R2
R3
R4
R5
R6

R14
R15

2F 2E 2D 2C 2B 2A 29 28 27 26 25 24 23 22 21 20

3F 3E 3D 3C 3B 3A 39 38 37 36 35 34 33 32 31 30

4F 4E 4D 4C 4B 4A 49 48 47 46 45 44 43 42 41 40

5F 5E 5D 5C 5B 5A 59 58 57 56 55 54 53 52 51 50

R7
6F 6E 6D 6C 6B 6A 69 68 67 66 65 64 63 62 61 60

7F 7E 7D 7C 7B 7A 79 78 77 76 75 74 73 72 71 70

EF EE ED EC EB EA E9 E8 E7 E6 E5 E4 E3 E2 E1 E0

FF FE FD FC FB FA F9 F8 F7 F6 F5 F4 F3 F2 F1 F0

RnH RnL
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3.3.1  Bytes, Words, and Alignment

XA memory is addressed in units ofbytes, where each byte consists of 8 bits. Aword consists of
two bytes, and the word storage order is “Little-Endian”, that is, the less significant byte of 
data is located at a lower memory address. See Figure 3.4.

Any word access must be aligned at an even address (Address bit A0=0). If an odd-aligned
access is attempted the word at the next-smallest even address will be accessed, that is, A
be set to 0.

The external XA memory spaces may be accessed in byte or word units but the hardware 
method does not affect the even alignment restriction on word accesses.

3.4  Data Memory
The data memory space starts at address 0 and extends to the highest valid address in the
implementation, at maximum, FFFFFFh. As will be described below, the data memory spa
segmented into 256 segments of 64K bytes each.External Data Memorystarts at the first address
following the highestInternal Data Memorylocation. In general, at least 512 bytes of Internal
Data Memory, starting at location 0, will be provided in all XA implementations; however, th
is no inherent minimum or maximum architectural limitation on Internal Data Memory.

The upper 16 segments of data memory (addresses F0:0000 through FF:FFFF hexadecim
reserved for special functions in XA derivatives. A similar range is reserved in the code me
space, see section 3.5.

3.4.1  Alignment in Data Memory

There are no data memory alignment restrictions except that placed on word accesses to a
memory: Words must be fetched from even addresses. An attempt to fetch a word at an od
address will fetch a word from the preceding even address.

3.4.2  External and Internal Overlap

If External Data Memory is placed by external logic at addresses that overlaps Internal Dat
Memory, the Internal Data Memory generally takes precedence. The overlapped portion of
External memory may be accessed only by using a form of the MOVX instruction; see
Chapter 6. The use of MOVX always forces external data memory fetch in XA. For non-
overlapped portion of external data memory, no MOVX is required.

Figure 3.4    Memory byte order

address

n
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0

1
WORD at address n
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3.4.3  Use and Read/Write Access

Data memory is defined as read-write, and is intended to contain read/write data. It is logic
impossible to execute instructions from XA Data Memory. It is possible, and a common prac
to add logic to overlap external code and data memory spaces. In this case it is important t
understand that the memory spaces are logically separate. In such a modified Harvard
architecture, implemented with external logic, it is possible –but not recommended– to writ
self-modifying XA code. No such overlap is possible for internal data memory.

3.4.4  Data Memory Addressing

XA data memory addressing is optimized for the needs of embedded processing. Data me
in the XA is divided into 64K byte segments. This provides an intrinsic protection mechanis
for multitasking applications and improves performance by requiring fewer address bits for
localized accesses.

Addressing through Segment Registers
Segment registers provide the upper 8 address bits needed to obtain a complete 24-bit add
applications that require full use of the XA 16 Mbyte address space. Two segment register
defined in the XA architecture for use in accessing data memory, the Data Segment Regis
(DS), and the Extra Segment Register(ES). As user stacks are located in the segment specifie
by DS, it is probably most convenient to address user data structures throughES. Each pointer
register, namely R0 through R6, is associated with one of the segment registers via the Se
Select (SSEL) register as illustrated in Figure 3.5.

A 0 in the SSEL bit corresponding to the pointer register selects DS (default on RESET) an
selects the ES. For example, when R3 contains a pointer value, the full 24 bit address is fo
by concatenating DS or ES, as determined by the state of SSEL bit 3, as the most significa
8 bits. As a consequence of segmented addressing, the XA data memory space may be vie
256 segments of 64K bytes each (Figure 3.6).

Figure 3.5    Address generation

SSEL ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG

DS

ES R3

complete
24-bit memory
address

segment
registers

8-bit segment
identifier

16-bit segment offset

0

1

R0SEG
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If R7 (the stack pointer) is used as a normal indirect pointer, the data segment addressed w
always be segment 0 in System Mode and the DS segment in User Mode. More informatio
about the System and User modes may be found in sections 4 and 5.

The ESWEN (bit 7 of SSEL) can be programmed only in the System Mode to enable (1) or
disable (0) write privileges to data segment via ES register in the User Mode. This bit defau
the disabled (0) state after reset.

Addressing Modes
The XA provides flexible data addressing modes. Arithmetic, logic, and data movement
instructions generally support the following data memory access:

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with a 16-bit pointer in a register.

Direct. The first 1K bytes of data in each segment may be accessed by an address contain
within the instruction.Indirect with offset. A signed byte/word offset contained within the
instruction is added to the contents of a pointer register, and the result is concatenated with
8-bit segment register DS to produce a complete 24-bit address.

Indirect with auto-increment. Indirect addresses are formed as above and the pointer registe
contents are automatically incremented.

Figure 3.6    Data memory segmentation
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Bit-level.  Bit-level addresses are absolute references to specific bits.

Data move instructions and some special purpose instructions also have additional data
addressing modes as described in Chapter 6.

Indirect Addressing
The entire 16 MByte address space is accessible via register-indirect addressing with a se
register, as illustrated by Figure 3.7 (Note that for simplicity, this figure omits showing how 
Extra Segment or Data Segment Register is chosen usingSSEL.).

Indirect addressing with an offset is a variant of general indirect addressing in which an 8-b
16-bit signed offset contained within the instruction is added to the contents of a pointer reg
then concatenated with an 8-bit segment register to produce a complete address. This mod
access to data structures when a pointer register contains the starting address of the struc
also supports stack-based parameter passing.

Indirect addressing with autoincrement is another variant of indirect addressing in which th
pointer register contents are automatically incremented following the operation. When the
operand is a byte, the increment is one; when the operand is a word, the increment is 2. U
indirect addressing with auto-increment provides a convenient method of traversing data
structures smaller than 64K bytes. For data structures exceeding 64K bytes in length, the
program code must explicitly adjust the segment register at page boundaries.

Address generation in these two modes of indirect addressing is illustrated inFigures 3.8 a
When using indirect addressing care is necessary to avoid accessing a word quantity at an
address. This will result in an access using the next-lower even address, which is generally
desirable. Note that the indirect addressing with an offset will be successful in this case as
as the final, effective address is even. That is, both the base address and the offset may be

Figure 3.7    Indirect Access to 24 Bit Address Space
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Direct Addressing
The first 1K of each segment is directly addressable. Address generation for the direct add
mode is summarized in Figure 3.10. Segment register DS is always used.
Direct data-reference instructions encode a maximum of 10 address bits, which are zero ext
to sixteen bits and concatenated with DS to form an absolute 24 bit address. In all segments,
addressing can be used to access any byte in the first 1K bytes of the segment.

SFR Addressing
A 1K portion of the direct address space, addresses 400h through 7FFh, is reserved for SF
addresses. The SFR address space uses a portion of the direct address space, but repres
completely distinct logical area that is not related to the data memory segmentation schem
section 3.6 for a complete description of SFR access.

Bit Addressing
Thirty-two bytes of each segment of data memory are also bit-addressable, starting at offse
in the segment addressed by the DS register. Address generation for bit addressing in the 
memory space is shown in Figure 3.10. As described in chapter 6, bits are encoded in
instructions as 10 bits. Figure 3.11 shows the bit addresses as they appear in memory .

Figure 3.8    Indirect Addressing

Figure 3.9    Direct address generation

Rn

16 bits

Seg
Reg

+ 8 bits

24 bit address

a) Indirect addressing with offset b) indirect addressing with auto incremen

8 or 16-bit
signed offset

+
partial
indirect addr

Rn16 bits

Seg
Reg

+ 8 bits

24 bit address

1

2
Rn <-- Rn + data size

Direct address from instruction10 bits

DS (data segment register)
+ 8 bits

24 bit address

0

XA User Guide 3-9 3/24/97



tation,

l) are
 data

e
rgets,
ress.
3.5  Code Memory
Code memory starts at address 0 and extends to the highest valid address in the implemen
at maximum, FFFFFFh.External Code Memory(off-chip) starts at the first address following the
highestInternal Code Memory(on-chip) location, if any. If code memory is present on-chip, it
always starts at location 0.

The upper sixteen 64K byte code pages (addresses F00000 through FFFFFF hexadecima
reserved for special functions in XA derivatives. The same address range is reserved in the
memory space, see section 3.4.

3.5.1  Alignment in Code Memory

As instructions are variable in length, from 1 to 6 bytes (see Chapter 6), instructions in cod
memory can be located at odd addresses. As described in Chapter 6, instruction branch ta
i.e., targets of jumps, calls, branches, traps, and interrupts must be aligned on an even add

Figure 3.10    Bit address generation in direct memory space

Figure 3.11    Direct memory bit addressing

9     8     7     6     5     4     3     2     1     0

byte offset from 20h

identifies 1 of 8 bits in a byte.

0 1

Segment n

20h

3Fh

 3Eh 1EF 1EE 1ED 1EC 1EB 1EA 1E9 1E8 1E7 1E6 1E5 1E4 1E3 1E2 1E1 1E0

byte at odd address byte even address

 28h 14F 14E 14D 14C 14B 14A 149 148 147 146 145 144 143 142 141 140

 26h 13F 13E 13D 13C 13B 13A 139 138 137 136 135 134 133 132 131 130

 24h 12F 12E 12D 12C 12B 12A 129 128 127 126 125 124 123 122 121 120

 22h 11F 11E 11D 11C 11B 11A 119 118 117 116 115 114 113 112 111 110

 20h 10F 10E 10D 10C 10B 10A 109 108 107 106 105 104 103 102 101 100

 3Fh 1FF 1FE 1FD 1FC 1FB 1FA 1F9 1F8 1F7 1F6 1F5 1F4 1F3 1F2 1F1 1F0
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3.5.2  External and Internal Overlap

If External Code Memory is placed by external logic at locations that overlap Internal Code
Memory, the Internal Code Memory takes precedence, and the overlapped portion of the
External memory will in not be accessed. However, on XA implementations that provide an
External Address (EA) hardware input, setting EA low will cause external program memory t
be used.

3.5.3  Access

Code memory is intended to contain executable XA instructions. The XA architecture supports
storing constant data in Code Memory and provides special access modes for retrieving th
information. Constant data is implicitly stored within the instruction of many data manipulat
instructions when immediate operands are specified.

It is possible, and a common practice, to overlap external code and data memory spaces. I
case it is important to understand that the memory spaces are logically separate. In such a
architecture, implemented with external logic, code memory is logically read-only memory 
is writable when accessed as external data memory. No such overlap is possible for interna
memory.

MOVC addressing in Code Memory
A special instruction, MOVC, is defined in the XA for accessing constant data (e.g lookup
tables, string constants etc.) stored in code memory.   There is a standard form of MOVC t
reflects the native XA architecture, and there are two variations that reflect 80C51 compati
see Chapter 9 for details of 80C51 compatibility. The standard form of MOVC uses a 16-bi
register value as a pointer, appended to either the top 8 bits of the Program Counter (PC) o
Code Segment register (CS) to form a 24-bit address, as shown in Figure 3.12. The source
upper 8 address bits is determined by the setting of the segment selection bit (0 = PC and 
in the SSEL register that corresponds to the operand register.

Figure 3.12    MOVC addressing in code memory
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3.6  Special Function Registers (SFRs)
Special Function Registers (SFRs) provide a means for programs to access CPU control a
status registers, peripheral devices, and I/O ports. The SFR mechanism provides a consist
mechanism for accessing standard portions of the XA core, peripheral functions added to t
core within each XA derivative, and external devices as implemented in future derivatives.

Figure 3.13 highlights the core registers that are accessed as SFRs:PCON, SCR, SSEL, PSWH,
PSWL, CS, ES, DS.   Communication with these registers as well as on-chip peripheral dev
is performed via the dedicated Special Function Register Bus (see section 8).

The SFR address space is 1K bytes (Figure 3.14). The first half of this space (400h throug
5FFh) is dedicated to accessing core registers and on-chip peripherals outside the XA core

Figure 3.13    XA Core with SFRs highlighted
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assigned addresses in the range 400h through 43Fh are both byte and bit-addressable. The
half (600h through 7FFh) of the SFR space is reserved for providing access to off-chip SFR
The off-chip sfr space is provided to allow faster access of off-chip memory mapped I/O de
without having to create a pointer for each access.

Following are some key points to remember when using SFRs:

SFRs should be symbolically addressed. Because SFR assignments may vary from derivative 
derivative, it is important to always use symbolic references to SFRs. XA software develop
tools provide symbolic constants for all SFRs in the form of header/include files and the too
will be updated as new SFRs are added with each added XA derivative.

Verify that your application uses the right header/include files. Although baseline SFRs are
likely to retain their addresses in future XA derivatives, this is not guaranteed. SFRs used f
optional peripherals may well have different addresses on different derivatives, and the sam
address on one derivative may access a different peripheral SFR.

Any SFR may be accessed at any time without reference to a pointer or segment.SFR access is
independent of any segment register, so SFRs are always accessible with the 10 bit addre
encoded in instructions accessing SFRs.

SFRs may not be accessed via indirect address. Any time indirection is used, data memory is
accessed. If an SFR address is referenced as an indirect address, physical RAM at that ad
if it exists– is accessed.

Figure 3.14    SFR address space
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An SFR address is always contained entirely within an instruction. The SFR address is always
encoded in the instruction providing the access, and there is no other way of addressing an

Details of access to external SFRs is determined by derivative implementation. Access to off-
chip SFRs is a reserved feature not implemented in the baseline XA. Consult derivative pro
datasheets for details of external SFR access, e.g., timing.

3.7  Summary of Bit Addressing
Several sections of this chapter have described portions of the XA that are bit-addressable.
are a total of 1024 addressable bits distributed in the XA architecture, chosen to make imp
data structures immediately accessible via XA bit-processing instructions, specifically, all
registers in the register file, R0 through R7 (and R8 through R15 if implemented); directly
addressable RAM addresses 20h through 3Fh in the page currently specified by DS, and a
portion of the on-chip SFRs. Figure 3.15 summarizes all the bit-addressable portions of the

Figure 3.15    Bit addressing summary
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4  CPU Organization

This chapter describes the Central Processing Unit (CPU) of the XA Core. The CPU conta
status and control logic for the XA architecture. The XA reset sequence and the system osc
interface with the CPU, and power control is handled here. The CPU performs interrupt an
exception handling. The XA CPU is equipped with special functions to support debugging.

4.1 Introduction
Figure 4.1 is a block diagram of the XA Core.

Figure 4.1  The XA Core
Here is an overview of core elements: The XA Core oscillator provides a basic system cloc
Timing and control logic are initialized by an external reset signal; once initialized, this logic
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provides internal and external timing for program and data memory access. This logic supe
loading the Program Counter and storing instructions fetched by the Program Memory Inte
into the Instruction Register. The timing and control logic sequences data transfers to and 
the Data Memory Interface. Under the same control, the ALU performs Arithmetic and Log
operations. The ALU stores status information in the low byte of the Program Status Word
(PSWL). The on-board register file is used for intermediate storage and contains the curren
value of the Stack Pointer (SP). The high byte of the Program Status Word (PSWH) chooses
between a privileged System Mode and a restricted User Mode; controls a Trace Mode use
single-step debugging, chooses the active register bank, and records the priority of the cur
executing process. The System Configuration Register (SCR) is initialized to choose native XA
mode execution or an 80C51 family compatibility mode. The Segment Selection Register (SSL)
controls the use of the Code Segment (CS), Data Segment (DS), and the Extra Segment (ES)
registers. The XA Core architecture supports interfaces to on- and off-chip RAM, ROM/
EPROM, and Special Function Registers (SFRs).

This chapter describes all these core elements in detail.

4.2 Program Status Word
The Program Status Word (PSW) is a two-byte SFR register that is a focal point of XA
operations. The least significant byte contains the CPU status flags, which generally reflec
result of each XA instruction execution. This byte is readable and writable by programs run
in both User and System modes.

The most significant byte ofPSW is written by programs to set important XA operating mode
and parameters: system/user mode, trace mode, register bank select bits, and task execut
priority. PSWH is readable by any process but only the register select bits may be modified
User mode code. All of the flags may be modified by code running in System Mode.

It should be noted that the XA includes a special SFR that mimics the original 80C51 PSW
register. This register, called PSW51, allows complete compatibility with 80C51 code that
manipulates bits in the PSW. See Chapter 9 for details of 80C51 compatibility.

4.2.1   CPU Status Flags

The PSW CPU flags (Figure 4.3) signify Carry, Auxiliary Carry, Overflow, Negative, and Ze
Some instructions affect all these flags, others only some of them, and a few XA instruction
have no effect on the PSW status flags. In general, these flags are read by programs in ord
make logical decisions about program flow. Chapter 6 describes comprehensively how CP

Figure 4.2  XA PSW

PSW Operating Mode Flags

PSWH PSWL

CPU Flags
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3/24/97 4-3 CPU Organization

Status Flags are affected by each instruction type. Consult reference pages in Chapter 6 fo
details about how individual instructions affect the PSW Status Flags.

C, the Carry Flag, generally reflects the results of arithmetic and logical operations. It conta
the carry out of the most significant bit of an arithmetic operation, if any, for the instructions
ADD, ADDC, CMP, CJNE, DA, SUB, and SUBB.The carry flag is also used as an intermed
bit for shift and rotate instructions ASL, ASR, LSR, RLC, and RRC.

The multiply and divide instructions (MUL16, MULU8, MULU16, DIV16, DIV32, DIVU8,
DIVU16, and DIVU32) unconditionally clear the carry flag.

AC, the auxiliary carry flag, is updated to reflect the result of arithmetic instructions ADD,
ADDC, CMP, SUB, and SUBB with the carry out of the least significant nibble of the ALU.
This flag is used primarily to support BCD arithmetic using the decimal adjust instruction (D

V is the overflow flag. It is set by an arithmetic overflow condition during signed arithmetic
using instructions ADD, ADDC, CMP, NEG, SUB, and SUBB.

V is also set when the result of a divide instruction (DIV16, DIV32, DIVU8, DIVU16, DIVU3
exceeds the size of the specified destination register and when a divide-by-zero has occurre
multiply instructions (MUL16, MULU8, MULU16) this flag is set when the result of a multipl
instruction exceeds the source operand size. In this case “overflow” provides an indication 
program that the result is a larger data type than the source, such as a long integer produc
resulting from the multiply of two integers).

N reflects the twos complement sign (the high-order or “negative” bit) of the result of arithm
operations and the value transferred by data moves. This flag is unaffected by PUSH, POP
SEXT, LEA, and XCH instructions.

Z (“zero”) reflects the value of the result of arithmetic operations and the value transferred 
data moves. This flag is set if the result or value is zero, otherwise it is cleared. The flag is
unaffected by PUSH, POP, SEXT, LEA, and XCH instructions.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

Figure 4.3  PSW CPU status flags

PSWL   C  AC ZV N -    -    -
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4.2.2   Operating Mode Flags

The PSW operating mode flags (Figure 4.4) set several aspects of the XA operating mode.
the flags in the upper byte of the PSW (PSWH) except the bits RS1 and RS0 may be modi
only by code running in system mode.

The System Mode bit, SM, when asserted, allows the currently running program full System
Mode access to all XA registers, instructions, and memories. (For example, most of PSWH
only be modified whenSM is asserted.) When this bit is cleared, the XA is running in User
Mode and some privileges are denied to the currently running program.

The Trace Mode bit,TM , when set to 1, enables the built-in XA debugging facilities describe
in section 4.9. WhenTM  is cleared, the XA debugging features are disabled.

The bitsRS1 andRS0 identify one of the four banks of word registers R0 through R3 as the
active register set. The other three banks are not accessible as registers (but also see the
Compatibility Mode description in the System Configuration Register section).

The 4 bitsIM3  throughIM0  (Interrupt Mask bits) identify the execution priority of the current
executing program. The event interrupt controller compares the setting of the IM bits to the
priority of any pending interrupts to decide whether to initiate an interrupt sequence. The va
in the IM bits indicates the lowest priority, or fully interruptible code. The value 15 (or F
hexadecimal) indicates the highest priority, not interruptible by event interrupts. Note that
priority 15 does not inhibit servicing of exception interrupts or NMI.

The value of the IM bits may be written only by code operating in the system mode. Their v
may be read by interrupt handler code to implement software-based interrupt priorities. Note
simply writing a new value to the interrupt mask bits can sometimes cause what is called a
priority inversion, that is, the currently executing code may have a lower priority than previo
interrupted code. The Software Interrupt mechanism is included on some XA derivatives
specifically to avoid priority inversion in complex systems. Refer to the section on Software
Interrupts for details.

4.2.3  Program Writes to PSW

The bytes comprising the PSW, namely PSWH and PSWL, are accessible as SFRs, and th
potential ambiguity when a write to the PSW is performed by an instruction whose executio
also modifies one or more PSW bits. The XA resolves this by giving full precedence to exp
writes to the PSW.

Figure 4.4  PSW operating mode flags

PSWH SM IM3 IM2 IM1 IM0TM RS1 RS0
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For example, executing

MOV.b R0L,#81h

sets PSW bitN to 1, since the byte value transferred is a twos complement negative numbe
However, executing

MOV.b PSWL, #81h

will set PSW bitsC andZ and leave bitN cleared, since the value explicitly written to PSW
takes precedence.

This precedence rule suppressesall PSW flag updates. When a value is written to the PSW, fo
example when executing

OR.b PSWH, #30

the contents of PSWL are unaffected.

4.2.4  PSW Initialization

As described below, at XA reset, the initial PSW value is loaded from the reset vector locat
program memory address 0. Philips recommends that the PSW initialization value in the re
vector setsIM3  throughIM0  to all 1’s so that XA initialization is marked as the highest priorit
process (and therefore cannot be interrupted except by an exception or NMI). At the conclu
of the initialization code, the execution priority is typically reduced, often to 0, to allow all ot
tasks to run. It is also recommended that the reset vector set theSM bit to 1, so that execution
begins in System Mode.

4.3 System Configuration Register
The System Configuration Register (SCR), described in Figure 4.5, sets XA global operating
mode.SCR is intended to be written once during system start-up and left alone thereafter. F
bits are currently defined:

PZ set to 0 (the default) puts the XA in the Large-Memory mode that uses full 24-bit XA
addressing. WhenPZ = 1 the XA uses a small-memory “Page 0” mode that uses 16 bit
addresses. The intent of Page 0 mode is to save stack space and improve interrupt latency
systems with less than 64K bytes of code and data memory. See the following sections for
details.

Figure 4.5  System Configuration Register (SCR)

-        -        -        -      PT1   PT0   CM    PZSCR
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CM chooses between standard “native” mode XA operation and 80C51 compatibility mode
When 80C51 compatibility mode is enabled, two things happen. First, the bottom 32 bytes 
data memory in each data segment are replaced by the four banks of R0 through R3 from 
register file. R0L of bank 0 will appear at data address 0, R0H of bank 0 will appear at data
address 1, etc. Second, the use of R0 and R1 as indirect pointers is altered. To mimic 80C
indirect addressing, indirect references to R0 use the byte R0L (zero extended to 16-bits) a
actual pointer value. References to R1 similarly use the byte R0H (zero extended to 16-bits
the actual pointer value. Note that R0L and R0H on the XA are the same registers as R0 a
on the 80C51. No other XA features are altered or affected by compatibility mode. Operatio
the XA with compatibility mode off (CM = 0) is reflected in descriptions found in the first 8
chapters of this User Guide. Operation with compatibility mode on (CM = 1) is discussed in
Chapter 9.

PT1 andPT0 select a submultiple of the oscillator clock as a Peripheral Timing clock source
particular for timers but possibly for other peripherals in XA derivatives. Here are the value
these bits and the resulting clock frequency:

PT1 PT0 Peripheral Clock

0 0 oscillator/4

0 1 oscillator/16

1 0 oscillator/64

1 1 reserved

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.3.1  XA Large-Memory Model Description

When the default XA operation is chosen via theSCR (CM  = 0 andPZ = 0), all addresses are
maintained by the core as 24 bit values, providing a full 16 MByte address space. On a spe
XA derivative, fewer than 24 bits may be available at the external bus interface. All 24 addr
bits are pushed on the stack during calls and interrupts and 24 bits are popped by RETs an
RETIs.

4.3.2   XA Page 0 Memory Model Description

When XA Page 0 mode is chosen, only 16 address bits are maintained by the XA core. Th
operating mode supports XA applications for which a 64K byte address space is sufficient.
external memory interface port used for the upper 8 address bits, if present, is available for
uses.   A single 16-bit word is pushed on the stack during calls and interrupts and 16 bits a
turn popped by RETs and RETIs. Using Page 0 mode when only a small memory model is
needed saves stack space and speeds up address PUSH and POP operations on the stac
XA User Guide 4-6 3/24/97
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Switching into or out of Page 0 mode after the original initialization is not recommended. Fi
switching into Page 0 mode can only be done by code running on Page 0, since the code a
will be truncated to 16-bits as soon as Page 0 mode takes effect. Instructions already in the
pre-fetch queue would have been fetched prior to Page 0 mode taking effect. Any address
may have been pushed onto the stack previously also become invalid when Page 0 mode 
changed. Thus Page 0 mode could not be changed while in an interrupt service routine, or
subroutine.

4.4 Reset
The term “reset” refers specifically to the hardware input required when power is first applie
the XA device, and generally to the sequence of initialization that follows a hardware reset,
which may occur at any time. The term also refers to the effect of the RESET instruction (s
Chapter 6); in addition, an overflowing Watchdog timer (if this peripheral is present) has an
identical effect.

This section describes the XA reset sequence and its implications for user hardware and
software.

4.4.1  Reset Sequence Overview

A specific hardware reset sequence must be initiated by external hardware when the XA d
is powered-up, before execution of a program may begin. If a proper reset at power up is n
done, the XA may fail wholly or in part. The XA reset sequence includes the following
sequential components:

• Reset signal generated by external hardware
• Internal Reset Sequence occurs
• RST line goes high
• External bus width and memory configuration determined
• Reset exception interrupt generated
• Startup Code executed

Figure 4.6 illustrates this process.

4.4.2  Power-up Reset

This section describes the reset sequence for powering up an XA device.

The XA RST input must be held low for a minimum reset period after Vdd has been applied
the XA device and has stabilized within specifications. The minimum reset period for a typi
system with a reasonably fast power supply ramp-up time is 10 milliseconds. This reset pe
provides sufficient time for the XA oscillator to start and stabilize and for the CPU to detect
reset condition. At this point, the CPU initiates an internal reset sequence.RST must continue to
be low for a sufficient time for the internal reset sequence to complete.
3/24/97 4-7 CPU Organization
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4.4.3  Internal Reset Sequence

The XA internal reset sequence occurs after power-up or any time a sufficiently long reset 
is applied to theRST input while the XA is operating. This sequence requires a minimum of a
microseconds (or 10 clocks, whichever is greater) to complete, andRST must remain low for at
least this long.

The internal reset sequence does the following:
• Writes a 00 to most core and many peripheral SFRs. Other values are written to some 

eral SFRs. Consult the data sheet of a specific device for details.
• SetsCS, DS, andES to 0.
• Sets SSEL = 0, i.e., sets all accesses through DS.
• Sets all registers in the Register File to 0.
• Sets the user and the system stack pointers (USP andSSP) to 0100h.
• Clears SCR bitPZ, i.e., 24-bit memory addresses will be used by default.
• Clears SCR bitCM , i.e., starts execution in XA Native Mode.
• Clears IE bitEA, disabling all maskable interrupts.

Note that the internal reset sequence does not initialize internal or external RAM. Note also
the contents of PSW at this point is not important, as it will immediately be replaced as
described further below.

The effect of the internal reset sequence on components outside the XA core depends on 
peripheral complement and configuration of the specific XA derivative. In general, the inter
reset sequence has the following effects:

• Sets all port pins to inputs (quasi-bidirectional output configuration with port value = FF 
• Clears most SFRs to 0
• Initializes most other SFRs to appropriate non-zero values

Figure 4.6  XA power-up sequence

Vdd
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Note that serial port buffers, PCA capture registers, and WatchDog feed registers (if prese
unaffected. Consult the XA derivative data sheet for more information.

After the XA internal reset sequence has been completed, the device is quiescent until theRST
line goes high.

4.4.4   XA Configuration at Reset

As theRST line goes high, the value on two input pins is sampled to determine the XA mem
and bus configuration. TheEA and BUSW pins (if present on a specific XA derivative) have
special function during the reset sequence, to allow external hardware to determine the us
internal or external program memory, and to select the default external bus width.

Immediately after theRST line goes high, the CPU triggers a reset exception interrupt, as
described in the next section.

Selecting Internal or External Program Memory
The XA is capable of reading instructions from internal or external memory, both of which m
be present. The XAEA input pin determines whether internal or external program memory w
be used. TheEA pin is sampled on the rising edge of theRST pulse. IfEA = 0, the XA will
operate out of external program memory, otherwise it will use internal code memory. The
selection of external or internal code memory is fixed until the next timeRST is asserted and
released; until then all code fetches will access the selected code memory.

The XA cannot detect inconsistencies between the setting detected on theEA input and the
hardware memory configuration. For example, settingEA = 1 on a ROMless XA variant will
cause the XA to attempt to execute internal code memory, which is undefined on a ROMle
device, typically resulting in a system failure.

Selecting External Bus Width
The XA is capable of accessing an 8 or 16 bit external data bus. The BUSW pin tells the X
external data bus configuration. BUSW=0 selects an 8-bit bus and BUSW=1 selects an 16
bus. On power-up, the XA defaults to the 16-bit bus (due to an on-chip weak pull-up on BUS
The BUSW pin is sampled on the rising edge of theRST pulse. If BUSW is low, the XA
operates its external bus interface in 8 bit mode, otherwise, the XA uses 16 bit bus operation
bus width may also be set under software control on derivatives equipped with theBCR (“Bus
Configuration Register”) SFR.

After RST is released, the BUSW pin may be used an alternate function on some XA deriva
Consult derivative data sheets for exact pinouts and details of how pins such as these may
shared to keep package size small.
3/24/97 4-9 CPU Organization
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4.4.5  The Reset Exception Interrupt

Immediately after theRST line goes high, the CPU generates a Reset Exception Interrupt. A
result, the initial PSW and address of the first instruction (the “start-up code”) is fetched from
reset vector in code memory at location 0. Here’s an example in generalized assembler for
the setup for the Reset Exception:

code_seg ; establish code segment
org 0h ; start at address 0

; reset_vector
dw initial_PSW ; define a word constant
dw startup_code ; define a word constant

org 120h ; move to address 120h
; (above vector table)

startup_code:
... ; put startup code here

The initial value ofPSWL set in the Reset Vector is generally of no special system-wide
importance and may be set to zero or some other value to meet special needs of the XA
application.  The  initialPSWH value sets the stage for  system software initialization and its
value requires more attention.   Here’s an example set of declarations that create the
recommended initial value ofPSWH:

system_mode equ 8000h
max_priority equ 0F00h
initial_PSW equ system_mode + max_priority

It is generally appropriate to initialize the XA in System Mode so that the start-up code has
unrestricted access to the entire architecture. This is done by using a initial value that sets 
PSWH bitSM.

Philips recommends initializing the execution priority of the start-up code to the highest pos
value of 15 (that is, IM0 through IM3 to all ones) so that the start-up code is recognizable a
highest priority process.   As described above, the hardware initialization sequence turns o
possible interrupts, so the only potential interrupting process would arise from a non-maska
interrupt (NMI). It is generally a good idea to prevent NMI generation with a hardware lock-
until XA start-up procedures are completed.

ThePSWH initialization value given in this example sets System Mode (SM), selects register
bank 0 (any register bank could be used) and clearsTM  so that Trace Mode is inactive.
XA User Guide 4-10 3/24/97
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4.4.6  Startup Code

Philips recommends that the first instruction of start-up code set the value of the System
Configuration Register (SCR), described in section 4.3, to reflect the system architecture.

The next recommended step is explicitly initializing the stack pointers. The default values
(section 4.7) are usually insufficient for application needs.

The start-up code sequence may be concluded by a simple branch or jump to application c
RETI may not be used at the conclusion of a Reset Exception Interrupt handler (which caus
start-up code to run) because a reset initializes the SP and does not leave an interrupt stac
frame.

4.4.7   Reset Interactions with XA Subsystems

The following describes how the reset process interacts with some key subsystems:

• Trace Exception. The trace exception is aborted by an external reset; see section 4.9.
• WatchDog. In XA derivatives equipped with a WatchDog timer feature, an internal reset

be asserted for a derivative-defined number of clocks.
• Resets while in Idle Mode or during normal code execution. Since the XA oscillator is ru

ning in Idle Mode, theRST input must be kept low for only 10 microseconds (or 10 clocks
whichever is greater) to achieve a complete reset.

• Resets while in Power-Down Mode. The XA oscillator is stopped in Power-Down mode,
theRST input must be low for at least 10 milliseconds. An exception to this is when an e
nal oscillator is used and the XA is in Power-Down mode. In this case, if the external os
tor is running, a reset during Power-Down mode may be the same as a reset in Idle Mo

4.4.8   An External Reset Circuit

TheRST pin is a high-impedance Schmitt trigger input pin. For applications that have no sp
start-up requirements, it is practical to generate a reset period known to be much longer th
required by the power supply rise time and by the XA under all foreseeable conditions. One
simple way to build a reset circuit is illustrated in Figure 4.7.

Figure 4.7  An external reset circuit

Vdd

C

R

RST XA

Some typical values for R and C:

          R = 100K, C = 1.0µF

          R = 1M, C = 0.1µF

(assuming that the Vdd rise time is
1 millisecond or less)
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4.5 Oscillator
The XA contains an on-chip oscillator which may be used as the clock source for the XA C
or an external clock source may be used. A quartz crystal or ceramic resonator may be con
as shown in Figure 4.8a to use the internal oscillator. To use an external clock, connect the
source to pin XTAL1 and leave pin XTAL2 open, as shown in Figure 4.8b.

The on-chip oscillator of the XA consists of a single stage linear inverter intended for use a
positive reactance oscillator. In this application, the crystal is operated in its fundamental
response mode as an inductive reactance in parallel resonance with capacitance external 
crystal.

A quartz crystal or ceramic resonator is connected between the XTAL1 and XTAL2 pins,
capacitors ar connected from both pins to ground. In the case of a quartz crystal, a parallel
resonant crystal must be used in order to obtain reliable operation. The capacitor values us
the oscillator circuit should normally be those recommended by the crystal or resonator
manufacturer. For crystals, the values may generally be from 18 to 24 pF for frequencies a
25 MHz and 28 to 34 pF for lower frequencies. Too large or too small capacitor values may
prevent oscillator start-up or adversely affect oscillator start-up time.

4.6 Power Control
The XA CPU implements two modes of reduced power consumption: Idle mode, for moder
power savings, and Power-Down mode. Power-Down reduces XA consumption to a bare
minimum. These modes are initiated by writing SFRPCON, as illustrated in Figure 4.9.

Idle Mode is activated by setting the PCON bitIDL . This stops CPU execution while leaving the
oscillator and some peripherals running.

Figure 4.8  XA clock sources

Figure 4.9  PCON

XA

XTAL2

a) using the on-chip oscillator

XA

XTAL2

b) using an external clock

nc

XTAL1
XTAL1

C1

C2

-        -        -        -         -      -       PD     IDLPCON
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Power-Down mode is activated set by setting the PCON bitPD. This shuts down the XA
entirely, stopping the oscillator.

The reset values ofIDL  andPD are 0. If a 1 is written to both bits simultaneously,PD takes
precedence and the XA goes into Power-Down mode.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are g
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.6.1  Idle Mode

Idle mode stops program execution while leaving the oscillator and selected peripherals ac
This greatly reduces XA power consumption. Those peripheral functions may cause interrup
the interrupt is enabled) that will cause the processor to resume execution where it was sto

In the Idle mode, the port pins retains their logical states from their pre-idle mode. Any port
that may have been acting as a portion of the external bus revert to the port latch and
configuration value (normally push-pull outputs with data equal to 1 for bus related pins). A
andPSEN are held in their respective non-asserted states. When Idle is exited normally (vi
active interrupt), port values and configurations will remain in their original state.

4.6.2  Power-Down Mode

Power-Down mode stops program execution and shuts down the on-chip oscillator. This sto
XA activity. The contents of internal registers, SFRs and internal RAM are preserved. Furth
power savings may be gained by reducing XA Vdd to the RAM retention voltage in Power
Down mode; see the device data sheet for the applicable Vdd value. The processor may b
activated by the assertion ofRST or by assertion of one of an external interrupt, if enabled.
When the processor is re-activated, the oscillator will be restarted and program execution w
resume where it left off.

In Power-Down mode, the ALE andPSEN outputs are held in their respective non-asserted
states. The port pins output the values held by their respective SFRs. Thus, port pins that a
configured to be part of an external bus retain their state. Any port pins that may have been
acting as a portion of the external bus revert to the port latch and configuration value (norm
push-pull outputs with data equal to 1 for bus related pins). If Power-Down mode is exited 
Reset, all port values and configurations will be set to the default Reset state.

In order to use an external interrupt to re-activate the XA while in Power-Down mode, the
external interrupt must be enabled and be configured to level sensitive mode. When Powe
Down mode is exited via an external interrupt, port values and configurations will remain in t
original state. Since the XA oscillator is stopped when the XA leaves Power-Down mode vi
interrupt, time must be allowed for the oscillator to re-start. Rather than force the external l
asserting the interrupt to remain active during the oscillator start-up time, the XA implemen
own timer to insure proper wake-up. This timer counts 9,892 oscillator clocks before allowi
the XA to resume program execution, thus insuring that the oscillator is running and stable
3/24/97 4-13 CPU Organization
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that time. Once the oscillator counter times out, the XA will execute the interrupt that woke it
if that interrupt is of a higher priority than the currently executing code.

Note that if an external oscillator is used, power supply current reduction in the Power-Dow
mode is reduced from what would be obtained when using the XA on-chip oscillator. In this
case, full power savings may be gained by turning off the external clock source or stopping
from reaching the XTAL1 pin of the XA. If the clock source may be turned off, it may be
advantageous to use Idle mode rather than Power-Down mode, to allow more ways of
terminating the power reduction mode and to avoid the 9,892 clock waiting period for exitin
Power-Down mode.

4.7 XA Stacks
The XA stacks are word-aligned LIFO data structures that grow downward in data memory
from high to low address. This and some other details of the XA stack implementation diffe
from 80C51 stack operation. Refer to the chapter on 8051 compatibility for a detailed discu
of this topic.

The XA implements two distinct stacks, one for User Mode and one for System Mode. The
Stack may be placed anywhere in data memory, while the System Stack must be located i
first 64K bytes, i.e., segment 0.

4.7.1  The Stack Pointers

The XA has two stacks, the system stack and the user stack. Each stack has an associate
pointer, the System Stack Pointer (SSP) and the User Stack Pointer (USP), respectively. O
one of these stacks is active at a given time. The current stack pointer at any instant (which
be the SSP or the USP) appears as word register SP (R7) in the register file; the other stac
pointer will not be visible. The value of the PSW bitSM determines which stack is active (and
whose stack pointer therefore appears as R7). In User Mode (SM = 0), SP (R7) contains the User
Stack Pointer. In System Mode (SM =1), SP (R7) contains the System Stack Pointer. The XA
automatically switches SSP and USP values when the operating mode is changed. Note th
terms “USP” and “SSP” are logical terms, denoting the value of SP (R7) in each mode.

Segments and Protection
The User stack is always addressed relative to the current data segment (DS) value. This i
consistent with each user task being associated with a specific data segment. Moreover, c
running in User Mode cannot modifyDS, so there is no possibility of changing the segment in
which the stack resides within the User context. The System Stack must always be located
segment 0, that is, the first 64K of data memory.

4.7.2   PUSH and POP

The PUSH operation is illustrated by Figure 4.10. The stack pointer always points to an ex
data item at the top of the stack, and is decremented by 2 prior to writing data.
XA User Guide 4-14 3/24/97
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The POP operation copies the data at the top of the stack and then adds two to the stack p
as follows shown in Figure 4.11.

All stack pushes and pops occur in word multiples. If a byte quantity is pushed on the stack
stored as the least significant byte of a word and the high byte is left unwritten;
see Figure 4.12. A POP to a byte register removes a word from the stack and the byte regi
receives the least significant 8 bits of the word, as shown in Figure 4.13.

Figure 4.10   PUSH operation

Figure 4.11  POP operation

Figure 4.12  POP a byte

before after

SP

12 SP

MOV  R0,#1234h
PUSH R0

34(empty)

(empty)
(empty)

(empty)
(empty)

2n + 6 existing data existing data

2n + 4

2n + 2

....

2n + 6

2n + 4
2n + 2

....

before after

AA
SP

POP R1

55

(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

AA SP55
(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

R1 = AA55h

before after

AA

SP

POP   R1H

55
(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

AA SP55

(empty)
(empty)

2n + 6

2n + 4
2n + 2

....

R1 = 5569h

MOV R1,#6869h
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The stack should always be word-aligned. If the SP (R7) is modified to an odd value, the
offending LSB of the stack pointer is ignored and the word at the next-lower even address 
accessed.

Note that neither PUSH or POP operations have any effect on the PSW flags.

4.7.3  Stack-Based Addressing

Stack-based data addressing is fully supported by the XA. R0 through R7 may be used in a
indexed address modes; the stack pointer in R7 is equally valid as an index.
Figure 4.14 illustrates an example of stack-based addressing. The segment used for stack r
addressing is always the same as for other stack operations (Segment 0 for System mode
and DS for User mode code).

Note that the precautions mentioned in section 3.3.4 apply here: when referencing a word
quantity, the final (effective) address must be even, otherwise incorrect data will be access
This topic is discussed further in the section Stack Pointer Misalignment.

4.7.4  Stack Errors

Special attention is required to avoid problems due to stack overflow, stack underflow, and
pointer misalignment

Stack Overflow
Stack overflow occurs when too many items are pushed, either explicitly or as the result of
interrupts. As items are pushed on to the stack, it may grow downward past the memory
allocated to it. It is not always possible for programs to detect stack overflow, so the XA trig
a Stack Overflow Exception Interrupt whenever the value of thecurrent stack pointer (SSP or
USP) decrements from 80h to 7Eh (simply setting SP to a value lower than 80h would NOT
cause a stack overflow). This value was chosen so that stack space sufficient to handle a s
overflow exception interrupt is always guaranteed, as follows:

The 80h limit leaves 64 bytes available for stack overflow processing. A worst case might b
occurs when the Stack Pointer is at 80h and a program executes an 8 word push; this gen
stack overflow. If an NMI occurs at the same time, 3 additional words are pushed. The bala

Figure 4.13  PUSH a byte

before after

SP
00 SP

MOV  R0,#9876h
PUSH R0H

98(empty)

(empty)
(empty)

(empty)
(empty)

2n + 6 existing data existing data

2n + 4

2n + 2

....

2n + 6

2n + 4
2n + 2

....
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of the 64 bytes on the stack is available for handler processing, which should carefully limit
further use of the stack.

Stack Underflow
Stack underflow occurs when too many items are popped and the stack pointer value beco
greater than its initial value, i.e., the stack top. The XA does not support stack underflow
detection.

Stack Pointer Misalignment
Pointer misalignment occurs when a pointer contains an odd value and is used by an instru
to access a word value in memory. The same situation could occur if some program action f
the stack pointer to an odd value. In these cases, the XA ignores the bottom bit of the pointe
continues with a word memory access.

4.7.5  Stack Initialization

At power-on reset,both USP and SSP in all XA derivatives are initialized to 100h. Since SP i
pre-decremented, the first PUSH operation will store a word at location FEh and the stack 
grow downwards from there.

Figure 4.14  Stack-based addressing

MOV     Rn, [R7+offset]
MOV     [R7+offset], Rn

DS

SP (R7)

8-bit segment
identifier

16-bit pointer

0

1

SM bit in PSW

complete 24-bit
memory address

00h

[SP+2]
[SP+4]
[SP+6]
[SP+8]

[SP+0]

Data Memory

8 or 16-bit offset
(from instruction)

+

16 bits8 bits
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These default stack pointer start-up values overlap the System and User stacks and are app
only when one of these stacks will never be used.

Since the System stack is used for all exception and interrupt processing, this may not be
appropriate in all XA applications. The startup code should normally set new and different
values of both USP and SSP.

4.8  XA Interrupts
The XA architecture defines four kinds of interrupts. These are listed below in order of intrin
priority:

• Exception Interrupts
• Event Interrupts
• Software Interrupts
• Trap Interrupts

Exception interrupts reflect system events of overriding importance. Examples are stack
overflow, divide-by-zero, and Non-Maskable Interrupt. Exceptions are always processed
immediately as they occur, regardless of the priority of currently executing code.

Event interrupts reflect less critical hardware events, such as a UART needing service or a
overflow. Event interrupts may be associated with some on-chip device or an external inter
input. Event interrupts are processed only when their priority is higher than that of currently
executing code. Event interrupt priorities are settable by software.

Software interrupts are an extension of event interrupts, but are caused by software setting
request bit in an SFR. Software interrupts are also processed only when their priority is hig
than that of currently executing code. Software interrupt priorities are fixed at levels from 1
through 7.

Trap interrupts are processed as part of the execution of a TRAP instruction. So, the interr
vector is always taken when the instruction is executed.

All forms of interrupts trigger the same sequence:   First, astack frame containing the address of
the next instruction and then the current value of the PSW is pushed on the System Stack.
vector containing a new PSW value and a new execution address is fetched from code me
The new PSW value entirely replaces the old, and execution continues at the new address
the specific interrupt handler.

The new PSW value may include a new setting of PSW bitSM, allowing handler routines to be
executed in System or User mode, and a new value of PSW bitsIM3 throughIM0 , reflecting the
executionpriority of the new task. These capabilities are basic to multi-tasking support on th
XA. See Chapter 5 for more details.
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Returns from all interrupts should in most cases be accomplished by the RETI instruction, 
pops the System Stack and continues execution with the restored PSW context. Since RET
executed while in User Mode will result in an exception trap, as described further below,
interrupt service routines will normally be executed in System Mode.

The XA architecture contains sophisticated mechanisms for deciding when and if an interru
sequence actually occurs. As described below, Exception Interrupts are always serviced a
as they are triggered. Event Interrupts are deferred until their execution priority is higher th
that of the currently executing code. For both exception and event interrupts, there is a
systematic way of handling multiple simultaneous interrupts. Software and trap interrupts o
only when program instructions generating them are executed so there is no need for conf
resolution.

The Non-Maskable Interrupt requires special consideration. It is generated outside the XA 
and in that respect is an event interrupt. However, it shares many characteristics of except
interrupts, since it is not maskable. Note that NMI, while part of the XA CPU core, may not
always be connected to a pin or other event source on all XA derivatives.

4.8.1  Interrupt Type Detailed Descriptions

This section describes the four kinds of interrupts in detail.

Exception Interrupts
Exception interrupts reflect events of overriding importance and are always serviced when 
occur. Exceptions currently defined in the XA core include: Reset, Breakpoint, Divide-by-0,
Stack overflow, Return from Interrupt (RETI) executed in User Mode, and Trace. Nine
additional exception interrupts are reserved. NMI is listed in the table of exception interrupt
(Table 4.1) below because NMI is handled by the XA core in same manner as exceptions, 
factors into the precedence order of exception processing.

Since exception interrupts are by definition not maskable, they must always be serviced
immediately regardless of the priority level of currently executing code, as defined by the IM
in the PSW. In the unusual case that more than one exception is triggered at the same tim
is a hard-wiredservice precedenceranking. This determines which exception vector is taken fir
if multiple exceptions occur. In these cases, the exception vector takenlast may be considered
the highest priority, since its code will execute first. Of course, being non-maskable, any
exception occurring during execution of the ISR for another exception will still be serviced
immediately.

Programmers should be aware of the following when writing exception handlers:

1. Since another exception could interrupt a stack overflow exception handler routine, care
should be taken in all exception handler code to minimize the possibility of a destructive sta
overflow. Remember that stack overflow exceptions only occur once as the stack crosses t
bottom address limit, 80h.
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2. The breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint 
emulation system) and Trace exceptions are intended to be mutually exclusive. In both cas
handler code will want to know the address in user code where the exception occurred. If a
breakpoint occurs during trace mode, or if trace mode is activated during execution of the
breakpoint handler code, one of the handlers will see a return address on the stack that po
within the other handler code.

Event Interrupts
Event Interrupts are typically related to on-chip or off-chip peripheral devices and so occur
asynchronously with respect to XA core activities. The XA core contains no inherent event
interrupt sources, so event interrupts are handled by an interrupt control unit that resides o
but outside of the processor core.

On typical XA derivatives, event interrupts will arise from on-chip peripherals and from eve
detected on interrupt input pins. Event interrupts may be globally disabled via theEA bit in the
Interrupt Enable register (IE) and individually masked by specific bits the IE register or its
extension. When an event interrupt for a peripheral device is disabled but the peripheral is 
turned off, the peripheral interrupt flag can still be set by the peripheral and an interrupt wil
occur if the peripheral is re-enabled. An event interrupt that is enabled is serviced when its
priority is higher than that of the currently executing code. Each event interrupt is assigned
priority level in the Interrupt Priority register(s). If more than one event interrupt occurs at th
same time, the priority setting will determine which one is serviced first. If more than one
interrupt is pending at the same level priority, a hardwares precedence scheme is used to 
the first to service. The XA architecture defines 15 interrupt occurrence priorities that may b
programmed into the Interrupt Priority registers for Event Interrupts. Note that some XA
implementations may not support all 15 levels of occurrence priority. Consult the data sheet
specific XA derivative for details.

Table 4.1: Exception interrupts, vectors, and precedence

Exception Interrupt Vector Address Service Precedence

Breakpoint 0004h:0007h 0

Trace 0008h:000Bh 1

Stack Overflow 000Ch:000Fh 2

Divide-by-zero 0010h:0013h 3

User RETI 0014h:0017h 4

<reserved> 0018h - 003Fh 5

NMI 009Ch:009Fh 6

Reset 0000h:0003h 7
(always serviced

immediately, aborts
other exceptions)
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Note that, like all other forms of interrupts, the PSW (including the Interrupt Mask bits) is loa
from the interrupt vector table when an event interrupt is serviced. Thus, the priority at which
interrupt service routine executes could be different than the priority at which the interrupt
occurred (since that was determined not by the PSW image in the vector table, but by the
Interrupt Priority register setting for that interrupt). Normally, it is advisable to set the execu
priority in the interrupt vector to be the same as the Interrupt Priority register setting that wi
used in the program.

Furthermore, the occurrence priority of an interrupt should never be set higher than the exec
priority. This could lead to infinite interrupt nesting where the interrupt service routine is re-
interrupted immediately upon entry by the same interrupt source.

Software Interrupts
Software Interrupts act just like event interrupts, except that they are caused by software wr
to an interrupt request bit in an SFR. The standard implementation of the software interrup
mechanism provides 7 interrupts which are associated with 2 Special Function Registers. O
SFR, the software interrupt request register (SWR), contains 7 request bits: one for each so
interrupt. The second SFR is an enable register (SWE), containing one enable bit matching
software interrupt request bit.

Software interrupts are initiated by setting one of the request bits in the SWR register. If the
corresponding enable bit in the SWE register is also set, the software interrupt will occur w
becomes the highest priority pending interrupt and its priority is higher than the current
execution level. The software interrupt request bit in SWR must be cleared by software prio
returning from the software interrupt service routine.

Software interrupts have fixed interrupt priorities, one each at priorities 1 through 7. These 
shown in Table 4.2 below. Software Interrupts are defined outside the XA core and may no
present on all XA derivatives; consult the specific XA derivative data sheet for details.

The primary purpose of the software interrupt mechanism is to provide an organized way in
which portions of event interrupt routines may be executed at a lower priority level than the

Table 4.2: Software interrupts, vectors, and fixed priorities

Software Interrupt Vector Address Fixed Priority

SWI1 0100h:0103h 1

SWI2 0104h:0107h 2

SWI3 0108h:010Bh 3

SWI4 010Ch:010Fh 4

SWI5 0110h:0113h 5

SWI6 0114h:0117h 6

SWI7 0118h:011Bh 7
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at which the service routine began. An example of this would be an event Interrupt Service
Routine that has been given a very high priority in order to respond quickly to some critical
external event. This ISR has a relatively small portion of code that must be executed
immediately, and a larger portion of follow-up or “clean-up” code which does not need to be
completed right away. Overall system performance may be improved if the lower priority por
of the ISR is actually executed at a lower priority level, allowing other more important interr
to be serviced.

If the high priority ISR simply lowers its execution priority at the point where it enters the
follow-up code, by writing a lower value to the IM bits in the PSW, a situation called “priorit
inversion” could occur. Priority inversion describes a case where code at a lower priority is
executing while a higher priority routine is kept waiting. An example of how this could occu
writing to the IM bits follows, and is illustrated in Figure 4.15.

Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at le
This is again interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical
portion of its code and wants to lower the priority of the remainder of its code (the non-time
critical portion) in order to allow more important interrupts to occur. So, it writes to the IM b
setting the execution priority to 5. The ISR continues executing at level 5 until a level 8 eve
interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which a
runs to completion. When the level 5 ISR returns, the previously interrupted level 10 ISR is
activated and eventually competes.

It can be seen in this example that lower priority ISR code executed and completed while h
priority code was kept waiting on the stack. This is priority inversion.

In those cases where it is desirable to alter the priority level of part of an ISR, a software
interrupt may be used to accomplish this without risk of priority inversion. The ISR must firs

Figure 4.15  Example of priority inversion (see text)
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split into 2 pieces: the high priority portion, and the lower priority portion. The high priority
portion remains associated with the original interrupt vector. The lower priority portion is
associated with the interrupt vector for software interrupt 5. At the completion of the high
priority portion of the ISR, the code sets the request bit for software interrupt 5, then return
remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becom
the highest priority pending interrupt.

The diagram in Figure 4.16 shows the same sequence of events as in the example of prior
inversion, except using software interrupt 5 as just described. Note that the code now exec
the correct order (higher priority first).

Trap Interrupts
Trap Interrupts are generated by the TRAP instruction. TRAP 0 through TRAP 15 are defin
and may be used as required by applications. Trap Interrupts are intended to support appli
specific requirements, as a convenient mechanism to enter globally used routines, and to a
transitions between user mode and system mode. A trap interrupt will occur if and only if th
instruction is executed, so there is no need for a precedence scheme with respect to simul
traps.

The effect of a TRAP is immediate, the corresponding TRAP service routine is entered upo
completion of the TRAP instruction.

See Chapter 6 for a detailed description of the TRAP instruction.

4.8.2  Interrupt Service Data Elements

There are two data elements associated with XA interrupts. The first is the stack frame cre
when each interrupt is serviced. The second is the interrupt vector table located at the beg

Figure 4.16  Example use of software interrupt (see text)
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of code memory. Understanding the structure and contents of each is essential to the
understanding of how XA interrupts are processed.

Interrupt Stack Frame
A stack frame is generated, always on the System Stack, for each XA interrupt. With one
exception, the stack frame is stored for the duration of interrupt service and used to return 
restore the CPU state of the interrupted code. (The exception is an Exception Interrupt trig
by a Reset event. Since Reset re-initializes the stack pointers, no stack frame is preserved
section 4.4 for details.) The stack frame in the native 24-bit XA operating mode is illustrate
Figure 4.17. Three words are stored on the stack in this case. The first word pushed is the 
order 16 bits of the current PC, i.e., the address of the next instruction to be executed. The
word contains the high-order byte of the current PC. A zero byte is used as a pad. In sum, 
complete 24-bit address is stored in the stack frame. The third word contains a copy of the
at the instant the interrupt was serviced.

When the XA is operating in Page 0 Mode (SCR bitPZ = 1) the stack frame is smaller because
in this mode, only 16 address bits are used throughout the XA. The stack frame in Page 0 
is illustrated in Figure 4.18. Obviously it is very important that stack frames of both sizes no
mixed; this is one reason for the admonition in section 4.3 to set the System Configuration
Register once during XA initialization and leave it unchanged thereafter.

Figure 4.17  Interrupt stack frame (non- page zero mode)

Figure 4.18  Interrupt stack frame (page 0 mode)
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Interrupt Vector Table
The XA uses the first 284 bytes of code memory (addresses 0 through 11B hex) for an inte
vector table. The table may contain up to 71 double-word entries, each corresponding to a
particular interrupt event.

The double-word entries each consist of a 16 bit address of an interrupt service routine add
and a 16 bit PSW replacement value. Because vector addresses are 16-bit, the first instruc
service routines must be located in the first 64K bytes of XA memory. The first instruction o
service routines must be word-aligned. Key elements of the replacement PSW value are th
choice of System or User mode for the service routine, the Register Bank selection, and an
Execution Priority setting. For more details on PSW elements, see section 4.2.2.

The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrup
vectors. The second 16 vectors are reserved for Trap Interrupts. The following 32 vectors i
table are reserved for Event Interrupts. The final 7 vectors are used for Software Interrupts
Figure 4.19 illustrates the XA vector table and the structure of each component vector. Of t
vectors assigned to Exceptions, 6 are assigned to events specific to the XA CPU and 10 a
reserved. All 16 Trap Interrupts may be used freely. Assignments of Event Interrupt vectors
derivative-independent and vary with the peripheral device complement and pinout of each
derivative.

Unused interrupt vectors should normally be set to point to a dummy service routine. The
dummy service routine should clear the interrupt flag (if it is not self-clearing) and execute 
RETI to return to the user program. This is especially true of the exception interrupts and N
since these could conceivably occur in a system where the designer did not expect them. I
vectors are routed to a dummy service routine, the system can essentially ignore the unexp
exception or interrupt condition and continue operation.

Note that when using some hardware development tools, it may be preferable not to initiali
unused vector locations, allowing the development tool to flag unexpected occurrences of 
conditions.

4.9 Trace Mode Debugging
The XA has an optional Trace Mode in which a special trace exception is generated at the
conclusion of each instruction. Trace Mode supports user-supplied debugger/monitor prog
which can single-step through any code, even code in ROM.

4.9.1  Trace Mode Operation

Trace Mode is initiated by assertingPSW.TM in the context of the program to be traced.

Using Trace Mode requires a detailed understanding of the XA instruction execution seque
because when and if a trace exception occurs depends on events within the execution seq
of a single instruction. Figure 4.20 illustrates the XA instruction sequence in overview.
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A detailed model of this sequence is shown in Figure 4.21: First, at the beginning of the
instruction cycle, the state of the TM flag is latched. Next, the instruction is checked to see if
valid; undefined instructions or disallowed operations (like a write through ES in User Mode)
simply not executed, and there is no chance for a trace to occur. The sequence then check
instructions illegal in the current context (currently only an IRET while in User Mode is detec
here) and services an exception if one is found. If, and only if, none of these special condit
occur, the instruction is actually executed. Just after execution, if the Trace Mode bit had b
latched TRUE at the beginning of the instruction cycle, the Trace is serviced. Finally, the cy
checks for a pending interrupt and performs interrupt service if one is found
Note that an external reset may occur at any point during the cycle illustrated in Figure 4.2
This will abort processing when it occurs.

Figure 4.19  Interrupt vectors

Figure 4.20  XA Instruction Sequence Overview
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One consequence of this sequence is that the instruction that sets TM = 1 cannot generate
Trace, since TM is not latched when the instruction is actually executed. Another conseque
that an instruction that generates an exception will never be traced. Finally if an event inter
occurs during an instruction clock when the instruction being executed is a TRAP, the TRA
will be executed, then the trace service, and finally the interrupt will be serviced.

4.9.2  Trace Mode Initialization and Deactivation

SincePSW.TM is in the protected portion of the PSW (i.e., in PSWH), only code executing 
System Mode can initiate or turn off Trace Mode. In practice, this may be done by invoking
trap whose replacement PSW clears this bit, or by executing a RETI instruction with a synt
Exception/Interrupt stack frame explicitly pushed on the top of the System Stack, as follow

Tracing will continue until the PSW bitTM  is cleared. This may be done by the trace service
routine by examining the stack frame at the top of the system stack and clearing the TM bi
to returning to the currently traced process. A similar method may be used to initiate trace 
Note that stack frames generated by exception interrupts are always placed on the System
It is probably a good idea for the trace service routine to verify that the item in the stack fra
consistent with the traced process before modifying the TM bit.

Figure 4.21  Instruction Execution Clock Detail
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5   Real-time Multi-tasking

Multi-taskingas the name suggests, allows tasks, which are pieces of code that do specific d
to run in an apparently concurrent manner. This means that tasks will seem to all run at the
time, doing many specific jobs simultaneously.

High end applications (like automotive) require instantaneous responses when dealing with
speed events, such as engine management, traction control and adaptive braking system (
and hence there is a trend towards multi-tasking in a wide variety of high performance embe
control applications.

Real-time application programs are often comprised of multiple tasks. Each task manages 
specific facet of application program. Building a real-time application from individual tasks
allows subdividing a complicated application program into independent and manageable
modules. Each task shares the processor with other tasks in the application program accor
an assigned priority level.

In real-time multi-tasking, the main concern is thesystem overhead. Switching tasks involve
moving lots of data of the terminated and initiated tasks, and extensive book-keeping to be
to restore dormant tasks when required. Thus it is extremely crucial to minimize the system
overhead as much as possible. In some cases, some of the tasks may be associated with 
response, which further complicates the requirements from the system.

The following section analyzes the requirements and the XA suitability to these application

5.1  Multi-tasking Support in XA
The XA has numerous provisions to support multi-tasking systems. The architecture provid
direct support for the concept of a multi-tasking OS by providing two (System/User) privileg
levels for isolation between tasks. High performance, interrupt driven, multi-tasking applica
systems requiring protection are feasible with the XA.

The XA architecture offers the following features which will appeal to multi-tasking
implementations.

5.1.1  Dual stack approach

 The architecture defines a System Stack Pointer (SSP) as well as an User Stack Pointer (
The dual stack feature supports fast task switching, and ease the creation of a multi-taskin
monitor kernel. The separation of the two offers a reduction is storing and retrieving stack
pointers or using a single stack, when switching to the kernel and back to an application. It
serves to speed up interrupt processing in large systems with external data memory. User 
can be allocated in the slower external memory, while system memory is in internal SRAM
allowing for fast interrupt latency in this environment. The dual stack approach also adds th
benefit of a better potential to recover from an ill-behaved task, since the system stack is s
intact when an error is sensed.
3/24/97 5-1 Multi-tasking
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5.1.2  Register Banks

The XA also supports 4 banks of 8 byte/4 word registers, in addition to 12 shared registers
some applications, the register banks can be designated statically to tasks, cutting significa
on the overhead for saving and restoring registers on context switching.

5.1.3  Interrupt Latency and Overhead

Interrupt latency is extremely critical in a multitasking environment. For a real-time multitask
environment, a fast interrupt response is crucial for switching between tasks. The XA is des
to provide such fast task switching environment through improved interrupt latency time.

The interrupt service mechanism saves the PC (1 or 2 words, depending on the Page0 mo
PZ) and the PSW (1 word) on the stack. The interrupt stack normally resides in the interna
memory, and interrupt call including saving of three words takes 23 clocks. Prefetching the
service routine takes 3 additional clocks.

When interrupt or an exception/trap occurs, the current instruction in progress always gets
executed prior servicing the interrupt. This present an overhead, while increasing the effec
interrupt latency, since the event that interrupted the machine cannot be dealt with before t
book-keeping is completed. In XA, the longest uninterrupted instruction is the signed 32x16
Divide, which takes 24 clocks.

This puts the worst case interrupt latency at [24 + 23 + 3] = 50 clocks (3.125 microseconds
16.0 MHz, 2.5 microseconds at 20.0 MHz, and 1.67 microseconds at 30.0 MHz). Saving the
of the lower registers can be done by simply switching the register bank.

In the general case, up to 16 registers would be saved on the stack, which takes 32 clocks
total latency+overhead at start of an interrupt is a maximum of 68 clocks (4.25 microsecon
16 MHz, 3.4 at 20 MHz and 2.27 at 30 MHz). This allows for extremely fast context switchi
for multitasking environments.

5.1.4  Protection

The issue is mentioned here simply to clarify what is and what is not supported by the XA
architecture. Dual stack pointer and minor privileges to what looks like a supervisor mode d
mean full protection. It is assumed that code in a microcontroller does not require guarding
intentional system break-in by a lower privilege task. A table of the protected features in XA
given below. Note that features marked “disallowed” are simply not completed if attempted
the User mode. There are no exceptions or flags associated with these occurrences.
XA User Guide 5-2 3/24/97
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Protected Features in the XA

Table 5.1:  Segment and Stack Register Protection

Note 1: The MSB of SSEL (bit 7) selects whether write through ES is allowed in User mode
However, this bit is accessible only in System mode.

Table 5.2: PSW bit protection

In addition to the above, the System Stack is protected from corruption by User Mode exec
of the RETI instruction. If User Mode code attempts to execute that instruction, it causes an
exception interrupt. If it is necessary to run TRAP routines, for instance, in User Mode, the 
RETI exception handler can perform the return for the User Mode code. To accomplish this
User RETI exception handler may pop the topmost return address from the stack (2 or 3 w
depending on whether the XA is in Page Zero mode) and then execute the RETI.

Protection Via Data Memory Segmentation
In User/Application mode, each task is protected from all others via the separation of data s
(unless explicit sharing is planned in advance). If the address spaces of two tasks include n
shared data, one task cannot affect the data of another, but it can read any data in the full 

space. Code sharing is always safe since code memory may never be written1. An application
mode program is prohibited from writing the segment registers, thus confining the writable 
per an ill-behaved task to its dedicated segment. Most applications, which are not expected
utilize multi-tasking or use external memory, do not require any protection. They will remain
after reset in system mode, and could access all system resources.

At any given instant, two segments of memory are immediately accessible to an executing
program. These are the data segment DS, where the stack and local variables reside, and
extra segment ES, which may be used to read remote data structures. Restricting the
addressability of task modules helps gain complete control of system resources for efficien
reliable operation in a multi-tasking environment.

Mode
Write to
DS

Write
through
DS

Write to
ES

Write
through
ES

Read
through
DS

Read
through
ES

Read
through
SSP

Write to
SSP

Write to
SSEL
bit 7

System Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed

User Dis-
allowed

Allowed Allowed Select-

able 1
Allowed Allowed Not

possible
Not
possible

Dis-
allowed

Mode
Write to SM
bit

Write to RS0:1
bits

Write to TM bit
Write to IM0:3
bits

System Allowed Allowed Allowed Allowed

User Disallowed Allowed Disallowed Disallowed

1. True for non-writable code memory only like EPROM, ROM, OTP. This might change for FLASH parts
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Protection Via Dual Stack Pointers

The XA provides a two-level user/supervisor protection mechanism. These are theuseror
application mode and thesystemor supervisor mode. In a multitasking environment, tasks in a
supervisor level are protected from tasks in the application level.

The XA has two stack pointers (in the register file) called the System Stack Pointer (SSP) a
the User Stack Pointer (USP). In multitasking systems one stack pointer is used for the
supervisory system and another for the currently active task. This helps in the protection
mechanism by providing isolation of system software from user applications. The two stack
pointers also help to improve the performance of interrupts. If the stack for a particular
application would exceed the space available in the on-chip RAM, or on-chip RAM is neede
other time critical purposes (since on-chip RAM is accessed more quickly than off-chip
memory), the main stack can be put off-chip and the interrupt stack (using the System SP)
be put in on-chip RAM.

These features of the XA place it well above the competition in suitability to multi-tasking
applications.
XA User Guide 5-4 3/24/97
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6   Instruction Set and Addressing

This section contains information about the addressing modes and data types used in the X
The intent is to help the user become familiar with the programming capabilities of the
processor.

6.1  Addressing Modes
Addressing modes are ways to form effective addresses of the operands. The XA provides
basic powerful addressing modes for access on word, byte, and bit data, or to specify the ta
address of a branch instruction. Thesebasic addressing modes are uniformly available on a lar
number of instructions. Table 6.1 includes the basic addressing modes in the XA. An instru
could use a combination of these basic addressing modes, e.g., ADD R0, #020 is a combin
of Register and Immediate addressing modes.

All modes (non-register) generate ADDR[15:0]. This address is combined with DS/ES[23:1

for data and PC/CS[23:16] for code to form a 24-bit address1.

An XA instruction can have zero, one, two, or three operands, whose locations are defined b
addressing mode. Adestination operand is one that is replaced by a result, or is in some way
affected by the instruction. The destination operand is listed first in an addressing mode
expression. Asource operand is a value that is moved or manipulated by the instruction, but
not altered. The source is listed second in an addressing mode expression.

1. Exception is Page 0 mode, where all addresses are 16-bit.

Table 6.1    Basic Addressing Modes

MODE MNEMONIC OPERANDS

Register R operand(s) in register (in Register file)

Indirect  [R] Byte/Word whose 16-bit address is in R

Indirect-Offset  [R+off 8/16] Byte or Word data whose address (16-bit) contained in R, is
offset by 8/16-bit signed integer “off 8/16’

Direct  mem_addr Byte/Word at given memory “mem_addr’

SFR 1

1. This is a special case of direct addressing mode but separately identified, as SFR space is sepa-
rate from data memory.

sfr_addr Byte/Word at “sfr_addr’ address

Immediate #data 4/5
#data 8/16

Immediate 4/5 and 8/16-bit integer constants “data8/16”

Bit bit 10-bit address field specifying Register File, Data Memory or
SFR bit address space
4/17/98 6-1 Addressing Modes and Data Types
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6.2  Description of the Modes

6.2.1  Register Addressing

Instructions using this addressing mode contain a field that addresses the Register File tha

contains an operand. The Register file is byte2, word, double-word or bit addressable.

Example: ADD R6, R4 Before: R4 contains 005Ah
R6 contains A5A5h

After: R4 contains 005Ah
R6 contains A5FFh

Figure 6.1

2. The unimplemented 8 word registers are not Byte addressable

ALU

ADD     R6, R4

REGISTER - REGISTER

REGISTER FILE

DESTINATION

R6

R4

SOURCE

005Ah

A5FFh (result)
A5A5h (original contents)
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6.2.2  Indirect Addressing

Instructions using this addressing mode contain a 16-bit address field. This field is containe
out of 8 pointer registers in the Register File (that contain the 16-bit address of the operand
any 64K data segment). For data, the segment is identified by the 8-bit contents of DS or th
and for code by the 8-bit contents of PC23-16 or CS as selected by the appropriate bit (SS
n = 0 selects DS and 1 selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS
code) in the segment select register SSEL corresponding to the indirect register number. T
address of the pointer word for word operands should be even

Example: ADD R6, [R4] Before: R6 contains 1005h
SSEL.4 = 1 R4 contains A000h
i.e., the operand is in Word at A000h contains A5A5h
segment determined
by the contents of ES After: R4 contains A000h
So, if ES = 08, the R6 contains B5AAh
operand is in Word at A000h in segment 8
segment 8 of data memory. of data memory contains A5A5h

Figure 6.2

ALU

ADD     R6, [R4]

0H

DATA MEMORY

A5A5h

REGISTER - INDIRECT

REGISTER FILE

 A000h

B5AAh (result)

FFFFh

R6

POINTER

SSEL.4 = 1

ES = 8h

A000h

Seg8

R4

1005h
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6.2.3  Indirect-Offset Addressing

This addressing mode is just like the Register-Indirect addressing mode above except that
additional displacement value is added to obtain the final effective address. Instructions us
this addressing mode contain a 16-bit address field and an 8 or 16-bit signed displacemen
This field addresses 1 out of 8 pointer registers in the Register File that contains the 16-bit
address of the operand in any 64K data segment. The contents of the pointer register are ad

the signed displacement to obtain the effective address3 (whichmust be even) of the operand.
For data the segment is identified by the 8-bit contents of DS or the ES and for code, by th
contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit n = 0 selects DS a
selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for code) in the segmen
register SSEL.

Example: ADD R5, [R3 +30h] Before: R3 contains C000h
SSEL.3 = 1 R5 contains 0065h
i.e., the operand is in Word at C030h = A540h
segment determined
by the contents of ES After: R3 contains C000h
So, if ES = 04, the R5 contains A5A5h
operand is in segment Word at C030h = A540h
4 of data memory.

Figure 6.3

3. In case of an odd address, the XA forces the operand fetch from the next lower even boundary
(address.bit0 = 0)

ALU

ADD     R5, [R3+30]

0h

DATA MEMORY

REGISTER - INDIRECT WITH OFFSET

REGISTER FILE

 C000h

DESTINATION

FFFFh

R5

POINTER

SSEL.3 = 1

ES = 4

Seg4

R3

0065h A5A5h

0030h

C030h
A540h
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6.2.4  Direct Addressing

Instructions using this addressing mode contain an 10-bit address field, which contains the
address of the operand in any 64K data memory segment or sfr space.The direct address 
memory space is always the bottom 1K byte (0:3FFh) of any segment. The associated dat
segment is always identified by the 8-bit contents of DS.

Example: SUB R0, 200h Before: R0 contains A5FFh
If DS = 02, the 200H contains 5555h
operand is in segment
2 of data memory.

After: R0 contains 50AAh
200h contains 5555h

Figure 6.4

ALU

SUB    R0, 200h

0h

DATA MEMORY

REGISTER - DIRECT

REGISTER FILE

DESTINATION

FFFFh DS = 2h

Seg2

200h5555h

A5FFh

SOURCE

50AAh (result) R0
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6.2.5  SFR Addressing

This is identical to the direct addressing mode described before, except it addresses the 1K
space. Although encoded into the same instruction field as the direct addressing described
this is actually a separate space. Instructions using this addressing mode contain an 10-bit
address. The 1K SFR space is always directly addressed (400:7FFh) and is mapped direc
above the 1K direct-addressed RAM space.

Example: MOV R0H, 406h4 Before: R0H contains 05h
406h contains A5h

After: R0H contains A5h
406h contains A5h

6.2.6  Immediate Addressing

In immediate addressing, the actual operand is given explicitly in the instruction.The immed
operand is either an 4/5, 8 or 16-bit integer which constitutes the source operand. 4-bit sho
immediate operands used with instructions ADDS and MOVS are sign extended.

Example: ADD R0L,#0B9h Before: R0 contains 13h
After: R0L contains CCh

Figure 6.5

4. The syntax always refers to the SFR address starting from the base address of 400H.

IMMEDIATE DATA

ALU

DESTINATION

B9h

R0L

REGISTER - IMMEDIATE

CCh (result)

ADD R0L, #B9h

13h
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6.2.7  Bit Addressing

Instructions using the bit addressing mode contain a 10-bit field containing the address of t
operand. The XA supports three bit address spaces, which are encoded into the same form
spaces are: 256 bits in the register file (the entire active register file); 256 bits in the data me
(byte addresses 20 through 3F hex on the current data segment); and 512 bits in the SFR spa
addresses 400 through 43F hex).

Bit addresses 0 to FF hex map to the register file, bit addresses 100 to 1FF hex map to data m
and bit addresses 200 to 3FF map to the SFR space.

A separate bit-addressable space (20-3F hex) in the direct-address data memory, exists fo
segment. The current working segment for the direct-address space being always identified
DS register.

The encoding of the 10-bit field for bit addresses is as follows:

Figure 6.6

3-bit field identifies 1 of
8 bits in a byte.

This bit determines whether
the bit address is an SFR or
not (1 = SFR).

If not an SFR bit address, this bit
determines whether the bit address
is in the Register File or the data
memory (0 = Register file, 1 =
data memory).

5 or 6 bit field (6 bits
for an SFR) identifies
the byte that the
addressed bit resides
in.

Bit Address Encoding

9     8     7     6     5     4     3     2     1     0

Examples:
For a given data segment,
1 001100 010 = Bit 2 of an SFR at address 0Ch (i.e., 40Ch in the map)
0 001100 010 = Bit 2 of Register file at address 0Ch, i.e., R6L
0 101100 010 = Bit 2 of Data memory address 0Ch
4/17/98 6-7 Addressing Modes and Data Types
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6.3  Relative Branching and Jumps
Program memory addresses as referenced by Jumps, Calls, and Branch instructions must b
aligned in XA. For instance, a branch instruction may occur at any code address, but it ma
branch to an even address. This forced alignment to even address provides three benefits:

• Branch ranges are doubled without providing an extra bit in the instruction and
• Faster execution as XA always fetches first two byte of an instruction simultaneously.
• Allows translated 8051 code to have branches extended over intervening code that will te

grow when translated and generally increase the chances of a branch target being in th
range.

The rel8 displacement is a 9-bit two’s complement integer which is encoded as 8-bits that
represents the relative distance in words from the current PC to the destination PC. Similarl
rel16displacement is a 17-bit twos complement integer which is encoded as 16-bits. The va
the PC used in the target address calculation is the address of the instruction following the Br
Jump or Call instruction.

The 8-bit signed displacement is between -128 to +127. The branch range for rel8 is (samp
calculation shown below) is really +254 bytes to -256 bytes for instructions located at aneven
address, and +253 to -257 for the same located at anoddaddress, with the limitation that the targe
address is word aligned in code memory.

The 16-bit signed displacement is -32,768 to +32,767. The branch range is therefore +65,534
to -65,536 bytes for instructions located at aneven address, and +65,533 to -65,537 for the sam
located at anodd address, with the limitation that the target address is word aligned in code
memory.

Sample calculation for rel8 range:

Assuming word aligned branch target, forward range as measured from current PC is:

Branch Target Address -  Current PC
Now, maximum positive signed 8-bit displacement  = +127;  So, rel8 << 1 is +254

If Current PC = ODD, then
Range  = 254 - 1 = +253 as PC is forced to an even location, else
If current PC = EVEN, then
Range = +254

Similarly, reverse range as measured from current PC is:

Branch Target Address -  Current PC
Now, maximum positive signed 8-bit displacement  = -128; So, rel8 << 1 is -256

If Current PC = ODD, then
Range  = -257
Else if current PC = EVEN, then
Range = -256
XA User Guide 6-8 4/17/98
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6.4  Data Types in XA
The XA uses the following types of data:
• Bits
• 4/5-bit signed integers
• 8-bit (byte) signed and unsigned integers
• 8-bit, two digit BCD numbers
• 16-bit (word) signed and unsigned integers
• 10-bit address for bit-addressing in data memory and SFR space
• 24-bit effective address comprising of 16-bit address and 8-bit segment select. See addr

modes for more information.

A byte consists of 8-bits. A word is a 16-bit value consisting of two contiguous bytes. A dou
word consists of two 16-bit words packed in two contiguous words in memory.

Negative integers are represented in twos complement form. 4-bit signed integers (sign ex
to byte/word) are used as immediate operands in MOVS and ADDS instructions.

Binary coded decimal numbers are packed, 2 digits per byte. BCD operations use byte ope

6.5  Instruction Set Overview
The XA uses a powerful and efficient instruction set, offering several different types of
addressing modes. A versatile set of “branch” and “jump” instructions are available for
controlling program flow based on register or memory contents. Special emphasis has bee
placed on the instruction support of structured high-level languages and real-time multi-tas
operating systems.

This section discusses the set of instructions provided in the XA microcontroller, and also s
how to use them. It includes descriptions of the instruction format and the operands used b
instructions. After a summary of the instructions by category, the section provides a detaile
description of the operation of each instruction, in alphabetical order.

Five summary tables are provided that describes the available instructions. The first table i
summary of instructions available in the XA along with their common usage. The second a
third table are tables of addressing modes and operands, and the instruction type they per
A fourth table that lists the summary of status flags update by different instructions. A fifth t
lists the available instructions with their different addressing modes and briefly describes w
each instruction does along with the number of bytes, and number of clocks required for ea
instruction.

The formats have been chosen to optimize the length and execution speed of those instruc
that would be used the most often in critical code. Only the first and sometimes the second
of an instruction are used for operation encoding. The length of the instruction and the first
execution cycle activity are determined from the first byte. Instruction bytes following the fir
two bytes (if any) are always immediate operands, such as addresses, relative displaceme
offsets, bit addresses, and immediate data.
4/17/98 6-9 Addressing Modes and Data Types
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Glossary of mnemonics, notations used

General:

offset8 An 8-bit signed offset (immediate data in the instruction) that is added to a regis
produce an absolute address.

offset16 A 16-bit signed offset (immediate data in the instruction) that is added to a regis
produce an absolute address.

direct An 11-bit immediate address contained in the instruction.
#data4 4 bits of immediate data contained in the instruction. (range +7 to -8 for

signed immediate data and 0-15 for shifts)
#data5 5 bits of immediate data contained in the instruction. (0-31 for shifts)
#data8 8 bits of immediate data contained in the instruction. (+127 to -128)
#data16 16 bits of immediate data contained in the instruction. (+32,767 to -32,768)
bit The 10-bit address of an addressable bit.
rel8 An 8-bit relative displacement for branches. (+254 to -256)
rel16 An 16-bit relative displacement for branches.(+65,534 to -65,536)
addr16 A 16-bit absolute branch address within a 64K code page.
addr24 A 24-bit absolute branch address, able to access the entire XA address space.
SP The current Stack Pointer (User or System) depending on the operation mode.
USP The User Stack Pointer.
SSP The System Stack Pointer
C Carry flag from the PSW.
AC Auxiliary Carry flag from the PSW.
V Overflow flag from the PSW.
N Negative flag from the PSW.
Z Zero flag from the PSW.
DS Data segment register. Holds the upper byte of the 24-bit data address space of th

Used mainly for local data segments.
ES Extra segment register. Holds the upper byte of the 24-bit data address space of th

Used mainly for addressing remote data structures.
direct Uses the current DS for data memory for the upper byte of the 24-bit address or

(uses only the low 16-bit address) for accessing the special functions register (S
 space. The interpretation should be as below:

if (data range)
then (direct = (DS:direct)
if (sfr range)
then (direct) = (sfr)

Operation encoding fields:

SZ Data Size. This field encodes whether the operation is byte, word or double-wor
IND This field flags indirect operation in some instructions.
H/L This field selects whether PUSH and POP Rlist use the upper or lower half of the

available registers.
dddd Destination register field, specifies one of 16 registers in the register file.
ddd Destination register field for indirect references, specifies one of 8 pointer registe

the register file.
ssss Source register field, specifies one of 16 registers in the register file.
sss Source register field for indirect references, specifies one of 8 pointer registers i

register file.
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Mnemonic text:

Rs Source register.
Rd Destination register.
[  ] In the instruction mnemonic, indicates an indirect reference (e.g.: [R4] refers to th

memory address pointed to by the contents of register 4).
[R+] Used to indicate an automatic increment of the pointer register in some indirect

addressing modes.
[WS:R] Indicates that the pointer register (R) is extended to a 24-bit pointer by the selec

segment register (either DS or ES for all instructions except MOVC, which uses e
PC23-16 or CS).

Rlist A bitmap that represents each register in the register file during a PUSH or POP
operation. These registers are R0-R7 for word or R0L-R7H for byte.

Pseudocode:

(  ) Used to indicate "contents of" in the instruction operation pseudocode (e.g.: (R4) r
to the contents of register 4).

<--- Pseudocode assignment operator. Occasionally used as <--> to indicate assignm
both directions (interchange of data).

((SP)) Data memory contents at the location pointed to by the current stack pointer. In s
mode, the current SP is the SSP, and the segment used is always segment 0. In
mode, the current SP is the USP, and the segment used is the Data Segment (DS
segment apply to the uses of the SP, not just PUSH and POP. In a few cases, “((S
or “((USP))” indicate that a specific SP is used, regardless of the operating mode

Rn.x Indicates bit x of register n.
Rn.x-y Indicates a range of bits from bit x to bit y of register n.

Note: all indirect addressing is accomplished using the contents of the data segment register
upper 8 address bits unless otherwise specified. Example: [ES:Rs] indicates that the extra se
register generates the upper 8 bits of the address in this case.

Execution time:

PZ  - In Page 0
nt  - Not Taken
t  - Taken

Syntax For Operand size:
.w = For word operands
.b = byte operands
.d = double-word operands

Default operand size is dependant on the operands used e.g MOV R0,R1 is always word-s
whereas MOV R0L, R0H is always byte etc. For INDIRECT_IMMEDIATE,
DIRECT_IMMEDIATE, DIRECT_DIRECT, etc., user must specify operand size.
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Others

0x = prefix for Hex values
[] = For indirect addressing
[[]] = For Double-indirect addressing
dest = destination
src = source

Table 6.2    Instruction Set in XA

Mnemonic Usage

MOV, MOVC, MOVS, MOVX, LEA, XCH, PUSH, POP,
PUSHU, POPU

Data Movement

ADD, ADDS, ADDC, SUB, SUBB Add and Subtract

MULU.b, MULU.w, MUL.w
DIVU.b, DIVU.w, DIVU.d, DIV.w, DIV.d

Multiply and Divide

RR, RRC, RL, RLC, LSR, ASR, ASL, NORM Shifts and Rotates

CLR, SETB, MOV, ANL, ORL Bit Operations

JB, JBC, JNB, JNZ, JZ, DJNZ, CJNE, Conditional Jumps/Calls

BOV, BNV, BPL, BCC, BCS, BEQ, BNE, BG, BGE,
BGT, BL, BLE, BLT, BMI

Conditional Branches

AND, OR, XOR Boolean Functions

JMP, FJMP, CALL, FCALL, BR Unconditional Jumps/Calls/Branches

RET, RETI Return from subroutines, interrupts

SEXT, NEG, CPL, DA Sign Extend, Negate, Complement, Decimal Adjust

BKPT, TRAP#, RESET Exceptions

NOP No Operation
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Table 6.3 shows a summary of the basic addressing modes available for data transfer and
calculation related instructions.

Notes:
- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.
* : ADDS and MOVS uses a short immediate field (4 bits).
** instructions with no operands include: BKPT, NOP, RESET, RET, RETI.

Table 6.3     Instruction Addressing Modes

Modes/
Operands

MOVX MOV CMP
ADD
ADDC

SUB
SUBB

AND
OR
XOR

ADDS
MOVS

MUL
DIV

Shift XCH bytes

R, R • • • • • • • • 2

R, [R] • • • • • • • 2

[R], R • • • • • • 2

R, [R+off8] • • • • • 3

[R+off8], R • • • • • 3

R, [R+off16] • • • • • 4

[R+off16], R • • • • • 4

R, [R+] • • • • • 2

[R+], R • • • • • 2

[R+], [R+] • 2

dir, R • • • • • 3

R, dir • • • • • • 3

dir, [R] • 3

[R], dir • 3

R, #data • • • • • • • • 2*/3/4

[R], #data • • • • • • 2*/3/4

[R+], #data • • • • • • 2*/3/4

[R+off8],
#data

• • • • • • 3*/4/5

[R+off16],
#data

• • • • • • 4*/5/6

dir, #data • • • • • • 3*/4/5

dir, dir • 4

R, USP • 2
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Notes:
- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.
* : ADDS and MOVS uses a short immediate field (4 bits).
** instructions with no operands include: BKPT, NOP, RESET, RET, RETI.

Modes/
Operands

MOVC PUSH
POP

DA, SEXT
CPL, NEG

JUMP
CALL

DJNZ CJNE BIT
OPS

MISC bytes

R, [R+] • 2

[R+], R • 2

A,
[A+DPTR]

• 2

A, [A+PC] • 2

direct • 3

Rlist • 2

R • 2

addr24 • 4

[R] • 2

[A+DPTR] JMP 2

R, rel • 3

direct, rel • 4

R, direct, rel • 4

R, #data, rel • 4/5

[R], #data,
rel

• 4/5

bit • 3

bit, C; C, bit • 3

C, /bit • 3

rel • Cond.
Branch

2

bit, rel Cond.
Branch

4

#data4 TRAP 2

R, R+off8 LEA 3

r, R+off16 LEA 4

<none> ** • 1/2
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Table 6.4 summarizes the status flag updates for the various XA instruction types.

Table 6.4    Status Flag Updates

Notes:
-: flag not updated.
X: flag updated according to the standard definition.
*: flag update is non-standard, refer to the individual instruction description.
Note: Explicit writes to PSW flags takes precedence over flag updates.

Instruction Type
Flags Updated

C AC V N Z

ADD, ADDC, CMP, SUB, SUBB X X X X X

ADDS, MOVS - - - X X

AND, OR, XOR - - - X X

ASR, LSR * - - X X

branches, all bit operations, NOP - - - - -

Calls, Jumps, and Returns - - - - -

CJNE X - - X X

CPL - - - X X

DA * - - X X

DIV, MUL * - * X X

DJNZ - - - X X

LEA - - - - -

MOV, MOVC, MOVX - - - X X

NEG - - X X X

NORM - - - X X

PUSH, POP - - - - -

RESET * * * * *

RL, RR - - - X X

RLC, RRC * - - X X

SEXT - - - - -

TRAP, BKPT - - - - -

XCH - - - - -

ASL * - X X X
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Instruction Set Summary

Table 6.5 lists the entire XA instruction set by instruction type. This can be used as a quick
reference to find specific instructions that may be looked up in the detailed alphabetical descr
section.

Instruction timing data given in this table and in the following detailed instruction descriptio
section are based on code execution from internal code memory and data accesses to intern
and registers only. Due to the highly programmable timing of accesses to external code an
memory on the XA and the interaction of pipelined functions, detailed timing for all conditio
cannot be documented in a concise fashion. The instruction timing data given here also as
that the CPU does not need to stall while the instruction is read into the pre-fetch queue.

In the case of branches, one on-chip code fetch (16 bits) is built into the timing numbers. The
given will be valid if the instruction that is branched to is not longer than two bytes. For long
instructions, the CPU will wait until the entire instruction is contained in the pre-fetch queue be
resuming execution. This may take one or two additional fetches since the XA has instructio
to six bytes in length.

Following is a summary of events or conditions that may cause timing differences from the given
These are generally stalls that occur when the CPU must wait for some information to become av

— Instruction fetch. Execution stalls if the pre-fetch queue does not contains a complete
instruction when it is needed. Except following branches, the state of the queue depends
the history of instructions that have previously executed.

— Instruction sequence dependencies. This typically occurs when an instruction that reads da
a resource such as the SFR bus or the external bus follows an instruction that caused a w
the same resource. The CPU must stall while the write completes (which otherwise requi
CPU time) before the read can begin. Execution cannot resume until the read is complete

— Internal data memory versus SFR accesses. SFR reads require an additional 2 clocks t
complete. Because XA peripherals run from the CPU clock divided by 2, there may be o
clock used to synchronize the CPU and the SFR bus.

— Program flow changes. When any change occurs in the program flow, the XA must flus
pre-fetch queue and begin loading it from the new execution address. The published tim
values include one internal code fetch for all branches, jumps, calls, etc. If the instruction a
new address is longer than two bytes, additional fetch cycles must occur to obtain a com
instruction in the queue. In the case of a return from subroutine or interrupt, the first code
may only obtain one byte of the next instruction since returns may resume execution at
code addresses.

— Internal versus external code execution. Programmable bus timing and other bus
considerations result in a different timing for internal and external code accesses. Use of
bit bus width for external code access has a substantial effect on overall performance. Po
use of the WAIT signal adds an additional variable to this effect. The external bus require
for an ALE cycle at 16-byte address boundaries, during program flow changes, and afte
external bus data accesses also adds to the variability.

— Internal versus external data access. Programmable bus timing again causes different 
for internal and external data accesses. The 8-bit data bus setting contributes to the differ
Use of the WAIT signal may vary the timing still further.
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ten that

— Collision of external code fetch and external data access. When an externally executing

program accesses data on the external bus, the pre-fetch queue tends to starve more of
for internal execution.

Table 6.5

Mnemonic Description Bytes Clocks

Arithmetic Operations

ADD Rd, Rs Add registers direct 2 3

ADD Rd, [Rs] Add register-indirect to register 2 4

ADD [Rd], Rs Add register to register-indirect 2 4

ADD Rd, [Rs+offset8] Add register-indirect with 8-bit offset to
register

3 6

ADD [Rd+offset8], Rs Add register to register-indirect with 8-bit
offset

3 6

ADD Rd, [Rs+offset16] Add register-indirect with 16-bit offset to
register

4 6

ADD [Rd+offset16], Rs Add register to register-indirect with 16-bit
offset

4 6

ADD Rd, [Rs+] Add register-indirect with auto increment to
register

2 5

ADD [Rd+], Rs Add register-indirect with auto increment to
register

2 5

ADD direct, Rs Add register to memory 3 4

ADD Rd, direct Add memory to register 3 4

ADD Rd, #data8 Add 8-bit immediate data to register 3 3

ADD Rd, #data16 Add 16-bit immediate data to register 4 3

ADD [Rd], #data8 Add 8-bit immediate data to register-indirect 3 4

ADD [Rd], #data16 Add 16-bit immediate data to register-indirect 4 4

ADD [Rd+], #data8 Add 8-bit immediate data to register-indirect
with auto-increment

3 5

ADD [Rd+], #data16 Add 16-bit immediate data to register-indirect
with auto-increment

4 5

ADD [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect
with 8-bit offset

4 6

ADD [Rd+offset8], #data16 Add 16-bit immediate data to register-indirect
with 8-bit offset

5 6

ADD [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect
with 16-bit offset

5 6
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ADD [Rd+offset16], #data16 Add 16-bit immediate data to register-indirect
with 16-bit offset

6 6

ADD direct, #data8 Add 8-bit immediate data to memory 4 4

ADD direct, #data16 Add 16-bit immediate data to memory 5 4

ADDC Rd, Rs Add registers direct with carry 2 3

ADDC Rd, [Rs] Add register-indirect to register with carry 2 4

ADDC [Rd], Rs Add register to register-indirect with carry 2 4

ADDC Rd, [Rs+offset8] Add register-indirect with 8-bit offset to
register with carry

3 6

ADDC [Rd+offset8], Rs Add register to register-indirect with 8-bit
offset with carry

3 6

ADDC Rd, [Rs+offset16] Add register-indirect with 16-bit offset to
register with carry

4 6

ADDC [Rd+offset16], Rs Add register to register-indirect with 16-bit
offset with carry

4 6

ADDC Rd, [Rs+] Add register-indirect with auto increment to
register with carry

2 5

ADDC [Rd+], Rs Add register-indirect with auto increment to
register with carry

2 5

ADDC direct, Rs Add register to memory with carry 3 4

ADDC Rd, direct Add memory to register with carry 3 4

ADDC Rd, #data8 Add 8-bit immediate data to register with
carry

3 3

ADDC Rd, #data16 Add 16-bit immediate data to register with
carry

4 3

ADDC [Rd], #data8 Add 16-bit immediate data to register-indirect
with carry

3 4

ADDC [Rd], #data16 Add 16-bit immediate data to register-indirect
with carry

4 4

ADDC [Rd+], #data8 Add 8-bit immediate data to register-indirect
and auto-increment with carry

3 5

ADDC [Rd+], #data16 Add 16-bit immediate data to register-indirect
and auto-increment with carry

4 5

ADDC [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect
with 8-bit offset and carry

4 6

ADDC [Rd+offset8], #data16 Add 16-bit immediate data to register-indirect
with 8-bit offset and carry

5 6

Table 6.5

Mnemonic Description Bytes Clocks
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ADDC [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect
with 16-bit offset and carry

5 6

ADDC [Rd+offset16], #data16 Add 16-bit immediate data to register-indirect
with 16-bit offset and carry

6 6

ADDC direct, #data8 Add 8-bit immediate data to memory with
carry

4 4

ADDC direct, #data16 Add 16-bit immediate data to memory with
carry

5 4

ADDS Rd, #data4 Add 4-bit signed immediate data to register 2 3

ADDS [Rd], #data4 Add 4-bit signed immediate data to register-
indirect

2 4

ADDS [Rd+], #data4 Add 4-bit signed immediate data to register-
indirect with auto-increment

2 5

ADDS [Rd+offset8], #data4 Add register-indirect with 8-bit offset to 4-bit
signed immediate data

3 6

ADDS [Rd+offset16], #data4 Add register-indirect with 16-bit offset to 4-bit
signed immediate data

4 6

ADDS direct, #data4 Add 4-bit signed immediate data to memory 3 4

ASL Rd, Rs Logical left shift destination register by the
value in the source register

2 See
Note1

ASL Rd, #data4 Logical left shift register by the 4-bit
immediate value

2 See
Note1

ASR Rd, Rs Arithmetic shift right destination register by
the count in the source

2 See
Note1

ASR Rd, #data4 Arithmetic shift right register by the 4-bit
immediate count

2 See
Note1

CMP Rd, Rs Compare destination and source registers 2 3

CMP [Rd], Rs Compare register with register-indirect 2 4

CMP Rd, [Rs] Compare register-indirect with register 2 4

CMP [Rd+offset8], Rs Compare register with register-indirect with 8-
bit offset

3 6

CMP [Rd+offset16], Rs Compare register with register-indirect with
16-bit offset

4 6

CMP Rd, [Rs+offset8] Compare register-indirect with 8-bit offset
with register

3 6

CMP Rd,[Rs+offset16] Compare register-indirect with 16-bit offset
with register

4 6

Table 6.5

Mnemonic Description Bytes Clocks
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CMP Rd, [Rs+] Compare auto-increment register-indirect
with register

2 5

CMP [Rd+], Rs Compare register with auto-increment
register-indirect

2 5

CMP direct, Rs Compare register with memory 3 4

CMP Rd, direct Compare memory with register 3 4

CMP Rd, #data8 Compare 8-bit immediate data to register 3 3

CMP Rd, #data16 Compare 16-bit immediate data to register 4 3

CMP [Rd], #data8 Compare 8 -bit immediate data to register-
indirect

3 4

CMP [Rd], #data16 Compare 16-bit immediate data to register-
indirect

4 4

CMP [Rd+], #data8 Compare 8-bit immediate data to register-
indirect with auto-increment

3 5

CMP [Rd+], #data16 Compare 16-bit immediate data to register-
indirect with auto-increment

4 5

CMP [Rd+offset8], #data8 Compare 8-bit immediate data to register-
indirect with 8-bit offset

4 6

CMP [Rd+offset8], #data16 Compare 16-bit immediate data to register-
indirect with 8-bit offset

5 6

CMP [Rd+offset16], #data8 Compare 8-bit immediate data to register-
indirect with 16-bit offset

5 6

CMP [Rd+offset16], #data16 Compare 16-bit immediate data to register-
indirect with 16-bit offset

6 6

CMP direct, #data8 Compare 8-bit immediate data to memory 4 4

CMP direct, #data16 Compare 16-bit immediate data to memory 5 4

DA Rd Decimal Adjust byte register 2 4

DIV.w Rd, Rs 16x8 signed register divide 2 14

DIV.w Rd, #data8 16x8 signed divide register with immediate
word

3 14

DIV.d Rd, Rs 32x16 signed double register divide 2 24

DIV.d Rd, #data16 32x16 signed double register divide with
immediate word

4 24

DIVU.b Rd, Rs 8x8 unsigned register divide 2 12

DIVU.b Rd, #data8 8X8 unsigned register divide with immediate
byte

3 12

Table 6.5

Mnemonic Description Bytes Clocks
XA User Guide 6-20 4/17/98



DIVU.w Rd, Rs 16X8 unsigned register divide 2 12

DIVU.w Rd, #data8 16X8 unsigned register divide with immediate
byte

3 12

DIVU.d Rd, Rs 32X16 unsigned double register divide 2 22

DIVU.d Rd, #data16 32X16 unsigned double register divide with
immediate word

4 22

LEA Rd, Rs+offset8 Load 16-bit effective address with 8-bit offset
to register

3 3

LEA Rd, Rs+offset16 Load 16-bit effective address with 16-bit
offset to register

4 3

MUL.w Rd, Rs 16X16 signed multiply of register contents 2 12

MUL.w Rd, #data16 16X16 signed multiply 16-bit immediate data
with register

4 12

MULU.b Rd, Rs 8X8 unsigned multiply of register contents 2 12

MULU.b Rd, #data8 8X8 unsigned multiply of 8-bit immediate data
with register

3 12

MULU.w Rd, Rs 16X16 unsigned register multiply 2 12

MULU.w Rd, #data16 16X16 unsigned multiply 16-bit immediate
data with register

4 12

NEG Rd Negate (twos complement) register 2 3

SEXT Rd Sign extend last operation to register 2 3

SUB Rd, Rs Subtract registers direct 2 3

SUB Rd, [Rs] Subtract register-indirect to register 2 4

SUB [Rd], Rs Subtract register to register-indirect 2 4

SUB Rd, [Rs+offset8] Subtract register-indirect with 8-bit offset to
register

3 6

SUB [Rd+offset8], Rs Subtract register to register-indirect with 8-bit
offset

3 6

SUB Rd, [Rs+offset16] Subtract register-indirect with 16-bit offset to
register

4 6

SUB [Rd+offset16], Rs Subtract register to register-indirect with 16-
bit offset

4 6

SUB Rd, [Rs+] Subtract register-indirect with auto increment
to register

2 5

SUB [Rd+], Rs Subtract register-indirect with auto increment
to register

2 5
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SUB direct, Rs Subtract register to memory 3 4

SUB Rd, direct Subtract memory to register 3 4

SUB Rd, #data8 Subtract 8-bit immediate data to register 3 3

SUB Rd, #data16 Subtract 16-bit immediate data to register 4 3

SUB [Rd], #data8 Subtract 8-bit immediate data to register-
indirect

3 4

SUB [Rd], #data16 Subtract 16-bit immediate data to register-
indirect

4 4

SUB [Rd+], #data8 Subtract 8-bit immediate data to register-
indirect with auto-increment

3 5

SUB [Rd+], #data16 Subtract 16-bit immediate data to register-
indirect with auto-increment

4 5

SUB [Rd+offset8], #data8 Subtract 8-bit immediate data to register-
indirect with 8-bit offset

4 6

SUB [Rd+offset8], #data16 Subtract 16-bit immediate data to register-
indirect with 8-bit offset

5 6

SUB [Rd+offset16], #data8 Subtract 8-bit immediate data to register-
indirect with 16-bit offset

5 6

SUB [Rd+offset16], #data16 Subtract 16-bit immediate data to register-
indirect with 16-bit offset

6 6

SUB direct, #data8 Subtract 8-bit immediate data to memory 4 4

SUB direct, #data16 Subtract 16-bit immediate data to memory 5 4

SUBB Rd, Rs Subtract with borrow registers direct 2 3

SUBB Rd, [Rs] Subtract with borrow register-indirect to
register

2 4

SUBB [Rd], Rs Subtract with borrow register to register-
indirect

2 4

SUBB Rd, [Rs+offset8] Subtract with borrow register-indirect with 8-
bit offset to register

3 6

SUBB [Rd+offset8], Rs Subtract with borrow register to register-
indirect with 8-bit offset

3 6

SUBB Rd, [Rs+offset16] Subtract with borrow register-indirect with 16-
bit offset to register

4 6

SUBB [Rd+offset16], Rs Subtract with borrow register to register-
indirect with 16-bit offset

4 6

SUBB Rd, [Rs+] Subtract with borrow register-indirect with
auto increment to register

2 5
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SUBB [Rd+], Rs Subtract with borrow register-indirect with
auto increment to register

2 5

SUBB direct, Rs Subtract with borrow register to memory 3 4

SUBB Rd, direct Subtract with borrow memory to register 3 4

SUBB Rd, #data8 Subtract with borrow 8-bit immediate data to
register

3 3

SUBB Rd, #data16 Subtract with borrow 16-bit immediate data to
register

4 3

SUBB [Rd], #data8 Subtract with borrow 8-bit immediate data to
register-indirect

3 4

SUBB [Rd], #data16 Subtract with borrow 16-bit immediate data to
register-indirect

4 4

SUBB [Rd+], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with auto-increment

3 5

SUBB [Rd+], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with auto-increment

4 5

SUBB [Rd+offset8], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with 8-bit offset

4 6

SUBB [Rd+offset8], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with 8-bit offset

5 6

SUBB [Rd+offset16], #data8 Subtract with borrow 8-bit immediate data to
register-indirect with 16-bit offset

5 6

SUBB [Rd+offset16], #data16 Subtract with borrow 16-bit immediate data to
register-indirect with 16-bit offset

6 6

SUBB direct, #data8 Subtract with borrow 8-bit immediate data to
memory

4 4

SUBB direct, #data16 Subtract with borrow 16-bit immediate data to
memory

5 4

Logical Operations

AND Rd, Rs Logical AND registers direct 2 3

AND Rd, [Rs] Logical AND register-indirect to register 2 4

AND [Rd], Rs Logical AND register to register-indirect 2 4

AND Rd, [Rs+offset8] Logical AND register-indirect with 8-bit offset
to register

3 6

AND [Rd+offset8], Rs Logical AND register to register-indirect with
8-bit offset

3 6
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AND Rd, [Rs+offset16] Logical AND register-indirect with 16-bit
offset to register

4 6

AND [Rd+offset16], Rs Logical AND register to register-indirect with
16-bit offset

4 6

AND Rd, [Rs+] Logical AND register-indirect with auto
increment to register

2 5

AND [Rd+], Rs Logical AND register-indirect with auto
increment to register

2 5

AND direct, Rs Logical AND register to memory 3 4

AND Rd, direct Logical AND memory to register 3 4

AND Rd, #data8 Logical AND 8-bit immediate data to register 3 3

AND Rd, #data16 Logical AND 16-bit immediate data to register 4 3

AND [Rd], #data8 Logical AND 8-bit immediate data to register-
indirect

3 4

AND [Rd], #data16 Logical AND16-bit immediate data to register-
indirect

4 4

AND [Rd+], #data8 Logical AND 8-bit immediate data to register-
indirect and auto-increment

3 5

AND [Rd+], #data16 Logical AND16-bit immediate data to register-
indirect and auto-increment

4 5

AND [Rd+offset8], #data8 Logical AND8-bit immediate data to register-
indirect with 8-bit offset

4 6

AND [Rd+offset8], #data16 Logical AND16-bit immediate data to register-
indirect with 8-bit offset

5 6

AND [Rd+offset16], #data8 Logical AND8-bit immediate data to register-
indirect with 16-bit offset

5 6

AND [Rd+offset16], #data16 Logical AND16-bit immediate data to register-
indirect with 16-bit offset

6 6

AND direct, #data8 Logical AND 8-bit immediate data to memory 4 4

AND direct, #data16 Logical AND16-bit immediate data to memory 5 4

CPL Rd Complement (ones complement) register 2 3

LSR Rd, Rs Logical right shift destination register by the
value in the source register

2 See
Note 1

LSR Rd, #data4 Logical right shift register by the 4-bit
immediate value

2 See
Note 1

NORM Rd, Rs Logical shift left destination register by the
value in the source register until MSB set

2 See
Note 1
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OR Rd, Rs Logical OR registers 2 3

OR Rd, [Rs] Logical OR register-indirect to register 2 4

OR [Rd], Rs Logical OR register to register-indirect 2 4

OR Rd, [Rs+offset8] Logical OR register-indirect with 8-bit offset to
register

3 6

OR [Rd+offset8], Rs Logical OR register to register-indirect with 8-
bit offset

3 6

OR Rd, [Rs+offset16] Logical OR register-indirect with 16-bit offset
to register

4 6

OR [Rd+offset16], Rs Logical OR register to register-indirect with
16-bit offset

4 6

OR Rd, [Rs+] Logical OR register-indirect with auto
increment to register

2 5

OR [Rd+], Rs Logical OR register-indirect with auto
increment to register

2 5

OR direct, Rs Logical OR register to memory 3 4

OR Rd, direct Logical OR memory to register 3 4

OR Rd, #data8 Logical OR 8-bit immediate data to register 3 3

OR Rd, #data16 Logical OR 16-bit immediate data to register 4 3

OR [Rd], #data8 Logical OR 8-bit immediate data to register-
indirect

3 4

OR [Rd], #data16 Logical OR 16-bit immediate data to register-
indirect

4 4

OR [Rd+], #data8 Logical OR 8-bit immediate data to register-
indirect with auto-increment

3 5

OR [Rd+], #data16 Logical OR 16-bit immediate data to register-
indirect with auto-increment

4 5

OR [Rd+offset8], #data8 Logical OR 8-bit immediate data to register-
indirect with 8-bit offset

4 6

OR [Rd+offset8], #data16 Logical OR 16-bit immediate data to register-
indirect with 8-bit offset

5 6

OR [Rd+offset16], #data8 Logical OR 8-bit immediate data to register-
indirect with 16-bit offset

5 6

OR [Rd+offset16], #data16 Logical OR 16-bit immediate data to register-
indirect with 16-bit offset

6 6

OR direct, #data8 Logical OR 8-bit immediate data to memory 4 4
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OR direct, #data16 Logical OR16-bit immediate data to memory 5 4

RL Rd, #data4 Rotate left register by the 4-bit immediate
value

2 See
Note 1

RLC Rd, #data4 Rotate left register though carry by the 4-bit
immediate value

2 See
Note 1

RR Rd, #data4 Rotate right register by the 4-bit immediate
value

2 See
Note 1

RRC Rd, #data4 Rotate right register though carry by the 4-bit
immediate value

2 See
Note 1

XOR Rd, Rs Logical XOR registers 2 3

XOR Rd, [Rs] Logical XOR register-indirect to register 2 4

XOR [Rd], Rs Logical XOR register to register-indirect 2 4

XOR Rd, [Rs+offset8] Logical XOR register-indirect with 8-bit offset
to register

3 6

XOR [Rd+offset8], Rs Logical XOR register to register-indirect with
8-bit offset

3 6

XOR Rd, [Rs+offset16] Logical XOR register-indirect with 16-bit
offset to register

4 6

XOR [Rd+offset16], Rs Logical XOR register to register-indirect with
16-bit offset

4 6

XOR Rd, [Rs+] Logical XOR register-indirect with auto
increment to register

2 5

XOR [Rd+], Rs Logical XOR register-indirect with auto
increment to register

2 5

XOR direct, Rs Logical XOR register to memory 3 4

XOR Rd, direct Logical XOR memory to register 3 4

XOR Rd, #data8 Logical XOR 8-bit immediate data to register 3 3

XOR Rd, #data16 Logical XOR 16-bit immediate data to register 4 3

XOR [Rd], #data8 Logical XOR 8-bit immediate data to register-
indirect

3 4

XOR [Rd], #data16 Logical XOR 16-bit immediate data to
register-indirect

4 4

XOR [Rd+], #data8 Logical XOR 8-bit immediate data to register-
indirect with auto-increment

3 5

XOR [Rd+], #data16 Logical XOR 16-bit immediate data to
register-indirect with auto-increment

4 5
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XOR [Rd+offset8], #data8 Logical XOR 8-bit immediate data to register-
indirect with 8-bit offset

4 6

XOR [Rd+offset8], #data16 Logical XOR 16-bit immediate data to
register-indirect with 8-bit offset

5 6

XOR [Rd+offset16], #data8 Logical XOR 8-bit immediate data to register-
indirect with 16-bit offset

5 6

XOR [Rd+offset16], #data16 Logical XOR 16-bit immediate data to
register-indirect with 16-bit offset

6 6

XOR direct, #data8 Logical XOR 8-bit immediate data to memory 4 4

XOR direct, #data16 Logical XOR16-bit immediate data to memory 5 4

Data transfer

MOV Rd, Rs Move register to register 2 3

MOV Rd, [Rs] Move register-indirect to register 2 3

MOV [Rd], Rs Move register to register-indirect 2 3

MOV Rd, [Rs+offset8] Move register-indirect with 8-bit offset to
register

3 5

MOV [Rd+offset8], Rs Move register to register-indirect with 8-bit
offset

3 5

MOV Rd, [Rs+offset16] Move register-indirect with 16-bit offset to
register

4 5

MOV [Rd+offset16], Rs Move register to register-indirect with 16-bit
offset

4 5

MOV Rd, [Rs+] Move register-indirect with auto increment to
register

2 4

MOV [Rd+], Rs Move register-indirect with auto increment to
register

2 4

MOV direct, Rs Move register to memory 3 4

MOV Rd, direct Move memory to register 3 4

MOV [Rd+], [Rs+] Move register-indirect to register-indirect,
both pointers auto-incremented

2 6

MOV direct, [Rs] Move register-indirect to memory 3 4

MOV [Rd], direct Move memory to register-indirect 3 4

MOV Rd, #data8 Move 8-bit immediate data to register 3 3

MOV Rd, #data16 Move 16-bit immediate data to register 4 3
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MOV [Rd], #data8 Move 16-bit immediate data to register-
indirect

3 3

MOV [Rd], #data16 Move 16-bit immediate data to register-
indirect

4 3

MOV [Rd+], #data8 Move 8-bit immediate data to register-indirect
with auto-increment

3 4

MOV [Rd+], #data16 Move 16-bit immediate data to register-
indirect with auto-increment

4 4

MOV [Rd+offset8], #data8 Move 8-bit immediate data to register-indirect
with 8-bit offset

4 5

MOV [Rd+offset8], #data16 Move 16-bit immediate data to register-
indirect with 8-bit offset

5 5

MOV [Rd+offset16], #data8 Move 8-bit immediate data to register-indirect
with 16-bit offset

5 5

MOV [Rd+offset16], #data16 Move 16-bit immediate data to register-
indirect with 16-bit offset

6 5

MOV direct, #data8 Move 8-bit immediate data to memory 4 3

MOV direct, #data16 Move 16-bit immediate data to memory 5 3

MOV direct, direct Move memory to memory 4 4

MOV Rd, USP Move User Stack Pointer to register (system
mode only)

2 3

MOV USP, Rs Move register to User Stack Pointer (system
mode only)

2 3

MOVC Rd, [Rs+] Move data from WS:Rs address of code
memory to register with auto-increment

2 4

MOVC A, [A+DPTR] Move data from code memory to the
accumulator indirect with DPTR

2 6

MOVC A, [A+PC] Move data from code memory to the
accumulator indirect with PC

2 6

MOVS Rd, #data4 Move 4-bit sign-extended immediate data to
register

2 3

MOVS [Rd], #data4 Move 4-bit sign-extended immediate data to
register-indirect

2 3

MOVS [Rd+], #data4 Move 4-bit sign-extended immediate data to
register-indirect with auto-increment

2 4

MOVS [Rd+offset8], #data4 Move register-indirect with 8-bit offset to 4-bit
sign-extended immediate data

3 5
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MOVS [Rd+offset16], #data4 Move register-indirect with 16-bit offset to 4-
bit sign-extended immediate data

4 5

MOVS direct, #data4 Move 4-bit sign-extended immediate data to
memory

3 3

MOVX Rd, [Rs] Move external data from memory to register 2 6

MOVX [Rd], Rs Move external data from register to memory 2 6

PUSH direct Push the memory content (byte/word) onto
the current stack

3 5

PUSHU direct Push the memory content (byte/word) onto
the user stack

3 5

PUSH Rlist Push multiple registers (byte/word) onto the
current stack

2 See
Note 2

PUSHU Rlist Push multiple registers (byte/word)from the
user stack

2 See
Note 2

POP direct Pop the memory content (byte/word) from the
current stack

3 5

POPU direct Pop the memory content (byte/word) from the
user stack

3 5

POP Rlist Pop multiple registers (byte/word) from the
current stack

2 See
Note 3

POPU Rlist Pop multiple registers (byte/word) from the
user stack

2 See
Note 3

XCH Rd, Rs Exchange contents of two registers 2 5

XCH Rd, [Rs] Exchange contents of a register-indirect
address with a register

2 6

XCH Rd, direct Exchange contents of memory with a register 3 6

Program Branching

BCC rel8 Branch if the carry flag is clear 2 6t/3nt

BCS rel8 Branch if the carry flag is set 2 6t/3nt

BEQ rel8 Branch if the zero flag is set 2 6t/3nt

BNE rel8 Branch if the zero flag is not set 2 6t/3nt

BG rel8 Branch if greater than (unsigned) 2 6t/3nt

BGE rel8 Branch if greater than or equal to (signed) 2 6t/3nt

BGT rel8 Branch if greater than (signed) 2 6t/3nt

Table 6.5

Mnemonic Description Bytes Clocks
4/17/98 6-29 Addressing Modes and Data Types



BL rel8 Branch if less than or equal to (unsigned) 2 6t/3nt

BLE rel8 Branch if less than or equal to (signed) 2 6t/3nt

BLT rel8 Branch if less than (signed) 2 6t/3nt

BMI rel8 Branch if the negative flag is set 2 6t/3nt

BPL rel8 Branch if the negative flag is clear 2 6t/3nt

BNV rel8 Branch if overflow flag is clear 2 6t/3nt

BOV rel8 Branch if overflow flag is set 2 6t/3nt

BR rel8 Short unconditional branch 2 6

CALL [Rs] Subroutine call indirect with a register 2 8/5(PZ)

CALL rel16 Relative call (+/- 64K) 3 7/4(PZ)

CJNE Rd,direct,rel8 Compare direct byte to register and jump if
not equal

4 10t/7nt

CJNE Rd,#data8,rel8 Compare immediate byte to register and
jump if not equal

4 9t/6nt

CJNE Rd,#data16,rel8 Compare immediate word to register and
jump if not equal

5 9t/6nt

CJNE [Rd],#data8,rel8 Compare immediate word to register-indirect
and jump if not equal

4 10t/7nt

CJNE [Rd],#data16,rel8 Compare immediate word to register-indirect
and jump if not equal

5 10t/7nt

DJNZ Rd,rel8 Decrement register and jump if not zero 3 8t/5nt

DJNZ direct,rel8 Decrement memory and jump if not zero 4 9t/5nt

FCALL addr24 Far call (anywhere in the 24-bit address
space)

4 12/8
(PZ)

FJMP addr24 Far jump (anywhere in the 24-bit address
space)

4 6

JB bit,rel8 Jump if bit set 4 10t/6nt

JBC bit,rel8 Jump if bit set and then clear the bit 4 11t/7nt

JMP rel16 Long unconditional branch 3 6

JMP [Rs] Jump indirect to the address in the register
(64K)

2 7

JMP [A+DPTR] Jump indirect relative to the DPTR 2 5

JMP [[Rs+]] Jump double-indirect to the address (pointer
to a pointer)

2 8
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ts.
Note 1: For 8 and 16 bit shifts, it is 4+1 per additional two bits. For 32-bit shifts, it is 6+1 per additional two bi
Note 2: 3 clocks per register pushed.
Note 3: 4 clocks for the first register and two clocks for each additional register.

JNB bit,rel8 Jump if bit not set 4 10t/6nt

JNZ rel8 Jump if accumulator not equal zero 2 6t/3nt

JZ rel8 Jump if accumulator equals zero 2 6t/3nt

NOP No operation 1 3

RET Return from subroutine 2 8/6(PZ)

RETI Return from interrupt 2 10/
8(PZ)

Bit Manipulation

ANL C, bit Logical AND bit to carry 3 4

ANL C, /bit Logical AND complement of a bit to carry 3 4

CLR bit Clear bit 3 4

MOV C, bit Move bit to the carry flag 3 4

MOV bit, C Move carry to bit 3 4

ORL C, bit Logical OR a bit to carry 3 4

ORL C, /bit Logical OR complement of a bit to carry 3 4

SETB bit Sets the bit specified 3 4

Exception / Trap

BKPT Cause the breakpoint trap to be executed. 1 23/
19(PZ)

RESET Causes a hardware Reset, identical to an
external Reset

2 18

TRAP #data4 Causes 1 of 16 hardware traps to be
executed

2 23/
19(PZ)
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nds,
eration.
ADD Integer Addition

Syntax: ADD   dest, source

Operation: dest <- src + dest

Description: Performs a twos complement binary addition of the source and destination opera
and the result is placed in the destination operand. The source data is not affected by the op

Note: If used with write to PSWL, takes precedence to flag updates

Sizes: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

ADD    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:

ADD    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:

ADD    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: (WS:Rd) <-- (WS:Rd) + (Rs)
Encoding:

0 0 00 0 0 1SZ d ssd d d s s

0      0     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      0     0     0   SZ    0     1     0  s     s     s     s     1     d     d     d
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ADD    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

ADD    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs)
Encoding:

byte 3: offset8

ADD    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:

byte 3:  upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADD    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     0     0   SZ    1     0     0  s     s     s     s     1     d     d     d

0      0     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      0     0     0   SZ    1     0     1  s     s     s     s     1     d     d     d
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ADD    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

ADD    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

ADD    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:

byte 3: lower 8 bits of direct

ADD    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:

byte 3: lower 8 bits of direct

0      0     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     0     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     0     0   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      0     0     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
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ADD    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:

byte 3: #data8

ADD    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADD    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8
Encoding:

byte 3: #data8

ADD    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     0     0    0

1      0     0     1     1     0     0     1 d     d     d     d      0     0     0    0

1      0     0     1     0     0     1     0 0     d     d     d      0     0     0    0

1      0     0     1     1     0     1     0 0     d     d     d      0     0     0    0
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ADD    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

ADD    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADD    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8
Encoding:

byte 3: offset8
byte 4: #data8

ADD    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     0     0    0

1      0     0     1     1     0     1     1 0     d     d     d      0     0     0    0

1      0     0     1     0    1     0     0 0     d     d     d    0      0     0     0

1      0     0     1     1    1     0     0  0     d     d     d     0     0     0     0
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ADD    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADD    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

ADD    direct, #data8
Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

ADD    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1  0     d     d     d     0     0     0     0

1      0     0     1     1    1     0     1 0     d     d     d     0     0     0     0

1      0     0     1     0    1     1     0 0   direct: 3 bits    0     0     0     0

1      0     0     1     1    1     1     0 0   direct: 3 bits    0     0     0     0
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ADDC Integer addition with Carry

Syntax: ADDC   dest, source

Operation: dest <- dest + src + C

Description: Performs a two’s complement binary addition of the source operand and the
previously generated carry bit with the destination operand. The result is stored in the destin
operand.The source data is not affected by the operation.

If the carry from previous operation is one (C=1), the result is greater than the sum of the oper
if it is zero (C=0), the result is the exact sum.

This form of addition is intended to support multiple-precision arithmetic. For this use, the c
bit is first reset, then ADDC is used to add the portions of the multiple-precision values from l
significant to most-significant.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

ADDC    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs) + (C)
Encoding:

ADDC    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)
Encoding:

0      0     0     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     0     1   SZ    0     1     0 d     d     d     d      0     s     s     s
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ADDC    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) + (C)
Encoding:

ADDC    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8) + (C)
Encoding:

byte 3: offset8

ADDC    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs) + (C)
Encoding:

byte 3: offset8

ADDC    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16) + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     0     1   SZ    0     1     0  s     s     s     s      1     d     d     d

0      0     0     1   SZ    1     0     0 d     d     d     d      0     s     s     s

0      0     0     1   SZ    1     0     0  s     s     s     s      1     d     d     d

0     0     0     1    SZ   1     0     1 d     d     d     d     0     s      s     s
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ADDC    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs) + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADDC    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

ADDC    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) + (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

ADDC    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs) + (C)
Encoding:

byte 3: lower 8 bits of direct

0     0     0     1    SZ   1     0     1  s    s      s     s     1     d     d     d

0     0     0     1    SZ   0     1     1 d    d     d     d     0     s     s      s

0     0      0     1   SZ   0     1     1 s     s     s     s     1     d     d     d

0     0     0     1    SZ   1     1     0  s     s     s      s    1    direct: 3 bits
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ADDC    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct) + (C)
Encoding:

byte 3: lower 8 bits of direct

ADDC    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8 + (C)
Encoding:

byte 3: #data8

ADDC    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16 + (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd], #data8

Bytes: 3
Clocks : 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)
Encoding:

byte 3: #data8

0     0     0     1    SZ   1     1     0 d      d    d     d     0    direct: 3 bits

1     0     0     1     0     0      0     1 d     d     d     d     0     0      0     1

1     0      0     1     1     0     0     1 d     d     d     d     0     0      0     1

1     0      0     1     0    0     1     0 0     d     d     d     0     0      0     1
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ADDC    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 + (C)

Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)

(Rd) <-- (Rd) + 1

Encoding:

byte 3: #data8

ADDC    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 + (C)

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8 + (C)
Encoding:

byte 3: offset8
byte 4: #data8

1     0     0      1    1     0     1     0 0     d     d      d     0    0      0    1

1      0     0    1     0      0     1     1 0     d     d     d     0     0      0     1

1      0     0    1      1     0     1     1 0     d     d     d     0     0      0     1

1      0     0     1     0    1     0     0 0     d     d     d     0      0     0     1
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ADDC    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16 + (C)
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

ADDC    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8 + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADDC    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16 + (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

ADDC    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8 + (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

1      0     0     1     1    1     0     0  0     d     d     d     0     0     0     1

1      0     0     1     0    1     0     1 0     d     d     d     0     0     0     1

1      0     0     1     1    1     0     1 0    d     d     d      0    0     0     1

1      0     0    1     0     1     1    0 0   direct: 3 bits   0     0      0     1
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ADDC    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16 + (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1     0      0    1     1     1     1     0 0   direct: 3 bits   0     0     0     1
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ADDS Add Short

Syntax: ADDS    dest, #value

Operation: dest <- dest + #data4

Description: Four bits of signed immediate data are added to the destination. The immediate
is sign-extended to the proper size, then added to the variable specified by the destination op
which may be either a byte or a word. The immediate data range is +7 to -8. This instruction is
primarily to increment or decrement pointers and counters.

Size:  Byte-Byte, Word-Word

Flags Updated:   N, Z

(Note: the C and AC flags mustnot be updated by ADDS since this instruction is used to repl
the 80C51 INC and DEC instructions, which do not update the flags.)

ADDS    Rd, #data4

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + #data4
Encoding:

ADDS    [Rd], #data4

Bytes: 2
Clocks: 4
Operation:((WS:Rd)) <-- ((WS:Rd)) + #data4
Encoding:

ADDS    [Rd+], #data4

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data4

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

1      0     1     0   SZ    0     0     1 d     d     d     d           #data4

1      0     1     0   SZ    0     1     0  0     d     d     d           #data4

1      0     1     0   SZ    0     1     1  0     d     d     d           #data4
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ADDS    [Rd+offset8], #data4

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data4
Encoding:

byte 3: offset8

ADDS    [Rd+offset16], #data4

Bytes: 4
Clocks: 6
Operation:((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data4
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADDS    direct, #data4

Bytes: 3
Clocks: 4
Operation:(direct) <-- (direct) + #data4

Encoding:

byte 3: lower 8 bits of direct

1      0     1     0   SZ    1     0     0  0     d     d     d           #data4

1      0     1     0   SZ    1     0     1  0     d     d     d           #data4

1      0     1     0   SZ    1     1     0 0    direct: 3 bits        #data4
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AND Logical AND

Syntax: AND dest, src

Operation: dest <- dest AND src

Description: Bitwise logical AND the contents of the source to the destination. The byte or w
specified by the source operand is logically ANDed to the variable specified by the destina
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

AND    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) • (Rs)
Encoding:

AND    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) • ((WS:Rs))
Encoding:

AND    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • (Rs)
Encoding:

0      1     0     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     0     1   SZ    0     1     0 d     d     d     d      0    s     s     s

0      1     0     1   SZ    0     1     0 s     s     s     s     1     d     d     d
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AND    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) • ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

AND    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • (Rs)
Encoding:

byte 3: offset8

AND    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) • ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

AND    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     0     1   SZ    1     0     0  s     s     s     s     1     d     d     d

0      1     0     1   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     0     1   SZ    1     0     1  s     s     s     s     1     d     d     d
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AND    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) • ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

AND    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

AND    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) • (Rs)
Encoding:

byte 3: lower 8 bits of direct

AND    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) • (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     0     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     0     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     0     1   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      1     0     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
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AND    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) • #data8
Encoding:

byte 3: #data8

AND    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) • #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

AND    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data8
Encoding:

byte 3: #data8

AND    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     0    1

1      0     0     1     1     0     0     1 d     d     d     d      0     1     0    1

1      0     0     1     0     0     1     0 0     d     d     d      0     1     0    1

1      0     0     1     1     0     1     0 0     d     d     d      0     1     0    1
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AND    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

AND    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) • #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

AND    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #data8
Encoding:

byte 3: offset8
byte 4: #data8

AND    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     0    1

1      0     0     1     1     0     1     1 0     d     d     d      0     1     0    1

1      0     0     1     0    1     0     0  0     d     d     d     0     1     0     1

1      0     0     1     1    1     0     0  0     d     d     d     0     1     0     1
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AND    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

AND    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) • #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

AND    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) • #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

AND    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) • #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     1     0     1

1      0     0     1     1    1     0     1  0     d     d     d     0     1     0     1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     0     1

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     0     1
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ANL Logical AND a bit to the Carry flag

Syntax: ANL     C, bit

Operation: C <- C (AND) Bit

Description: Read the specified bit and logically AND it to the Carry flag.

Size: Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with ca
affected by the result of an ALU operation

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     0     0     0     0      bit: 2
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ANL Logical AND the complement of a bit to the Carry flag

Syntax: ANL     C, /bit

Operation: Carry <- C (AND)bit

Description: Read the specified bit, complement it, and logically AND it to the Carry flag.

Size: Bit

Flags Updated:none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with ca
affected by the result of an ALU operation

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     1     0     1     0     0      bit: 2
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ASL Arithmetic Shift Left

Syntax: ASL dest, count

Operation:

Description:
If the count operand is greater than 0, the destination operand is logically shifted left by the
number of bits specified by the count operand. The Low-order bits shifted in are zero-filled 
the high-order bits are shifted out through the C (carry) bit. If the count operand is 0, no sh
performed.

The count operand could be:
- An immediate value (#data4 or #data5)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count is a positive value which may be from 1 to 31 and the destination operand is a s
integer (twos complement form).The destination operand (data size) may be 8, 16, or 32 b
the case of 32-bit shifts, the destination operand must be the least significant half of a doub
word register.The count operand is not affected by the operation.

Note:
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else fo
immediate shift count, shifting is continued until count is 0.

Size: Byte, word, and double word

Flags Updated: C, V, N, Z

Note: The V flag is set if the sign changes at any time during the shift operation and remain
until the end of the shift operation i.e., the V flag does not get cleared even if the sign reverts
original state because of continued shifts within the same instruction. ASL clears the V flag i
condition to set it does not occur.

(C) <- (dest.msb)
(dest.bit n+1) <- (dest.bit n)
count = count-1

Do While (count not equal to 0)

End While

if sign change during shift,
(V) <- 1
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ASL    Rd, Rs

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Encoding:

ASL Rd, #data4
              Rd,#data5

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00 : byte operation; SZ1/SZ0 = 10 : word operation; SZ1/SZ0 = 11 : double w
operation.

C MSB 0LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0  0 1

C MSB 0LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0 0 1

1      1     0     1     1     1    0      1 d     d     d              #data5
XA User Guide 6-56 4/17/98



e
e C
al

which
 not
, the

r

r

r

ASR Arithmetic Shift Right

Syntax: ASR    dest, count

Operation:

Description:
If the count operand is greater than 0, the destination operand is logically shifted right by th
number of bits specified by the count operand. The low-order bits are shifted out through th
(carry) bit. If the count operand is 0, no shift is performed. To preserve the sign of the origin
operand, the MSBs of the result are sign-extended with the sign bit.

The count operand could be:
- An immediate value (#data4/5)
- A Register (Only 5 bits are used to implement up to 31 bit shifts)

The count operand could be an immediate value or a register. The count is a positive value
may be from 0 to 31 and the destination operand is a signed integer. The count operand is
affected by the operation. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts
destination operand must be the least significant half of a double word register.

Note:
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else fo
immediate shift count, shifting is continued until count is 0.
- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, o
R7:R6).

Size: Byte, Word, Double Word

Flags Updated: C, N, Z

(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)

count = count-1

Do While (count not equal to 0)

End While

dest.msb <- Sign bit
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ASR  Rd, Rs

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

Encoding:

ASR Rd, #data4
            Rd,#data5

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 10: word operation; SZ1/SZ0 = 11: double w
operation.

CMSB LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0 1 0

CMSB LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0 1 0

d     d     d              #data51 1 0 1 SZ1 SZ0 1 0
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BCC Branch if carry clear

Syntax: BCC    rel8

Operation:
(PC) <-- (PC) + 2
if (C) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic instruction (or other instruction that upd
the C flag) did not generate a carry (the carry flag contains a 0). If Carry is clear, the progra
execution branches at the location of the PC, plus the specified displacement, rel8. The bra
range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned in
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6 (t) / 3 (nt)

Encoding:

1     1     1     1      0     0     0     0 rel8
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BCS  Branch if carry set

Syntax: BCS     rel8

Operation:
(PC) <-- (PC) + 2
if (C) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic instruction (or other instruction that upd
the C flag) generated a carry (the carry flag contains a 1). The branch range is +254 bytes to
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     0     1 rel8
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BEQ  Branch if zero

Syntax: BEQ    rel8

Operation:
(PC) <-- (PC) + 2
if (Z) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the Z flag) had a result of zero (the Z flag contains a 1). The branch range is +254 by
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     1     1 rel8
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BG  Branch if greater than (unsigned)

Syntax: BG    rel8

Operation: (PC) <-- (PC) + 2
if (Z) OR (C) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than the source value, in an unsigned operation. The branch range is +254 bytes to
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     0     0 rel8
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BGE Branch if greater than or equal to (signed)

Syntax: BGE  rel8

Operation: (PC) <-- (PC) + 2
if (N) XOR (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than or equal to the source value, in a signed operation. The branch range is +254 b
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     1     0 rel8
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BGT Branch if greater than (signed)

Syntax: BGT rel8

Operation: (PC) <-- (PC) + 2
if  ((Z) OR (N)) XOR (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
greater than the source value, in a signed operation. The branch range is +254 bytes to -256
with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     1     0     0 rel8
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BKPT Breakpoint

Syntax: BKPT

Operation: (PC) <-- (PC) + 1
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (bkpt vector)
(PC.15-0) <-- code memory (bkpt vector)
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes a breakpoint trap. The breakpoint trap acts like an immediate interrupt, u
a vector to call a specific piece of code that will be executed in system mode. This instructi
intended for use in emulator systems to provide a simple method of implementing hardwar
breakpoints.

For a breakpoint to work properly under all conditions, it must have an instruction length no gr
than the smallest other instruction on the processor, in this case the one byte NOP. This
requirement exists because a breakpoint may be inserted in place of a NOP that is followe
another instruction that is branched to or otherwise executed without going through the break
If the breakpoint instruction were longer than the NOP, it would corrupt the next instruction
sequence if that instruction were executed.

The opcode for the breakpoint instruction is specifically assigned to be all ones (FFh). This
that un-programmed EPROM code memory will contain breakpoints. Similarly, the NOP
instruction is assigned to opcode 00 so that both "blank" code states map to innocuous instru

Size: None

Flags Updated:none5

Bytes: 1
Clocks: 23/19 (PZ)

Encoding:

5. All flags are affected during the PSW load from the vector table. It is possible that these flags are restore
by the debugger, but does not have to be the case.

 1    1     1     1      1     1     1     1
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BL Branch if less than or equal to (unsigned)

Syntax: BL rel8

Operation: (PC) <-- (PC) + 2
if (Z) OR (C) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than or equal to the source value, in an unsigned operation. The branch range is +254 b
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     0     1 rel8
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BLE  Branch if less than or equal (signed)

Syntax: BLE rel8

Operation: (PC) <-- (PC) + 2
if ((Z) OR (N)) XOR (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than or equal to the source value, in a signed operation. The branch range is +254 by
256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     1     0     1 rel8
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BLT Branch if less than (signed)

Syntax: BLT rel8

Operation: (PC) <-- (PC) + 2
if (N) XOR (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last compare instruction had a destination value tha
less than the source value, in a signed operation. The branch range is +254 bytes to -256 byte
the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      1     0     1     1 rel8
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BMI Branch if negative

Syntax: BMI rel8

Operation: (PC) <-- (PC) + 2
if (N) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the N flag) had a result that is less than 0 (the N flag contains a 1). The branch ran
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     1     1 rel8
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BNE Branch if not equal

Syntax: BNE rel8

Operation: (PC) <-- (PC) + 2
if (Z) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the Z flag) had a non-zero result (the Z flag contains a 0). The branch range is +254
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     0     1     0 rel8
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BNV Branch if no overflow

Syntax: BNV  rel8

Operation: (PC) <-- (PC) + 2
if (V) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the V flag) did not generate an overflow (The V flag contains a 0). The branch ran
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     0     0 rel8
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BOV Branch if overflow flag

Syntax: BOV rel8

Operation: (PC) <-- (PC) + 2
if (V) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the V flag) generated an overflow (the V flag contains a 1). The branch range is +254
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     0     1 rel8
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BPL  Branch if positive

Syntax: BPL rel8

Operation: (PC) <-- (PC) + 2
if (N) = 0 then
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction t
updates the N flag) had a result that is greater than 0 (the N flag contains a 0). The branch ra
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code
memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated:none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     1      0     1     1     0 rel8
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BR Unconditional Branch

Syntax: BR rel8

Operation: (PC) <-- (PC) + 2
(PC) <-- (PC + rel8*2)
(PC.0) <-- 0

Description: Branches unconditionally in the range of +254 bytes to -256 bytes, with the limita
that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: None

Flags Updated:none

Bytes: 2
Clocks: 6

Encoding:

1     1     1     1      1     1     1     0 rel8

1     1     0     0     0     1     0    1
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CALL  Call Subroutine Relative

Syntax: CALL rel16

Operation: (PC) <-- (PC) + 3
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC) <-- (PC + rel16*2)
(PC.0) <-- 0

Description: Branches unconditionally in the range of +65,534 bytes to -65,536 bytes, with 
limitation that the target address is word aligned in code memory. The 24-bit return addres
saved on the stack.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Note: Refer to section 6.3 for details of branch range

Size: None

Flags Updated:none

Bytes: 3
Clocks: 7/4(PZ)

Encoding:

byte 2: upper 8 bits of rel16
byte 3: lower 8 bits of rel16
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CALL Call Subroutine Indirect

Syntax: CALL    [Rs]

Operation: (PC) <-- (PC) + 2
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC.15-1) <-- (Rs.15-1)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address contained in the operand regis
anywhere within the 64K page following the CALL instruction.The return address (the addr
following the CALL instruction) of the calling routine is saved on the stack. The target addre
must be word aligned, as CALL or branch will force PC.bit0 to 0.

Note:
(1) Since the PC always points to the instruction following the CALL instruction and if that
happens to be on a different page, then the called routine should be located in that page (6

(2) if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 8/5(PZ)

Encoding:

 1     1     0     0     0     1     1     0 0     0     0     0     0     s     s     s
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CJNE Compare and jump if not equal

Syntax: CJNE    dest, src, rel8

Operation: (PC) <-- (PC) + # of instruction bytes
(dest) - (direct)      (result not stored)
if (Z) = 0 then
(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: The byte or word specified by the source operand is compared to the variable
specified by the destination operand and the status flags are updated. Jump to the specified a
if the values are not equal. The source and destination data are not affected by the operati
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Byte-Byte, Word-Word

Flags Updated: C, N, Z

(Note: this particular type of compare mustnot update the V or AC flags to duplicate the 80C5
function.)

CJNE Rd, direct, rel8

Bytes: 4
Clocks: 10t/7nt
Encoding:

byte 3: lower 8 bits of direct
byte 4: rel8

1      1     1     0   SZ   0     1     0 d     d     d     d      0   direct: 3 bits
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CJNE    Rd, #data8, rel8

Bytes: 4
Clocks: 9t/6nt

Encoding:

byte 3: rel8
byte 4: data#8

CJNE Rd, #data16, rel8

Bytes: 5
Clocks: 9t/6nt

Encoding:

byte 3: rel8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

CJNE    [Rd], #data8, rel8

Bytes: 4
Clocks: 10t/7nt
Encoding:

byte 3: rel8
byte 4: #data8

CJNE    [Rd], #data16, rel8

Bytes: 5
Clocks: 10t/7nt

Encoding:

byte 3: rel8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      1     1     0     0     0     1     1 d     d     d     d      0     0     0     0

1      1     1     0     1     0     1     1 d     d     d     d      0     0     0     0

1      1     1     0     0     0     1     1 0     d     d     d      1     0     0     0

1      1     1     0     1     0     1     1 0     d     d     d      1     0     0     0
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CLR Clear Bit

Syntax: CLR    bit

Operation: (bit) <-- 0

Description: Writes a 0 (clears) to the specified bit.

Size:Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     0     0     0     0     0      bit: 2
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CMP  Integer Compare

Syntax: CMP dest, src

Operation: dest - src

Description: The byte or word specified by the source operand is compared to the specified
destination operand by performing a twos complement binary subtraction of src from dest. 
flags are set according to the rules of subtraction. The source and destination data are not a
by the operation.

Size: byte-byte, word-word

Flags Updated: C, AC, V, N, Z

CMP    Rd, Rs

Operation: (Rd) - (Rs)

Bytes: 2
Clocks: 3

Encoding:

CMP    Rd, [Rs]

Operation: (Rd) - ((WS:Rs))

Bytes: 2
Clocks: 4

Encoding:

0      1     0     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s
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CMP    [Rd], Rs

Operation:  ((WS:Rd)) - (Rs)

Bytes: 2
Clocks: 4
Encoding:

CMP    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) - ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

CMP    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) - (Rs)
Encoding:

byte 3: offset8

CMP    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) - ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     0   SZ    0     1     0 s     s     s     s     1     d     d     d

0      1     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     0     0   SZ    1     0     0  s     s     s     s     1     d     d     d

0      1     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s
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CMP    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) - (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

CMP    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) - ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

CMP    [Rd+], Rs

Bytes: 2
Clocks: 5

Operation: ((WS:Rd)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

CMP    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) - (Rs)
Encoding:

byte 3: lower 8 bits of direct

0      1     0     0   SZ    1     0     1 s     s     s     s     1     d     d     d

0      1     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     0     0   SZ 0     1     1  s     s     s     s     1     d     d     d

0      1     0     0   SZ 1     1     0 s     s     s     s     1    direct: 3 bits
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CMP    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) - (direct)
Encoding:

byte 3: lower 8 bits of direct

CMP    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) - #data8
Encoding:

byte 3: #data8

CMP    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) - #data8
Encoding:

byte 3: #data8

0      1     0     0   SZ 1     1     0 d     d     d     d     0    direct: 3 bits

1      0     0     1     0     0     0     1 d     d     d     d      0     1     0    0

1      0     0     1     1     0     0     1 d     d     d     d      0     1     0    0

1      0     0     1     0     0     1     0 0     d     d     d      0     1     0    0
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CMP    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) - #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

CMP    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) - #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

CMP    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) - #data8
Encoding:

byte 3: offset8
byte 4: #data8

1      0     0     1     1     0     1     0 0     d     d     d      0     1     0    0

1      0     0     1     0     0     1     1 0     d     d     d      0     1     0    0

1      0     0     1     1     0     1     1 0     d     d     d      0     1     0    0

1      0     0     1     0    1     0     0 0     d     d     d     0      1     0     0
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CMP    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) - #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

CMP    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) - #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

CMP    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) - #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

CMP    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) - #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

1      0     0     1     1    1     0     0  0     d     d     d     0     1     0     0

1      0     0     1     0    1     0     1  0     d     d     d     0     1     0     0

1      0     0     1     1    1     0     1 0     d     d     d     0     1     0     0

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     0     0
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CMP    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) - #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     0     0
XA User Guide 6-86 4/17/98



r Rd.
CPL Integer Ones Complement

Syntax: CPL    Rd

Operation: Rd <-- (Rd)

Description: Performs a ones complement of the destination operand specified by the registe
The result is stored back into Rd. The destination may be either a byte or a word.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 3

Encoding:

1      0     0     1   SZ    0     0     0 d     d     d     d      1     0     1     0
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DA Decimal Adjust

Syntax: DA    Rd

Operation: if (Rd.3-0) > 9 or (AC) = 1
then (Rd.3-0) <-- (Rd.3-0) + 6

if (Rd.7-4) > 9 or (C) = 1
then (Rd.7-4) <-- (Rd.7-4) + 6

Description: Adjusts the destination register to BCD format (binary-coded decimal) following
ADD or ADDC operation on BCD values. This operation may only be done on a byte regist

If the lower 4 bits of the destination value are greater than 9, or if the AC flag is set, 6 is adde
the value. This may cause the carry flag to be set if this addition caused a carry out of the up
bits of the value.

If the upper 4 bits of the destination value are greater than 9, or if the carry flag was set by th
to the lower bits, 60 hex is added to the value. This may cause the carry flag to be set if this ad
caused a carry out of the upper 4 bits of the value. Carry will never be cleared by the DA instru
if it was already set.

Size: Byte

Flags Updated: C, N, Z

The carry flag may be set but not cleared. See the description of the carry flag update abov

Bytes: 2
Clocks: 4

Encoding:

Note: Please refer to the table on the next page.

1      0     0     1     0    0     0     0 d     d     d     d      1     0     0     0
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The following table shows the possible actions that may occur during the DA instruction, re
to the input conditions.

: The largest digit that could result from adding two BCD digits that caused the AC flag
be set is 3. This is with an ADDC instruction where 9 + 9 + 1 (the carry flag) = 13 hex.

** : The largest digit that could result in the upper nibble of a value by adding two BCD byt
with no carry from the bottom nibble (the AC flag = 0) is 2. For instance, 98 hex + 97 hex =
hex.

*** : The largest digit that could result in the upper nibble of a value by adding two BCD byt
with a carry from the bottom nibble (the AC flag = 1) is 3. For instance, 99 hex + 99 hex = 132

Table 6.6

Low nibble
(bits 3-0)

AC
Carry to
high
nibble

High
nibble
(bits 7-4)

Initial
C flag

Number
added to
value

Resulting
C flag

0 - 9 0 0 0 - 9 0 00 0

A - F 0 1 0 - 8 0 06 0

0 - 3 * 1 0 0 - 9 0 06 0

0 - 9 0 0 A - F 0 60 1

A - F 0 1 9 - F 0 66 1

0 - 3 * 1 0 A - F 0 66 1

0 - 9 0 0 0 - 2 ** 1 60 1

A - F 0 1 0 - 2 ** 1 66 1

0 - 3 * 1 0 0 - 3 *** 1 66 1
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DIV.w 16x8     Signed Division
DIV.d 32x16  Signed Division
DIVU.b 8x8  Unsigned Division
DIVU.w 16x8     Unsigned Division
DIVU.d 32x16   Unsigned Division

Description: The byte or word specified by the source operand is divided into the variable
specified by the destination operand.

For DIVU.b, the destination operand can be any byte register that is the least significant byte
word register. For DIV.w and DIVU.w, the destination operand must be a word register, an
DIV.d and DIVU.d, the destination operand must identify a word register that is the low-wor
a double-word register (see note below). The result is stored in the destination register as t
quotient (8 bits for DIVU.b, DIVU.w, DIV.w, and DIVU.w, and 16-bits for DIV.d and DIVU.d)
in the least significant half and the remainder (same size as the quotient), in the most signi
half (except for DIVU.b which stores the quotient in the destination as identified by the lower
of a word register and the remainder at upper half of the same word register).

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
R7:R6).

Size: Byte-Byte, Word-Byte, Double word-Word

Flags Updated: C, V, N, Z

The carry flag is always cleared. The V flag is set in the following cases, otherwise it is clea

- DIVU.b: V is set if a divide by 0 occurred. A divide by 0 also causes a hardware trap
to be generated.
- DIV.w, DIVU.w: V is set if the result of the divide is larger than 8 bits (the result does
not fit in the destination).
- DIV.d, DIVU.d: V is set if the result of the divide is larger than 16 bits (the result does
not fit in the destination).

The Z, and N flags are set based on the quotient (integer) portion of the result only and not o
remainder.

Examples:

a) DIVU.b R4L, R4H - will store the result of the division of R4L by R4H in
R4L and R4H (quotient in register R4L, remainder in register R4H).

b) DIV.w R0, R2L - will store the result of word register R0 divided by byte register
R2L in word register R0 (quotient in register R0L, remainder in register R0H).

c) DIV.d R4,R2 - will store the result of double-word register R5:R4 divided by word
register R2 in double-word register R5:R4 (quotient in R4, remainder in R5)
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Note: For all divides except DIVU.b, the destination register size is the same as indicated b
instruction (by the “.b”, “.w”, or “.d”) and the source register is half that size.

DIV.w        Rd, Rs
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (signed divide)

(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:

DIV.w    Rd, #data8
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (signed divide)

(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:

byte 3: #data8

DIV.d    Rd, Rs
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (signed divide)

(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:

1      1     1     0     0     1     1     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      1     0     1     1

1      1     1     0     1     1     1     1 d     d     d     0      s     s     s     s
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DIV.d    Rd, #data16
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #data16 (signed divide)

(Rd+1)<-- 16-bit remainder of (Rd) / #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

DIVU.b    Rd, Rs
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (RdL) / (Rs) (unsigned divide)

(RdH) <-- 8-bit remainder of (RdL) / (Rs)
Encoding:

DIVU.b    Rd, #data8
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (RdL) / #data8 (unsigned divide)

(RdH) <-- 8-bit remainder of (RdL) / #data8
Encoding:

byte 3: #data8

1      1     1     0     1     0     0     1 d     d     d     0      1     0     0     1

1      1     1     0     0     0     0     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      0     0     0     1
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DIVU.w    Rd, Rs
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Clocks: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (unsigned divide)

(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:

DIVU.w    Rd, #data8
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Clocks: 12

Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8

Encoding:

byte 3: #data8

DIVU.d    Rd, Rs
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (unsigned divide)

(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:

1      1     1     0     0     1     0     1 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     0 d     d     d     d      0     0     1     1

1      1     1     0     1     1     0     1 d     d     d     0      s     s     s     s
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DIVU.d    Rd, #data16
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Clocks: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #data16 (unsigned divide)

(Rd+1)<-- 16-bit remainder of (Rd) / #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      1     1     0     1     0     0     1 d     d     d     0      0     0     0     1
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DJNZ  Decrement and jump if not zero

Syntax: DJNZ    dest, rel8

Operation: (PC) <-- (PC) + 3
(dest) <-- (dest) - 1
if (Z) = 0 then
(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: Controls a loop of instructions. The parameters are: a condition code (Z), a co
(register or memory), and a displacement value. The instruction first decrements the count
one, tests the condition if the result of decrement is 0 (for termination of the loop); if it is fal
execution continues with the next instruction. If true, execution branches to the location indic
by the current value of the PC plus the sign extended displacement. The value in the PC is
address of the instruction following DJNZ.

The branch range is +254 bytes to -256 bytes, with the limitation that the target address is 
aligned in code memory.The destination operand could be byte or word.

Note: Refer to section 6.3 for details of jump range

Size: Byte, Word

Flags Updated: N, Z

DJNZ    Rd, rel8

Bytes: 3
Clocks: 8t/5nt
Encoding:

byte 3: rel8

DJNZ    direct, rel8

Bytes: 4
Clocks: 9t/5nt
Encoding:

byte 3: lower 8 bits of direct
byte 4: rel8

1      0     0     0   SZ   1     1     1 d     d     d     d      1     0     0     0

1      1     1     0   SZ   0     1     0 0     0     0     0     1   direct: 3 bits
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FCALL Far Call Subroutine Absolute

Syntax: FCALL    addr24

Operation: (PC) <-- (PC) + 4
(SP) <-- (SP) - 4
((SP)) <-- (PC)
(PC.23-0) <-- addr24
(PC.0) <-- 0

Description: Causes an unconditional branch to the absolute memory location specified by
second operand, anywhere in the 16 megabytes XA address space. The 24-bit return addr
address following the CALL instruction) of the calling routine is saved on the stack. The tar
address must be word aligned as CALL or branch will force PC.bit0 to 0.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size:None

Flags Updated: none

Bytes: 4
Clocks: 12/8(PZ)

Encoding:

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

1     1     0     0     0     1     0     0 address: middle 8 bits (bits 15-8)
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FJMP Far Jump Absolute

Syntax: FJMP    addr24

Operation: (PC.23-0) <-- addr24
(PC.0) <-- 0

Description: Causes an unconditional branch to the absolute memory location specified by
second operand, anywhere in the 16 megabytes XA address space.
Note: The target address must be word aligned as JMP always forces PC to an even addre

Note: if the XA is in page 0 mode, only 16-bits of the address will be used.

Size: None

Flags Updated: none

Bytes: 4
Clocks: 6

Encoding:

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

1     1     0     1     0     1     0     0 address: middle 8 bits (bits 15-8)
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JB Relative Jump if bit set

Syntax: JB    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0

Description: If the specified bit is a one, program execution jumps at the location of the PC, p
the specified displacement. If the specified bit is clear, the instruction following JB is executed
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 10t/6nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1  1     0     0     0     0     0     bit: 2
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JBC Jump if bit is set then clear bit

Syntax: JBC    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0; (bit) <-- 0

Description: If the bit specified is set, branch to the address pointed to by the PC plus the spec
displacement. The specified bit is then cleared allowing implementation of semaphore opera
If the specified bit is clear, the instruction following JBC is executed. The branch range is +
bytes to -256 bytes, with the limitation that the target address is word aligned in code mem

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 11t/7nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1 1     1     0     0     0     0     bit: 2
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JMP Relative Jump

Syntax: JMP rel16

Operation: (PC) <-- (PC) + 3
(PC) <-- (PC + rel16*2)
(PC.0) <-- 0

Description: Jumps unconditionally. The branch range is +65,535 bytes to -65,536 bytes, with
limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of jump range

Size: None

Flags Updated: none

Bytes: 3
Clocks: 6

Encoding:

byte 3: lower 8 bits of rel16

1     1     0     1     0     1     0     1             rel16: upper 8 bits
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JMP Jump Indirect through Register

Syntax: JMP    [Rs]

Operation: (PC) <-- (PC) + 2
(PC.15-1) <-- (Rs.15-1)      (note that PC.23-16 is not affected)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address contained in the operand word
register, anywhere within the 64K code page following the JMP instruction.The value of the
used in the target address calculation is the address of the instruction following the JMP
instruction.
The target address must be word aligned as JMP will force PC.bit0 to 0.

Size: none

Flags Updated: none

Bytes: 2
Clocks: 7

Encoding:

1     1     0     1     0     1     1     0  0     1     1     1     0     s     s     s
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JMP Jump indirect through register

Syntax: JMP    [A+DPTR]

Operation: (PC) <-- (PC) + 2
(PC15-1) <-- (A) + (DPTR)
(PC.0) <-- 0

Description: Causes an unconditional branch to the address formed by the sum of the 80C
compatibility registers A and DPTR, anywhere within the 64K code page following the JMP
instruction. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Note: The target address must be word aligned as JMP will force PC.bit0 to 0.

Flags Updated:none

Bytes: 2
Clocks: 5

Note: A and DPTR are pre-defined registers used for 80C51 code translation.

Encoding:

1      1     0     1     0     1     1     0  0     1     0     0     0     1     1     0
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JMP Jump double indirect

Syntax: JMP    [[Rs+]]

Operation: (PC) <-- (PC) + 2
(PC.15-0) <-- code memory ((WS:Rs))
(PC.0) <-- 0
(Rs) <-- (Rs) + 2

Description: Causes an unconditional branch to the address contained in memory at the ad
pointed to by the register specified in the instruction. The specified register is post-increme

This 2-byte instruction may be used to compress code size by using it to index through a ta
procedure addresses that are accessed in sequence. Each procedure would end with anot
[[R+]] that would immediately go to the next procedure whose address is in the table.

The procedures must be located in the same 64K address page of the executed “Jump Do
indirect” instruction (although the table could be in any page). This instruction can result in
substantial code compression and hence cost reduction through smaller memory requiremen
register pointer (index to the table) being automatically post-incremented after the execution
instruction. The 24-bit address is identified by combining the low order 16-bit of the PC and e
of high 8-bits of PC or the contents of a byte-size CS register as chosen by the program thro
segment select Special Function Register (SFR).

Note: The subroutine addresses must be word aligned as JMP will force PC.bit0 to 0.

Flags Updated: none

Bytes: 2
Clocks: 8

Encoding:

1     1     0     1     0     1     1     0 0     1     1     0     0     s     s     s
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JNB Jump if bit not set

Syntax: JNB    bit, rel8

Operation: (PC) <-- (PC) + 4
if (bit) = 0 then

(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: If the specified bit is a zero, program execution jumps at the location of the PC, p
the specified displacement. If the specified bit is set, the instruction following JB is execute
The branch range is +254 bytes to -256 bytes, with the limitation that the target address is 
aligned in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated:none

Bytes: 4
Clocks: 10t/6nt

Encoding:

byte 3: lower 8 bits of bit address
byte 4: rel8

1      0     0     1     0    1     1     1 1     0     1    0      0     0     bit: 2
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JNZ Jump if the A register is not zero

Syntax: JNZ    rel8

Operation: (PC) <-- (PC) + 2
if (A) not equal to 0, then
(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are not zero.
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

 1     1     1     0     1     1     1     0 rel8
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JZ Jump if the A register is zero

Syntax: JZ    rel8

Operation: (PC) <-- (PC) + 2
If (A) = 0 then
(PC.15-0) <-- (PC + rel8*2);
(PC.0) <-- 0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are zero. T
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word al
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 2
Clocks: 6t/3nt

Encoding:

1     1     1     0     1     1     0     0  rel8
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LEA Load effective address

Syntax: LEA    Rd, Rs+offset8/16

Operation: (Rd) <-- (Rs)+offset8/16

Description: The word specified by the source operand is added to the offset value and the r
is stored into the register specified by the destination operand. The source and destination op
are both registers. The offset value is an immediate data field of either 8 or 16 bits in length
source data is not affected by the operation.

This instruction mimics the address calculation done during other instructions when the reg
indirect with offset addressing mode is used, allowing the resulting address to be saved for
purposes.

Note: The result of this operation is always a word since it duplicates the calculation of the ind
with offset addressing mode.

Size: Word-Word

Flags Updated: none

LEA    Rd, Rs+offset8

Bytes: 3
Clocks: 3
Encoding:

byte 3: offset8

LEA    Rd, Rs+offset16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rs)+offset16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     0     0     0    0     0     0 0     d     d     d     0      s     s     s

0      1     0     0     1    0     0     0 0     d     d     d     0      s     s     s
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LSR Logical Shift Right

Syntax: LSR dest, count

Operation:

Description: If the count operand is greater than the variable specified by the destination
operand is logically shifted right by the number of bits specified by the count operand. The
MSBs of the result are filled with zeroes.The low-order bits are shifted out through the C (c
bit. If the count operand is 0, no shift is performed.The count operand is a positive value w
may be from 0 to 31. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the
destination operand must be the least significant half of a double word register. The count 
affected by the operation.

Note:
 - For Logical Shift Left, use ASL ignoring the N flag.
 - If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else f
immediate shift count, shifting is continued until count is 0.
 -  a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, 
R7:R6).

Size: Byte, Word, Double Word

Flags Updated: C, N, Z (N = 0 after an LSR unless count = 0, then it is unchanged)

LSR    Rd, Rs (Rs = Byte-register)

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts --> 4+1 for each 2 bits of shift

For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding:

(C) <- (dest.0)
(dest.bit n) <- (dest.bit n+1)

count = count-1

Do While (count not equal to 0)

End While

(dest.msb) <- 0

CMSB0 LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0  0 0
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on;
LSR    Rd, #data4
Rd, #data5

Operation:

Bytes: 2
Clocks: For 8/16 bit shifts --> 4+1 for each 2 bits of shift

For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding: (for byte and word data sizes)

(for double word data size)

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operati
SZ1/SZ0 = 11: double word operation.

CMSB0 LSB

(Rd)

d     d     d     d            #data41 1 0 1 SZ1 SZ0  0 0

1      1     0     1     1    1     0     0 d     d     d              #data5
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MOV  Move Data

Syntax: MOV    dest, src

Operation: dest <- src

Description: The byte or word specified by the source operand is copied into the variable spec
by the destination operand. The source data is not affected by the operation.

Source and destination operands may be a register in the register file, an indirect address sp
by a pointer register, an indirect address specified by a pointer register added to an immed
offset of 8 or 16 bits, or a direct address. Source operands may also be specified as immedia
contained within the instruction. Auto-increment of the indirect pointers is available for simp
indirect (not offset) addressing.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOV    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rs)
Encoding:

MOV    Rd, [Rs]

Bytes: 2
Clocks: 3
Operation: (Rd) <-- ((WS:Rs))
Encoding:

1      0     0     0   SZ    0     0     1 d     d     d     d      s     s     s     s

1      0     0     0   SZ    0     1     0 d     d     d     d     0     s     s     s
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MOV    [Rd], Rs

Bytes: 2
Clocks: 3

Operation: ((WS:Rd)) <-- (Rs)
Encoding:

MOV    Rd, [Rs+offset8]

Bytes: 3
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

MOV    [Rd+offset8], Rs

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- (Rs)
Encoding:

byte 3: offset8

MOV    Rd, [Rs+offset16]

Bytes: 4
Clocks: 5
Operation: (Rd) <-- ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

1      0     0     0   SZ    0     1     0  s     s     s     s     1     d     d     d

1      0     0     0   SZ    1     0     0 d     d     d     d     0     s     s     s

1      0     0     0   SZ    1     0     0 s     s     s     s     1     d     d     d

1      0     0     0   SZ    1     0     1 d     d     d     d     0     s     s     s
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MOV    [Rd+offset16], Rs

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- (Rs)

Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOV    Rd, [Rs+]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

MOV    [Rd+], Rs

Bytes: 2
Clocks: 4

Operation: ((WS:Rd)) <-- (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

MOV    [Rd+], [Rs+]

Bytes: 2
Clocks: 6
Operation: ((WS:Rd)) <-- ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1      0     0     0   SZ    1     0     1  s     s     s     s     1     d     d     d

1      0     0     0   SZ    0     1     1 d     d     d     d     0     s     s     s

1      0     0     0   SZ    0     1     1 s     s     s     s     1     d     d     d

1      0     0     1   SZ    0     0     0  0     d     d     d    0     s     s     s
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MOV    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (Rs)
Encoding:

byte 3: lower 8 bits of direct

MOV    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct

MOV    direct, [Rs]

Bytes: 3
Clocks: 4
Operation: (direct) <-- ((WS:Rs))
Encoding:

byte 3: lower 8 bits of direct

MOV    [Rd], direct

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct

1      0     0     0   SZ    1     1     0  s     s     s     s     1    direct:3 bits

1      0     0     0   SZ    1     1     0  d     d     d     d     0   direct:3 bits

1      0     1     0   SZ    0     0     0  1     s     s     s     0    direct:3 bits

1      0     1     0   SZ    0     0     0  0    d      d     d     0   direct:3 bits
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MOV    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- #data8
Encoding:

byte 3: #data8

MOV    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MOV    [Rd], #data8

Bytes: 3
Clocks: 3
Operation: ((WS:Rd)) <-- #data8
Encoding:

byte 3: #data8

MOV    [Rd], #data16

Bytes: 4
Clocks: 3
Operation: ((WS:Rd)) <-- #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0    0     0     1 d     d     d     d      1     0     0     0

1      0     0     1     1    0     0     1 d     d     d     d      1     0     0     0

1      0     0     1     0    0     1     0 0     d     d     d      1     0     0     0

1      0     0     1     1    0     1     0 0     d     d     d      1     0     0     0
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MOV    [Rd+], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

MOV    [Rd+], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MOV    [Rd+offset8], #data8

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #data8
Encoding:

byte 3: offset8
byte 4: #data8

MOV    [Rd+offset8], #data16

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    0     1     1 0     d     d     d      1     0     0     0

1      0     0     1     1    0     1     1 0     d     d     d      1     0     0     0

1      0     0     1     0     1     0     0  0     d     d     d      1    0     0     0

1      0     0     1     1     1     0     0 0     d     d     d      1    0     0     0
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MOV    [Rd+offset16], #data8

Bytes: 5
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

MOV    [Rd+offset16], #data16

Bytes: 6
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

MOV    direct, #data8

Bytes: 4
Clocks: 3
Operation: (direct) <-- #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

MOV    direct, #data16

Bytes: 5
Clocks: 3
Operation: (direct) <-- #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     1     0     1 0     d     d     d      1    0     0     0

1      0     0     1     1     1     0     1  0     d     d     d      1    0     0     0

1      0     0     1     0     1     1     0 0   direct: 3 bits   1    0     0     0

1      0     0     1     1     1     1     0 0   direct: 3 bits    1    0     0     0
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MOV    direct, direct

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct)
Encoding:

byte 3: lower 8 bits of direct (dest)
byte 4: lower 8 bits of direct (src)

MOV    Rd, USP (move from user stack pointer)

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (USP)
Encoding:

MOV    USP, Rs (move to user stack pointer)

Bytes: 2
Clocks: 3
Operation: (USP) <-- (Rs)
Encoding:

1      0     0     1   SZ    1     1     1 0   d dir: 3 bits     0    s dir: 3 bits

1     0     0     1     0     0     0     0 d     d     d     d     1     1     1     1

1     0     0     1     1     0     0     0  s     s     s     s     1     1     1     1
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MOV Move Bit to Carry

Syntax: MOV   C, bit

Operation: (C) <-- (bit)

Description: Copies the specified bit to the carry flag.

Size: Bit

Flags Updated: none

Note: C is written as the destination of the move, not as a status flag

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     0     1     0     0     0     bit: 2
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MOV Move Carry to Bit

Syntax: MOV   bit, C

Operation: (bit) <-- (C)

Description: Copies the carry flag to the specified bit.

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     0     1     1     0     0      bit: 2
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MOVC Move Code

Syntax: MOVC    Rd, [Rs+]

Operation: (Rd) <-- code memory ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Description: Contents of code memory are copied to an internal register. The byte or word
specified by the source operand is copied to the variable specified by the destination opera
the case of MOVC, the pointer segment selection gives the choices of PC23-16 or CS segment
(currentworking segment referred here as WS), rather than DS or ES as is used for all other
instructions.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4

Encoding:

1      0     0     0   SZ    0     0     0 d     d     d     d     0     s     s     s
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MOVC Move Code to A (DPTR)

Syntax: MOVC   A, [A+DPTR]

Operation: PC <- PC+2
(A) <-- code memory (PC.23-16:(A) + (DPTR))

Description: The byte located at the code memory address formed by the sum of A and the D
is copied to the A register. The A and DPTR registers are pre-defined registers used for 80
compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for details
80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Clocks: 6

Encoding:

.

1      0     0     1    0     0     0     0 0     1     0     0     1     1      1     0
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MOVC Move Code to A (PC)

Syntax: MOVC A, [A+PC]

Operation: PC <- PC+2
(A) <-- code memory [PC.23-16: (A +PC.15-0)]

Note: Only 16-bits of A+PC are used

Description: The byte located at the code memory address formed by the sum of A and the cu
Program Counter value is copied to the A register. The A register is a pre-defined register us
80C51 compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for
details of 80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Clocks: 6

Encoding:

1      0     0     1    0     0     0     0 0     1     0     0     1     1      0     0
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MOVS Move Short

Syntax: MOVS   dest, #data

Description: Four bits of signed immediate data are moved to the destination. The immediate
is sign-extended to the proper size, then moved to the variable specified by the destination op
which may be a byte or a word. The immediate data range is +7 to -8. This instruction is us
save time and code space for the many instances where a small data constant is moved to
destination.

Size: Byte-Byte, Word-Word

Flags Updated:N, Z

MOVS    Rd, #data4

Bytes: 2
Clocks: 3
Operation: (Rd) <-- sign-extended #data4
Encoding:

MOVS    [Rd], #data4

Bytes: 2
Clocks: 3
Operation: ((WS:Rd)) <-- sign-extended #data4
Encoding:

MOVS    [Rd+], #data4

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- sign-extended #data4

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

1      0     1     1   SZ    0     0     1 d     d     d     d           #data4

1      0     1     1   SZ    0     1     0 0     d     d     d           #data4

1      0     1     1   SZ    0     1     1  0     d     d     d           #data4
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MOVS    [Rd+offset8], #data4

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)+offset8) <-- sign-extended #data4
Encoding:

byte 3: offset8

MOVS    [Rd+offset16], #data4

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)+offset16) <-- sign-extended #data4
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOVS    direct, #data4

Bytes: 3
Clocks: 3
Operation: (direct) <-- sign-extended #data4

Encoding:

byte 3: lower 8 bits of direct

1      0     1     1   SZ    1     0     0 0     d     d     d           #data4

1      0     1     1   SZ    1     0     1  0     d     d     d           #data4

1      0     1     1   SZ    1     1     0 0   direct: 3 bits        #data4
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MOVX Move External Data

Syntax: MOVX   dest, src

Description: Move external data to or from an internal register. The byte or word specified by
source operand is copied into the variable specified by the destination operand. This instru
allows access to data external to the microcontroller in the address range of 0 to 64K. The sta
indirect move may access external data only above the boundary where internal data RAM
whereas MOVX always forces an external access. MOVX only operates on the first 64K of
external data memory. This instruction is included to allow compatibility with 80C51 code.

Note that in the 80C51 MOVX instruction using @Ri as a pointer (where i could be 0 or 1),
pointer was eight bits in length and the upper address lines were not driven on the external bu
XA always drives all of the enabled external bus address lines. The use of the pointer depen
whether compatibility mode is in use. If CM = 0 (compatibility mode off, the default), 16 bits
R0 or R1 are used as the address within data segment 0. If CM = 1 (compatibility mode on),
of R0L or R0H are used as the bottom eight bits of the address, while the remainder of the ad
bits, including those corresponding to the data segment are 0.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOVX    Rd, [Rs]

Bytes: 2
Clocks: 6
Operation: (Rd) <-- external data memory ((Rs))

Encoding:

MOVX    [Rd], Rs

Bytes: 2
Clocks: 6
Operation: external data memory ((Rd)) <-- (Rs)
Encoding:

1      0     1     0   SZ    1     1     1 d     d     d     d     0     s     s     s

1      0     1     0   SZ    1     1     1 s     s      s     s     1     d     d     d
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MUL.w 16x16 Signed Multiply
MULU.b  8x8    Unsigned Multiply
MULU.w 16x16 Unsigned Multiply

Description: The byte or word specified by the source operand is multiplied by the variable
specified by the destination operand.

The destination operand must be the first half of a double size register (word for a byte mu
and double word for a word multiply). The result is stored in the double size register.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
and R7:R6).

Size: Byte-Byte, Word-Word

Flags Updated: C, V, N, Z

The carry flag is always cleared by a multiply instruction. The V flag is set in the following
cases, otherwise it is cleared:
- MULU.b: V is set if the result of the multiply is greater than FFh (the upper byte is not equa
0).
- MULU.w: V is set if the result of the multiply is greater than FFFFh (the upper word is not
equal to 0).
- MUL.w: V is set if the absolute value of the result of the multiply is greater than 7FFFh (th
upper word is not a sign extension of the lower word).

Examples:
a) MUL.w R0,R5 stores the product of word register 0 and word register 5 in double word
register 0 (least significant word in word register R0, most significant word in word register 

b) MULU.b R4L, R4H will store the MS byte of the product of R4L and R4H in R4H and the L
byte in R4L.
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MUL.w    Rd, Rs
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 2
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (signed multiply)

(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:

MUL.w    Rd, #data16
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 4
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #data16 (signed multiply)

(Rd) <-- Least significant word of (Rd) * #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

MULU.b    Rd, Rs
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 2
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * (Rs) (unsigned multiply)

(RdL) <-- Least significant byte of (RdL) * (Rs)
Encoding:

1      1     1     0     0     1     1     0 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     1 d     d     d     d      1     0     0     0

1      1     1     0     0     0     0     0 d     d     d     d      s     s     s     s
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)

MULU.b    Rd, #data8
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 3
Clocks: 12
Operation: (RdH) <-- Most significant byte of (RdL) * #data8 (unsigned multiply)

(RdL) <-- Least significant byte of (RdL) * #data8
Encoding:

byte 3: #data8

MULU.w    Rd, Rs
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 2
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (unsigned multiply)

(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:

MULU.w    Rd, #data16
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 4
Clocks: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #data16 (unsigned multiply

(Rd) <-- Least significant word of (Rd) * #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      1     1     0     1     0     0     0 d     d     d     d     0     0     0     0

1      1     1     0     0     1     0     0 d     d     d     d      s     s     s     s

1      1     1     0     1     0     0     1 d     d     d     d      0     0     0     0
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NEG Negate

Syntax: NEG   Rd

Operation: Rd <-- (Rd) + 1

Description: The destination register is negated (twos complement). The destination may be a
or a word.

Size: Byte, Word

Flags Updated: V, N, Z

The V flag is set if a twos complement overflow occurred: the original value = result = 8000
for a word operation or 80 hex for a byte operation.

Bytes: 2
Clocks: 3

Encoding:

1      0     0     1   SZ   0     0     0 d     d     d     d      1     0     1     1
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NOP No Operation

Syntax: NOP

Operation: PC <- PC + 1

Description: Execution resumes at the following instruction. This instruction is defined as b
one byte in length in order to allow it to be used to force word alignment of instructions that
branch targets, or for any other purpose. It may also be used to as a delay for a predictable a
of time.

Size: None

Flags Updated:none

Bytes: 1
Clocks: 3

Encoding:

0     0     0     0      0     0     0     0
XA User Guide 6-130 4/17/98



the
2 bits.

tion
r all

4, or

on;
NORM Normalize

Syntax: NORM    Rd, Rs

Operation:

Description: Logically shifts left the contents of the destination until the MSB is set, storing 
number of shifts performed in the count (source) register. The data size may be 8, 16, or 3

If the destination value already has the MSB set, the count returned will be 0. If the destina
value is 0, the count returned will be 0, the N flag will be cleared, and the Z flag will be set. Fo
other conditions, the N flag will be 1 and the Z flag will be 0.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R
R7:R6).
The last pair, i.e, R7:R6 is probably not a good idea as R7 is the current stack pointer.

Size: Byte, Word, Double Word

Flags Updated: N, Z

Bytes: 2
Clocks: For 8 or 16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding:

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operati
 SZ1/SZ0 = 11: double word operation.

MSB 0LSB

(Rd)

d     d     d     d      s     s     s     s1 1 0 0 SZ1 SZ0 1 1
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OR Logical OR

Syntax: OR   dest, src

Description: Bitwise logical OR the contents of the source to the destination. The byte or w
specified by the source operand is logically ORed to the variable specified by the destinatio
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

OR    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:

OR    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:

OR    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)
Encoding:

0      1     1     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     1     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      1     1     0   SZ    0     1     0 s     s     s     s     1     d     d     d
XA User Guide 6-132 4/17/98



OR    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

OR    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs)
Encoding:

byte 3: offset8

OR    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

OR    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     1     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     1     0   SZ    1     0     0 s     s     s     s     1     d     d     d

0      1     1     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     1     0   SZ    1     0     1  s     s     s     s     1     d     d     d
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OR    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

OR    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

OR    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:

byte 3: lower 8 bits of direct

OR    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     1     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     1     0   SZ    1     1     0 s     s     s     s     1    direct: 3 bits

0      1     1     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
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OR    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:

byte 3: #data8

OR    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

OR    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8
Encoding:

byte 3: #data8

OR    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     1    0

1      0     0     1     1     0     0     1 d     d     d     d      0     1     1    0

1      0     0     1     0     0     1     0 0     d     d     d      0     1     1    0

1      0     0     1     1     0     1     0 0     d     d     d      0     1     1    0
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OR    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

OR    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

OR    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8
Encoding:

byte 3: offset8
byte 4: #data8

OR    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     1    0

1      0     0     1     1     0     1     1 0     d     d     d      0     1     1    0

1      0     0     1     0    1     0     0 0     d     d     d     0      1     1     0

1      0     0     1     1    1     0     0 0     d     d     d     0     1     1     0
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OR    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

OR    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

OR    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) + #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

OR    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) + #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1  0     d     d     d     0     1     1     0

1      0     0     1     1    1     0     1  0     d     d     d     0     1     1     0

1      0     0     1     0    1     1     0 0   direct: 3 bits    0     1     1     0

1      0     0     1     1    1     1     0 0   direct: 3 bits    0     1     1     0
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ORL Logical OR bit

Syntax: ORL    C, bit

Operation:(C) <-- (C) + (bit)

Description: Logical (inclusive) OR a bit to the Carry flag. Read the specified bit and logically O
it to the Carry flag.
(C is written as the destination of the ORL, not as a status flag)

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     1     0     0     0     bit: 2
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ORL Logical OR complement of bit

Syntax: ORL   C, /bit

Operation: (C) <-- (C) + (bit)

Description: Logically OR the complement of a bit to the Carry flag. Read the specified bit,
complement it, and logically OR it to the Carry flag.
(C is written as the destination of the move, not as a status flag)

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0 0     1     1     1     0     0     bit: 2
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POP Pop
POPU Pop User

Syntax: POP    dest

Description: The stack is popped and the data written to the specified directly addressed loca
The data size may be byte or word. POP uses the current stack pointer, while POPU force
access to the user stack.

Size: Byte, Word

Flags Updated:none

POP    direct

Bytes: 3
Clocks: 5
Operation: (direct) <-- ((SP))

(SP) <-- (SP) + 2
Encoding:

byte 3:  8 bits of direct

POPU    direct

Bytes: 3
Clocks: 5
Operation: (direct) <-- ((USP))

(USP) <-- (USP) + 2
Encoding:

byte 3:  8 bits of direct

1      0     0     0   SZ    1     1     1 0     0     0     1     0    direct: 3 bits

1      0     0     0   SZ    1     1     1 0     0     0     0     0    direct: 3 bits
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POP Pop Multiple
POPU Pop User Multiple

Syntax: POP     Rlist
POPU     Rlist

Description: Pop the specified registers (one or more) from the stack. The stack is popped (
1 to 8 times) and the data stored in the specified registers. Any combination of word registe
the group R0 to R7 may be popped in a single instruction in a word operation. Or, any combin
of byte registers in the group R0L to R3H or the group R4L to R7H may be popped in a sin
instruction in a byte operation. POP uses the current stack pointer, while POPU forces an acc
the user stack.

Note: Rlist is a bit map that represents each register to be popped. The registers are in the ord
R6, R5,......, R0, for word registers or R3H.... R0L, or R7H... R4L for byte registers. The pop o
is from right to left, i.e., the register specified by the rightmost one in Rlist will be popped first,
The order must be the reverse of that used by the preceding PUSH instruction. Note that if the
register list is used first with a PUSH, then with a POP, the original register contents will be
restored. The order in which the registers are called out in the source code is not important be
the Rlist operand is encoded as a fixed order bit map (see below).

Size: Byte, Word

Flags Updated: none

POP    Rlist

Bytes: 2
Clocks: 4 + 2 per additional register
Operation: Repeat for all selected registers (Ri):

(Ri) <-- ((SP))
(SP) <-- (SP) + 2

Encoding:

POPU    Rlist

Bytes: 2
Clocks: 4 + 2 per additional register
Operation: Repeat for all selected registers (Ri):

(Ri) <-- ((USP))
(USP) <-- (USP) + 2

Encoding:

 0   H/L   1     0   SZ    1     1     1 Rlist

 0   H/L   1     1   SZ    1     1     1 Rlist
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Rlist bit definitions for a byte POP from register(s) in the upper register group (R4L through R

Rlist bit definitions for a byte POP from register(s) in the lower register group (R0L through R3

Rlist bit definitions for a word POP from any register(s) (R0 through R7):

R7H R7L R6H R6L R5H R5L R4H R4L

R3H R3L R2H R2L R1H R1L R0H R0L

R7 R6 R5 R4 R3 R2 R1 R0
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PUSH Push
PUSHU Push User

Syntax: PUSH        src
PUSHU      src

Description: The specified directly addressed data is pushed onto the stack. The data size m
byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to the use

Size: Byte, Word

Flags Updated:none

PUSH    direct

Bytes: 3
Clocks: 5
Operation: (SP) <-- (SP) - 2

((SP)) <-- (direct)
Encoding:

byte 3:  8 bits of direct

PUSHU    direct

Bytes: 3
Clocks: 5
Operation: (USP) <-- (USP) - 2

((USP)) <-- (direct)
Encoding:

byte 3:  8 bits of direct

1      0     0     0   SZ    1     1     1 0     0     1     1     0    direct: 3 bits

1      0     0     0   SZ    1     1     1 0     0     1     0     0    direct: 3 bits
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PUSH Push Multiple
PUSHU Push User Multiple

Syntax: PUSH      Rlist
PUSHU    Rlist

Description: Push the specified registers (one or more) onto the stack. The specified registe
pushed onto the stack. Any combination of word registers in the group R0 to R7 may be push
a single instruction in a word operation. Or, any combination of byte registers in the group R0
R3H or the group R4L to R7H may be pushed in a single instruction in a byte operation. The
size may be byte or word. PUSH uses the current stack pointer, while PUSHU forces an acc
the user stack.

Note: Rlist is a bit map that represents each register to be pushed. The registers are in the or
R6, R5,......, R0, for word registers or R3H.... R0L, or R7H... R4L for byte registers. The push o
is from left to right, i.e., the register specified by the leftmost one in Rlist will be pushed first,
The order must be the reverse of that used by the corresponding POP instruction. Note tha
same register list is used first with a PUSH, then with a POP, the original register contents w
restored. The order in which the registers are called out in the source code is not important be
the Rlist operand is encoded as a fixed order bit map (see below).

Size: Byte, Word

Flags Updated: none

PUSH    Rlist

Bytes: 2
Clocks: 3 + 3 per additional register
Operation: Repeat for all selected registers (Ri):

(SP) <-- (SP) - 2
((SP)) <-- (Ri)

Encoding:

PUSHU    Rlist

Bytes: 2
Clocks: 3 + 3 per additional register
Operation: Repeat for all selected registers (Ri):

(USP) <-- (USP) - 2
((USP)) <-- (Ri)

Encoding:

 0   H/L   0     0   SZ    1     1     1 Rlist

 0   H/L   0     1   SZ    1     1     1 Rlist
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Rlist bit definitions for a byte PUSH from register(s) in the upper register group
(R4L through R7H):

Rlist bit definitions for a byte PUSH from register(s) in the lower register group
(R0L through R3H):

Rlist bit definitions for a word PUSH from any register(s) (R0 through R7):

R7H R7L R6H R6L R5H R5L R4H R4L

R3H R3L R2H R2L R1H R1L R0H R0L

R7 R6 R5 R4 R3 R2 R1 R0
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RESET Software Reset

Syntax: RESET

Operation: (PC) <-- vector(0)
(PSW) <-- vector(0)
(SFRs) <-- reset values (refer to the description of reset for details)

Description: The chip is reset exactly as if the external hardware reset has been asserted w
exception that it does not sample inputs for configuration, e.g.,EA, BUSW, etc. When a RESET
instruction is executed, the chip is internally reset, but no externalRESET pulse is generated.
The above inputs which are latched during rising edge of aRESET pulse, hence does not affect
the chip configuration.

Flags Updated: The entire PSW is set to the value specified in the reset vector.

Bytes: 2
Clocks: 18

Encoding:

1     1     0     1      0     1     1     0 0     0     0     1     0     0     0     0
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RET Return from Subroutine

Syntax: RET

Operation: (PC) <-- ((SP))
(SP) <-- (SP) + 4

Description: A 24-bit return address is popped from the stack and used to replace the entir
program counter value (PC23-0). This instruction is used to return from a subroutine that was cal
with a CALL or Far Call (FCALL).

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 8/6 (PZ)

Encoding:

1     1     0     1      0     1     1     0 1     0     0     0     0     0     0     0
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RETI Return from Interrupt

Syntax: RETI

Operation: (PSW) <-- ((SSP))
(PC.23-0) <-- ((SSP))
(SSP) <-- (SSP) + 6

Description: A 24-bit return address is popped from the stack and used to replace the entir
program counter value. The Program Status Word is also restored by being popped from the

This instruction is a privileged instruction (limited to system mode) and is used to return from
interrupt/exception. An attempt to use RETI in user mode will generate a trap.

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.

Size: None

Flags Updated: All PSW bits are written by the POP of the PSW value in System mode.

Bytes: 2
Clocks: 10/8 (PZ)

Encoding:

1     1     0     1      0     1     1     0 1     0     0     1     0     0     0     0
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RL Rotate Left

Syntax: RL   Rd, #data4

Operation:

Description: The variable specified by the destination operand is rotated left by the number of
specified in the immediate data operand. The data size may be 8 or 16 bits. The number o
positions shifted may be from 0 to 15.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

MSB LSB

(Rd)

 count <- #data4
Do While (count not equal to 0)
 (dest0) <- (destmsb)
 (destn) <- (destn-1)
 (count) <- count -1
End While

1      1     0     1   SZ    0     1     1 d     d     d     d            #data4
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RLC Rotate Left Through Carry

Syntax: RLC   Rd, #data4

Operation:

Description: The variable specified by the destination operand is rotated left through the carry
by the number of bits specified in the immediate data operand. The data size may be 8 or 1
The number of bit positions shifted may be from 0 to 15.

Size: Byte, Word

Flags Updated: C, N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

C MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
(temp) <- (C)
 (C) <- (destmsb)
 (destn) <- (destn-1)
 (dest0) <- (temp)
 (count) <- count -1
 End While

1      1     0     1   SZ    1     1     1 d     d     d     d            #data4
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RR Rotate Right

Syntax: RR   Rd, #data4

Operation:

Description: If the count operand is greater than 0, the destination operand is rotated right b
number of bits specified in the immediate data operand. The data size may be 8 or 16 bits.
number of bit positions shifted may be from 0 to 15. If the count operand is 0, no rotate is
performed.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
 (destmsb) <- (dest0)
 (destn-1) <- (destn)
 (count) <- count -1
End While

1      0     1     1   SZ    0     0     0 d     d     d     d            #data4
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RRC Rotate Right Through Carry

Syntax: RRC   Rd, #data4

Operation:

Description: If the count operand is greater than 0, the destination operand is rotated right thr
the carry flag by the number of bits specified in the immediate data operand. The data size m
8 or 16 bits. The number of bit positions shifted may be from 0 to 15.
If the count operand is 0, no rotate is performed.

Size: Byte, Word

Flags Updated:C, N, Z

Bytes: 2
Clocks: 4 + 1 for each 2 bits of shift

Encoding:

C MSB LSB

(Rd)

 count <- #data4
 Do While  (count not equal to 0)
(temp) <- (C)
 (C) <- (dest0)
 (destn) <- (destn+1)
 (destmsb) <- (temp)
 (count) <- count -1
 End While

1      0     1     1   SZ    1     1     1 d     d     d     d            #data4
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SETB Set Bit

Syntax: SETB   bit

Operation: (bit) <-- 1

Description: Writes (sets) a 1 to the specified bit.

Size: Bit

Flags Updated:none

Bytes: 3
Clocks: 4

Encoding:

byte 3: lower 8 bits of bit address

0      0     0     0     1    0     0     0  0     0     0     1     0     0     bit: 2
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ter.
SEXT Sign Extend

Syntax: SEXT    Rd

Operation: if N = 1
then (Rd) <-- FF in byte mode or FFFF in word mode

if N = 0
then (Rd) <-- 00 in byte mode or 0000 in word mode

Description: Copies the N flag (the sign bit of the last ALU operation) into the destination regis
The destination register may be a byte or word register.

Example:
SEXT.b    R1
if the result of the previous operation left the N flag set, then R1 <-- FF

Size: Byte, word

Flags Updated: none

Bytes: 2
Clocks: 3

Encoding:

d     d     d     d      1     0     0     11      0     0     1    SZ   0     0     0
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SUB Integer Subtract

Syntax: SUB   dest, src

Operation: dest <- dest - src

Description: Performs a twos complement binary subtraction of the source and destination
operands, and the result is placed in the destination operand. The source data is not affected
operation.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

SUB    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs)
Encoding:

SUB    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - ((WS:Rs))
Encoding:

SUB    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs)
Encoding:

0      0     1     0   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     1     0   SZ    0     1     0 d     d     d     d     0     s     s     s

0      0     1     0   SZ    0     1     0 s     s     s     s     1     d     d     d
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SUB    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

SUB    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs)
Encoding:

byte 3: offset8

SUB    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUB    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     1     0   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     1     0   SZ    1     0     0 s     s     s     s     1     d     d     d

0      0     1     0   SZ    1     0     1 d     d     d     d     0     s     s     s

0      0     1     0   SZ    1     0     1  s     s     s     s     1     d     d     d
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SUB    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

SUB    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

SUB    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs)
Encoding:

byte 3: lower 8 bits of direct

SUB    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) - (direct)
Encoding:

byte 3: lower 8 bits of direct

0      0     1     0   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     1     0   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     1     0   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      0     1     0   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
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SUB    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8
Encoding:

byte 3: #data8

SUB    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUB    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8
Encoding:

byte 3: #data8

SUB    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     0     1    0

1      0     0     1     1     0     0     1 d     d     d     d      0     0     1    0

1      0     0     1     0     0     1     0 0     d     d     d      0     0     1    0

1      0     0     1     1     0     1     0 0     d     d     d      0     0     1    0
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SUB    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

SUB    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUB    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8
Encoding:

byte 3: offset8
byte 4: #data8

SUB    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     0     1    0

1      0     0     1     1     0     1     1 0     d     d     d      0     0     1    0

1      0     0     1     0    1     0     0  0     d     d     d     0      0     1     0

1      0     0     1     1    1     0     0  0     d     d     d     0     0     1     0
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SUB    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUB    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

SUB    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

SUB    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     0     1     0

1      0     0     1     1    1     0     1  0     d     d     d     0     0     1     0

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     0     1     0

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     0     1     0
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SUBB Subtract with Borrow

Syntax: SUBB   dest, src

Operation: dest <- dest - src - C

Description: Performs a twos complement binary addition of the source operand and the
previously generated carry bit (borrow) with the destination operand. The result is stored in
destination operand.The source data is not affected by the operation.

If the carry from previous operation is zero (C = 0, i.e., Borrow = 1), the result is exact differe
of the operands; if it is one (C = 1, i.e., Borrow = 0), the result is 1 less than the difference 
operands.

This form of subtraction is intended to support multiple-precision arithmetic. For this use, the c
bit is first reset, then SUBB is used to add the portions of the multiple-precision values from l
significant to most-significant.

Size:  Byte-Byte, Word-Word

Flags Updated: C, AC, V, N, Z

SUBB    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) - (Rs) - (C)
Encoding:

SUBB    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) - ((WS:Rs)) - (C)
Encoding:

0      0     1     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      0     1     1   SZ    0     1     0 d     d     d     d     0     s     s     s
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SUBB    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)
Encoding:

SUBB    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8) - (C)
Encoding:

byte 3: offset8

SUBB    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs) - (C)
Encoding:

byte 3: offset8

SUBB    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16) - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      0     1     1   SZ    0     1     0 s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      0     1     1   SZ    1     0     0  s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     0     1 d     d     d     d     0     s     s     s
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SUBB    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - (Rs) - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUBB    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs)) - (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

SUBB    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

SUBB    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) - (Rs) - (C)
Encoding:

byte 3: lower 8 bits of direct

0      0     1     1   SZ    1     0     1  s     s     s     s     1     d     d     d

0      0     1     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      0     1     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      0     1     1   SZ    1     1     0 s     s     s     s     1    direct: 3 bits
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SUBB    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) - (direct) - (C)
Encoding:

byte 3: lower 8 bits of direct

SUBB    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) - #data8 - (C)
Encoding:

byte 3: #data8

SUBB    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C)
Encoding:

byte 3: #data8

0      0     1     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits

1      0     0     1     0     0     0     1 d     d     d     d      0     0     1    1

1      0     0     1     1     0     0     1 d     d     d     d      0     0     1    1

1      0     0     1     0     0     1     0 0     d     d     d      0     0     1    1
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SUBB    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C)

(Rd) <-- (Rd) + 1
Encoding:

byte 3: #data8

SUBB    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 - (C)

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

SUBB    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8 - (C)
Encoding:

byte 3: offset8
byte 4: #data8

1      0     0     1     1     0     1     0 0     d     d     d      0     0     1    1

1      0     0     1     0     0     1     1 0     d     d     d      0     0     1    1

1      0     0     1     1     0     1     1 0     d     d     d      0     0     1    1

1      0     0     1     0    1     0     0 0     d     d     d     0      0     1     1
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SUBB    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data16 - (C)
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

SUBB    [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data8 - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUBB    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) - #data16 - (C)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

SUBB    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) - #data8 - (C)
Encoding:

1      0     0     1     1    1     0     0  0     d     d     d     0     0     1     1

1      0     0     1     0    1     0     1 0     d     d     d     0     0     1     1

1      0     0     1     1    1     0     1 0     d     d     d     0     0     1     1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     0     1     1
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byte 3: lower 8 bits of direct
byte 4: #data8

SUBB    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) - #data16 - (C)
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     0     1     1
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TRAP Software Trap

Syntax: TRAP   #data4

Operation: (PC) <-- (PC) + 2
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (trap vector (#data4))
(PC.15-0) <-- code memory (trap vector (#data4))
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes the specified software trap. The invoked routine is determined by branc
to the specified vector table entry point. The RETI, return from interrupt, instruction is used
resume execution after the trap routine has been completed. A trap acts like an immediate int
using a vector to call one of several pieces of code that will be executed in system mode. Thi
be used to obtain system services for application code, such as altering the data segment 
This is described in more detail in the section on interrupts and exceptions.

Note: The address of the exception handling routine must be word aligned as the PC is for
an even address before vectoring to the service routine.

Size: None

Flags Updated: none

Bytes: 2
Clocks: 23/19 (PZ)

Encoding:

1     1     0     1     0     1     1     0 0     0     1     1            #data4
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XCH Exchange

Syntax: XCH   dest, src

Operation: dest <--> src

Description: The data specified by the source and destination operands is exchanged.

Size:Byte-Byte, word-word.

Flags Updated:none

XCH    Rd, Rs

Bytes: 2
Clocks: 5
Operation: (Rd) <--> (Rs)
Encoding:

XCH    Rd, [Rs]

Bytes: 2
Clocks: 6
Operation: (Rd) <--> ((WS:Rs))
Encoding:

XCH    Rd, direct

Bytes: 3
Clocks: 6
Operation: (Rd) <--> (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     0   SZ    0     0     0 d     d     d     d      s     s     s    s

0      1     0     1   SZ    0     0     0 d     d     d     d      0     s     s    s

1      0     1     0   SZ    0     0     0 d     d     d     d     1    direct: 3 bits
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XOR Exclusive OR

Syntax: XOR   dest, src

Operation: dest <- dest (XOR)     src

Description: The byte or word specified by the source operand is bitwise logically XORed to
variable specified by the destination operand. The source data is not affected by the opera

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

XOR    Rd, Rs

Bytes: 2
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) (Rs)
Encoding:

XOR    Rd, [Rs]

Bytes: 2
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))
Encoding:

XOR    [Rd], Rs

Bytes: 2
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) (Rs)
Encoding:

0      1     1     1   SZ    0     0     1 d     d     d     d      s     s     s     s

0      1     1     1   SZ    0     1     0 d     d     d     d     0     s     s     s

0      1     1     1   SZ    0     1     0 s     s     s     s     1     d     d     d
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XOR    Rd, [Rs+offset8]

Bytes: 3
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset8)
Encoding:

byte 3: offset8

XOR    [Rd+offset8], Rs

Bytes: 3
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) (Rs)
Encoding:

byte 3: offset8

XOR    Rd, [Rs+offset16]

Bytes: 4
Clocks: 6
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs)+offset16)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XOR    [Rd+offset16], Rs

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) (Rs)
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

0      1     1     1   SZ    1     0     0 d     d     d     d     0     s     s     s

0      1     1     1   SZ    1     0     0 s     s     s     s     1     d     d     d

0      1     1     1   SZ    1     0     1 d     d     d     d     0     s     s     s

0      1     1     1   SZ    1     0     1  s     s     s     s     1     d     d     d
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XOR    Rd, [Rs+]

Bytes: 2
Clocks: 5
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

XOR    [Rd+], Rs

Bytes: 2
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

XOR    direct, Rs

Bytes: 3
Clocks: 4
Operation: (direct) <-- (direct) (XOR) (Rs)
Encoding:

byte 3: lower 8 bits of direct

XOR    Rd, direct

Bytes: 3
Clocks: 4
Operation: (Rd) <-- (Rd) (XOR) (direct)
Encoding:

byte 3: lower 8 bits of direct

0      1     1     1   SZ    0     1     1 d     d     d     d     0     s     s     s

0      1     1     1   SZ    0     1     1 s     s     s     s     1     d     d     d

0      1     1     1   SZ    1     1     0  s     s     s     s     1    direct: 3 bits

0      1     1     1   SZ    1     1     0 d     d     d     d     0    direct: 3 bits
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XOR    Rd, #data8

Bytes: 3
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #data8
Encoding:

byte 3: #data8

XOR    Rd, #data16

Bytes: 4
Clocks: 3
Operation: (Rd) <-- (Rd) (XOR) #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

XOR    [Rd], #data8

Bytes: 3
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data8
Encoding:

byte 3: #data8

XOR    [Rd], #data16

Bytes: 4
Clocks: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data16
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

1      0     0     1     0     0     0     1 d     d     d     d      0     1     1    1

1      0     0     1     1     0     0     1 d     d     d     d      0     1     1    1

1      0     0     1     0     0     1     0 0     d     d     d      0     1     1    1

1      0     0     1     1     0     1     0 0     d     d     d      0     1     1    1
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XOR    [Rd+], #data8

Bytes: 3
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data8

(Rd) <-- (Rd) + 1

Encoding:

byte 3: #data8

XOR    [Rd+], #data16

Bytes: 4
Clocks: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) (XOR) #data16

(Rd) <-- (Rd) + 2
Encoding:

byte 3: upper 8 bits of #data16
byte 4: lower 8 bits of #data16

XOR    [Rd+offset8], #data8

Bytes: 4
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data8
Encoding:

byte 3: offset8
byte 4: #data8

XOR    [Rd+offset8], #data16

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data16
Encoding:

byte 3: offset8
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0     0     1     1 0     d     d     d      0     1     1    1

1      0     0     1     1     0     1     1 0     d     d     d      0     1     1    1

1      0     0     1     0    1     0     0  0     d     d     d     0      1     1     1

1      0     0     1     1    1     0     0 0     d     d     d     0     1     1     1
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XOR   [Rd+offset16], #data8

Bytes: 5
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) #data8
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

XOR    [Rd+offset16], #data16

Bytes: 6
Clocks: 6
Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) (XOR) #data16
Encoding:

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #data16
byte 6: lower 8 bits of #data16

XOR    direct, #data8

Bytes: 4
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #data8
Encoding:

byte 3: lower 8 bits of direct
byte 4: #data8

XOR    direct, #data16

Bytes: 5
Clocks: 4
Operation: (direct) <-- (direct) (XOR) #data16
Encoding:

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #data16
byte 5: lower 8 bits of #data16

1      0     0     1     0    1     0     1 0     d     d     d     0     1    1    1

1      0     0     1     1    1     0     1 0     d     d     d     0    1     1    1

1      0     0     1     0    1     1     0 0   direct: 3 bits   0     1     1     1

1      0     0     1     1    1     1     0 0   direct: 3 bits   0     1     1     1
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6.6  Summary Of Illegal Operand Combinations On The XA
All but one case are instructions that specify or imply 2 write operations to a single register
location within a single instruction. The other case is a possible corruption of the source re
data by an auto-increment before it is read. These conditions are not detected by XA hardwar
instruction/operand combinations indicated should not be used when writing XA code.

NOTES:
1 This addressing mode is illegal when the source and destination are the same register. This would ca

both a data write and an auto-increment operation to the same register.
2 This instruction is illegal when the source and destination pointer registers are the same register. This

would cause two auto-increment operations to the same register.
3 This instruction is illegal when the source and destination are the same register. The source register wou

be auto-incremented and read at the same time, with an undefined result.
4 This instruction is illegal when the source and destination are the same register. This would cause two

writes to the same register.
5 This addressing mode is illegal when the indirect address of the destination points to the pointer regis

itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause both a data write and an auto-increment operation to the same register.

6 This instruction is illegal when the indirect address of the source operand points to the destination regist
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

7 This instruction is illegal when the direct address of the source operand points to the destination regis
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would
cause two writes to the same register.

8 A POP to R7 (the stack pointer) would cause both a data write and an auto-increment operation to the
same register.

Instruction(s) affected Reason for illegal combination

(any op)  Rx, [Rx+] Auto-increment plus explicit write 1

mov  [Rx+], [Rx+] Double auto-increment of one register 2

(any op)  [Rx+], Rx Auto-increment write may corrupt the source register before it is read 3

NORM  Rx, Rx Result and shift count stored in the same register 4

XCH  Rx, Rx Double write of a single register 4

(any op)  [Rx+], Ry Auto-increment plus indirect write to same register 5

(any op)  [Rx+], [Ry+] Auto-increment plus indirect write to same register 5

(any op)  [Rx+], #data Auto-increment plus indirect write to same register 5

XCH  Rx, [Rx] Indirect write plus explicit write to the same register 6

XCH  Rx, direct Direct write plus explicit write to the same register 7

POP  R7 Stack pointer auto-increment plus explicit write to R7/SP 8
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7   External Bus

Most XA derivatives have the capability of accessing external code and/or data memory th
the use of an external bus. The external bus provides address information to external devic
are to be accessed, then generates a strobe for the required operation, with data passing i
on the data bus. Typical bus operations are code read, data read, and data write. The stand
external bus is designed to provide flexibility, simplicity of connection, and optimization for
external code fetches.

The following discussion is based on the standard version of the XA external bus. Some sp
XA derivatives may have a different implementation of the external bus, or no external bus

7.1  External Bus Signals
For flexibility, the standard XA external bus supports 8 or 16-bit data transfers and a user
selectable number of address bits. The maximum number of address lines varies by deriva
but may be up to 24. A standard set of bus control signals coordinates activity on the bus. 
are described in the following sections.

7.1.1 PSEN - Program Store Enable

The program store enable signal is used to activate an external code memory, such as an
EPROM. This active low signal is typically connected to the Output Enable (OE) pin of an
external EPROM.PSEN remains high when a code read is not in progress.

7.1.2 RD - Read

The bus read signal is also active low. Activity of this signal indicates data read operations o
external bus.RD is typically connected to the pin of the same name on an external peripher
device.

7.1.3 WRL - Write Low Byte

WRL is the external bus data write strobe. It is typically connected to theWR pin of an external
peripheral device. When the XA external bus is used in the 16-bit mode, this strobe applies
to the lower data byte, allowing byte writes on the 16-bit bus. TheWRL signal is active low.

7.1.4 WRH - Write High Byte

For a 16-bit data bus, a signal similar toWRL, but for the upper data byte is needed. The activ
low signalWRH serves this purpose.

7.1.5  ALE - Address Latch Enable

Since a portion of the XA external bus is used for multiplexed address and data information
part of the address must be latched outside of the XA so that it will remain constant during 
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subsequent read or write operation. The active high ALE signal directs the external latch to
information to be stored for a data address or a code address. The external latch must clos
retain this address when the ALE signal ends, by going low (inactive).

7.1.6  Address Lines

Some of the address lines used by the external bus interface are driven during a complete
operation and do not need to be latched. In the standard XA bus interface, the lower four a
lines are always driven and unlatched in this manner. This is done specifically as part of th
optimization of the bus for fetching instructions from external code memory at high speed. 
feature will be explained in detail in a later section.

7.1.7  Multiplexed Address and Data Lines

The part of the bus that is used for data transfer is also used for address output from the X
Prior to asserting the strobe for the bus operation about to be performed, the XA outputs th
address for the operation. On the multiplexed portion of the bus, this address is captured b
external latch, as commanded by the ALE signal. After that is done, this part of the bus is f
be used for data transfer either into or out of the XA. The control signalsPSEN,RD, WRL, and
WRH determine what type of bus operation takes place.

7.1.8  WAIT - Wait

The WAIT input allows wait states to be inserted into any external bus operation. If WAIT is
asserted (high) after a bus control strobe (PSEN,RD, WRL, orWRH) is driven by the XA, that
bus operation is stretched, and that control strobe continues to be driven by the XA until W
goes low again. For this feature to be used, an external circuit must be present to generate
WAIT signal at the appropriate times.

The XA has an internal bus configuration feature that allows programming the various type
external bus cycles to different lengths, so that in most applications the WAIT line will not b
needed. This feature will be explained in detail in a later section.

7.1.9 EA - External Access

TheEA input determines whether the XA operates in single-chip mode, or begins running c
from the internal program memory after reset. IfEA is low as Reset goes high, the first code
fetch (and all others after that) is made off-chip. IfEA is high as Reset goes high, the XA will
execute the on-chip code first, but will still attempt to execute instructions from external mem
at addresses above the limit of on-chip code. The level on theEA pin is latched as reset goes
high, so whatever mode is selected remains valid until the next reset.

On some XA derivatives, the pin used for theEA function may be shared with another function
that becomes active after the XA begins code execution.
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7.1.10  BUSW - Bus Width

The external XA bus may be configured to be 8 or 16 bits in width. The XA allows the bus w
to be programmed in 2 ways. In a system where instructions are initially fetched from on-ch
code memory, the user program can configure the external bus size (and many other aspe
the bus) prior to the bus actually being used.

When the initial code fetches must be done using off-chip code memory, however, the XA 
know the bus width before the first off-chip code fetch can begin.

On some XA derivatives, the BUSW function may share a pin with some other function. In 
case, the level on the BUSW pin is latched as Reset is released and that selection is kept u
next Reset. The secondary function on that pin will be active after Reset when the process
begins executing code normally.

Unlike theEA function, the bus width set by the BUSW pin at reset may be over-ridden by a
user program, making setting by use of the BUSW pin unnecessary in most systems. Setti
the Bus Configuration Register allow changing the bus size under program control. This fe
is covered in more detail in the next section.

7.2  Bus Configuration
The standard XA external bus has a number of configuration options. In addition to the dat
width selection discussed previously, the number of address lines used for external access
programmable, as is the bus timing.

7.2.1  8-Bit and 16-Bit Data Bus Widths

The standard XA external bus allows both 8-bit and 16-bit bus widths. BUSW=0 selects an
bus and BUSW=1 selects a 16-bit bus. On power-up, the XA defaults to the 16-bit bus (due
on-chip weak pull-up on BUSW). The bus width is determined by the value of the BUSW p
Reset is released, unless a user program overrides that setting by writing to the Bus
Configuration Register (BCR), shown in Figure7.1.
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Figure 7.1  Bus Configuration Register (BCR)

- WAITD-- BUSD BC2 BC1 BC0BCR

WAITD: WAIT disable. Causes the XA external bus interface to ignore the value on the
WAIT input. This allows tying the WAIT input high for applications that use
internal code and do not need the WAIT function.

BUSD: Bus disable. Causes XA external bus functions to be disabled permanently.
The primary purpose of this is to allow prevention of inadvertent activation of
the bus by an instruction pre-fetch when the XA is executing code near the end
of the on-chip code memory.

BC2 - BC0: These bits select the XA external bus configuration, specifically the number of
data bits and the number of address lines. The supported combinations are
shown below.

000 : 8-bit data bus, 12 address lines
001 : 8-bit data bus, 16 address lines
010 : 8-bit data bus, 20 address lines
011 : 8-bit data bus, 24 address lines
100 : < function reserved >
101 : < function reserved >
110 : 16-bit data bus, 20 address lines
111 : 16-bit data bus, 24 address lines

"-" Reserved for possible future use. Programs should take care when writing to
registers with reserved bits that those bits are given the value 0. This will
prevent accidental activation of any function those bits may acquire in future
XA CPU implementations.
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Figures 7.2 and 7.3 show the address and data functions present on XA bus related pins w
used with each available bus width.

Figure 7.2  8-Bit External Bus Configuration

Figure 7.3  16-Bit External Bus Configuration

7.2.2  Typical External Device Connections

Many possibilities exist for connecting and using external devices with the XA bus. The bus
support EPROMs, RAMs, and other memory devices, as well as peripheral devices such a
UARTs, and parallel port expanders. The following diagrams show a generalized connectio
devices for 8-bit and 16-bit XA bus modes.

A3 - A0

A4 - A11/
D0 - D7

A12 - A23

4 low order address lines,
always driven

8 multiplexed address
and data lines

Up to 12 high order address
lines, always driven

XA

A3 - A1

A4 - A19/
D0 - D15

A20 - A23

4 low order address lines,
always driven

16 multiplexed address
and data lines

Up to 4 high order address
lines, always driven

XA
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Figure 7.4  Typical XA External Bus Connections for 8-Bit Peripheral Devices

Figure 7.5  Typical XA External Bus Connections for 16-Bit Peripheral Devices
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7.3  Bus Timing and Sequences
The standard XA external bus allows programming the widths of the bus control signals AL
PSEN, WRL, WRH, and RD. There is also an option to extend the data hold time after a w
operation. The combinations available will allow interfacing most devices to the XA directly
without the need for special buffers or a WAIT state generator. Note that there is always a 
clock" after any type of bus cycle except part of a burst mode code read. That is, when a b
cycle is completed and the bus strobe de-asserted, no new bus cycle will be begun until one
has passed with no bus activity.

7.3.1  Code Memory

Interfacing with external code memory, typically in the form of EPROMs, is enabled by the
PSEN control signal. If the XA is configured to execute internal code memory at reset, by t
setting of theEA pin, it will automatically begin to fetch external code if the program crosses
boundary from internal to external code space. The location of this boundary varies for diffe
XA derivatives, depending on the size of the internal code memory for each part.

Since the XA employs a pre-fetch queue in order to optimize instruction execution times,
fetching of external instructions may begin before program execution actually crosses the o
chip code memory boundary. If a branch or subroutine return is located near the end of on
code memory, the off-chip fetch would be unnecessary, and may in fact cause problems if 
XA ports that implement the external bus are being used for other purposes. For this reaso
BUSD (bus disable) bit in the Bus Configuration Register (BCR) is provided to prevent the 
from using the external bus for code or data operations.

Note also that external code read cycles may sometimes be aborted by the XA. This happe
when a code pre-fetch is occurring on the bus and the XA must execute a branch. The instr
data from the code pre-fetch will not be needed, so the bus cycle will be terminated immedia
This may appear as an ALE with no subsequent PSEN strobe, or a PSEN strobe that is sh
than that specified by the bus timing registers.

Code Read with ALE
The classic operation of a multiplexed address and data bus involves the issuance of an ad
along with its associated control signal, for every bus cycle. The XA uses the bus control s
ALE to indicate that an address is on the bus that must be latched through the following co
data operation. The following diagram shows a code memory fetch in a cycle using ALE.

Burst Code Read (No ALE)
The XA does not always require an ALE cycle for every code fetch. This feature is included
specifically to improve performance when the XA executes code from external memory, wh
increasing the access time available for the external memory device. Because the lower fo
address lines of the external bus are always driven, not multiplexed, the XA can access up
bytes (or 8 words) of sequential code memory each time an ALE is issued. This type of fas
sequential code read is called a burst read. Of course, any type of jump, branch, interrupt, 
other change in sequential program flow will require an ALE in order to change the code fe
address in a non-sequential manner. Any data operation (read or write) on the XA external
also requires an ALE cycle and will cause any subsequent external code fetch to begin wit
ALE cycle also.
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Figure 7.6  Typical External Code Read Using ALE

The following diagram shows a typical sequential code fetch where no ALE is issued betwe
code reads. Also note that thePSEN bus control signal does not toggle, but remains asserted
throughout the burst code read

Figure 7.7  Burst Mode (Sequential) External Code Read

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, CRA1/0 = 01.

Address/
Data bus

PSEN

Address bus

ALE

address instruction data

XTAL1

Address/
Data bus

PSEN

Address bus

ALE

instruction

XTAL1

address

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, CR1/0 = 01, CRA1/0 = 00.

data
instruction

data
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7.3.2  Data Memory

Reads and writes on the XA external bus are controlled through the use of theRD, WRL, and
WRH signals. Since the XA bus supports both 8-bit and 16-bit widths, as well as byte and w
read and write operations, several different versions of the basic bus cycles are possible. T
are described in the following sections.

Data memory, like code memory, has a boundary where the internal data memory ends, an
above which the XA will switch to the external bus in order to act on data memory. This on
chip data memory boundary may be in a different place for various XA derivatives, depend
upon the amount of internal data memory built into a specific derivative.

Typical Data Read
A simple byte read on an 8-bit bus or any read on a 16-bit bus both begin with an ALE cycl
where the XA presents the address of the data location that is to be read on the bus. This i
followed by the assertion of theRD strobe, that causes the external device to present its data
the bus. This process is shown in the diagram below.

Figure 7.8  Typical External Data Read

Address/
Data bus

RD

Address bus

ALE

address data in to XA

XTAL1

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, DRA1/0 = 01.
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Word Read on an 8-Bit Data Bus
When the XA external bus is configured for an 8-bit data width, a word read operation is
automatically performed as two byte reads at sequential addresses. Since the XA CPU req
word operations to be performed at even addresses, the second half of any word read on a
wide bus always uses the same upper address latched by ALE. for this operation, the low o
byte first is read at the even byte address, then the high order byte is read at the next (odd
address. So, only one ALE is required in this case. The diagram below shows this sequenc

Figure 7.9  Word Read on 8-Bit Data Bus

Byte Read on a 16-Bit Data Bus
When an instruction causes a read of one byte of data from the external bus, when it is
configured for 16-bit width, a simple read operation is performed. This results in 16 bits of d
being received by the XA, which uses only the byte that was requested by the program. Th
no way to distinguish a byte read from a word read on the external bus when it is configure
a 16-bit width.

Address/
Data bus

RD

Address bus

ALE

address data in to XA

XTAL1

data in

even address odd address

Note: the timing of this type of bus operation is user programmable. The timing shown
here is generated by the Bus Timing Register setup: ALEW = 0, DRA1/0 = 01, DR1/0 = 01.

to XA
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Typical Data Write
A data write operation begins with an ALE cycle, like a read operation, followed by the asse
of one or both of the write strobes,WRL andWRH. This simple bus cycle applies to byte write
on an 8-bit data bus and all writes on a 16-bit data bus.

A byte write on an 8-bit data bus will always use only theWRL strobe. A byte write on a 16-bit
data bus will always use either theWRL or WRH strobe, depending on whether the byte is at a
even or odd address. A word write on a 16-bit bus requires the assertion of both theWRL and
WRH strobes. The simple data write cycle is shown below.

Figure 7.10  Typical External Data Write

Address/
Data bus

WRL and/or
WRH

Address bus

ALE

address data out
from XA

XTAL1

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, WM0 = 0, WM1 = 0.
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Word Write on an 8-Bit Data Bus
When a word write operation is done with the bus configured to an 8-bit width, the XA
automatically performs two byte writes. First, the low order byte is written (at the even byte
address), then the high order byte is written at the next (odd) address. As with a word read
8-bit bus, this requires only a single ALE cycle at the beginning of the process. This seque
shown in the following diagram.

Figure 7.11  Word Write on 8-Bit Data Bus

Address/
Data bus

WRL

Address bus

ALE

address data out
from XA

XTAL1

data out
from XA

even address odd address

Note: the timing of this type of bus operation is user programmable. The timing shown here
is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, DW1/0 = 00,
WM0 = 0, WM1 = 0.
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The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width, data read and write cycle lengths, and data hold time. The
times are programmable in a range that will support most RAMs, ROMs, EPROMs, and
peripheral devices over a wide range of oscillator frequencies without the need for addition
external latches, buffers, or WAIT state generators.

Programmable bus timing is controlled by settings found in the Bus Timing Register SFRs,
named BTRH, and BTRL, shown in Figures 7.12 and 7.13.

Figure 7.12  Bus Timing Register High Byte (BTRH)

DWA1 DWA0 DRA1 DRA0DR0DR1DW1 DW0BTRH

DW1, DW0: Data Write without ALE. Applies only to the second half of a 16-bit write operation when
the bus is configured to 8 bits.

00 : Data write cycle is 2 clock in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DWA1, DWA0: Data Write with ALE. Selects the length (in CPU clocks) of the entire data write cycle,
including ALE.

00 : Data write cycle is 2 clocks in duration.
01 : Data write cycle is 3 clocks in duration.
10 : Data write cycle is 4 clocks in duration.
11 : Data write cycle is 5 clocks in duration.

DR1, DR0: Data Read without ALE. Applies only to the second half of a 16-bit read operation when
the bus is configured to 8 bits.

00 : Data read cycle is 1 clock in duration.
01 : Data read cycle is 2 clocks in duration.
10 : Data read cycle is 3 clocks in duration.
11 : Data read cycle is 4 clocks in duration.

DRA1, DRA0: Data Read with ALE. Selects the length (in CPU clocks) of the entire data read cycle,
including ALE.

00 : Data read cycle is 2 clocks in duration.
01 : Data read cycle is 3 clocks in duration.
10 : Data read cycle is 4 clocks in duration.
11 : Data read cycle is 5 clocks in duration.

Notes:
- See text regarding disallowed bus timing combinations.
- The bit pairs DW1:0, DWA1:0, DR1:0, DRA1:0, CR1:0, and CRA1:0 determine the length of entire

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time
is completed (in the case of a data write with extra hold time, see bit WM0).
4/17/98 7-13 External Bus



Figure 7.13  Bus Timing Register Low Byte (BTRL)

WM1 WM0 ALEW - CR0CR1 CRA1 CRA0BTRL

WM1: Write Mode 1. Selects the width of the write pulse.
0 : Write pulse (WR) width is 1 CPU clock.
1 : Write pulse (WR) width is 2 CPU clocks.

WM0: Write Mode 0. Selects the data hold time.
0 : Data hold time is minimum (0 clocks).
1 : Data hold time is 1 CPU clock.

ALEW: ALE width selection. Determines the duration of ALE pulses.
0 : ALE width is one half of one CPU clock.
1 : ALE width is one and a half CPU clocks.

CR1, CR0: Code Read. Selects the length of a code read cycle when ALE is not used.
00 : Code read cycle is 1 clocks in duration.
01 : Code read cycle is 2 clocks in duration.
10 : Code read cycle is 3 clocks in duration.
11 : Code read cycle is 4 clocks in duration.

CRA1, CRA0: Code Read with ALE. Selects the length of a code read cycle when ALE is used prior
to PSEN being asserted.

00 : Code read cycle is 2 clocks in duration.
01 : Code read cycle is 3 clocks in duration.
10 : Code read cycle is 4 clocks in duration.
11 : Code read cycle is 5 clocks in duration.

"-" Reserved for possible future use. Programs should take care when writing to registers
with reserved bits that those bits are given the value 0. This will prevent accidental
activation of any function those bits may acquire in future XA CPU implementations.

Notes:
- See text regarding disallowed bus timing combinations.
- The bit pairs DW1:0, DWA1:0, DR1:0, DRA1:0, CR1:0, and CRA1:0 determine the length of entire

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time
is completed (in the case of a data write with extra hold time, see bit WM0).
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Disallowed Bus Timing Configurations
Some possible combinations of bus timing register settings do not make sense and the XA c
produce working bus signals that match those settings. The disallowed combinations occu
where the sum of the specified components of a bus cycle exceed the specified length of th
entire cycle. Two simple rules define the allowed/disallowed combinations. Violating these 
may result in incomplete bus cycles, for example a data read cycle in which an address an
pulse are output, but no read strobe (RD) is produced.

For data write cycles on the external bus there are two conditions that must be met. The fir
applies to data write cycles with no ALE:

WM1 + WM0 ≤ DW1:0

This says that the sum of the timing values defined by the WM1 and WM0 fields must be le
than or equal to the timing value defined by the DW field. Note that this is the value of the
timing durations that they specify. For example, if the WM1 field specifies a 2 clock write pu
and the WM0 field specifies a 1 clock data hold time, those two times together (3 clocks) m
be less than or equal to the timing specified by the DW1:0 field. In this case the DW1:0 fiel
must specify a total bus cycle duration of at least 3 clocks. The other rule uses the same stru
as follows.

A second requirement applies to write cycles with ALE:

ALEW + WM1 + WM0 ≤ DWA1:0

The configuration for data read has only one requirement, which applies to data read cycle
ALE:

ALEW + 1 ≤ DRA1:0

The configuration for code read also has only one requirement, which applies to code read c
with ALE:

ALEW + 1 ≤ CRA1:0

7.3.3  Reset Configuration

Upon reset, at the time of power up or later, the XA bus is initially configured in certain way
As previously discussed, the pinsEA and BUSW select whether the XA will begin operation
from internal code, and whether the bus will be 8-bits or 16-bits.

The values for the programmable bus timing are also set to a default value at reset. All of t
timing values are set to their maximum, providing the slowest bus cycles. This setting allow
the slowest external devices that may be sued with the XA without WAIT generation logic. 
user program should set the bus timing to the correct values for the specific application in t
system initialization code. Refer to the data sheet for a particular XA derivative for details o
values found in registers and SFRs after reset.
4/17/98 7-15 External Bus
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7.4  Ports
I/O ports on any microcontroller provide a connection to the outside world. The capabilities
those I/O ports determine how easily the microcontroller can be interfaced to the various ext
devices that make up a complete application. The standard XA I/O ports provide a high degr
versatility through the use of programmable output modes and allow easy connection to a 
variety of hardware.

7.4.1  I/O Port Access

The standard on-chip I/O ports of the XA are accessed as SFRs. The SFR names used for
ports begin with port 0, called P0. Port numbers and names go up in sequence from there,
number of ports on a specific XA derivative. Ports are normally identified by their names in
assembler source code, such as: "MOV P1,#0". This instruction causes the value 0 to be w
to port 1.

XA I/O ports are typically bit addressable, meaning that individual port bits are readable,
writable, and testable. An instruction using a port bit looks like this: "SETB P2.1". This
particular example would result in the second lowest bit in port 2 (bit 1) having a 1 written t

Reading of a Port Pin Versus the Port Latch
Each I/O port has two important logic values associated with it. The first is the contents of t
port latch. When data is written to a port, it is stored in the port latch. The second value is t
logic level of the actual port pin, which may be different than the port latch value, especially
port pin is being used as an input.

When a port is explicitly read by an instruction, the value returned is that from the pin. Whe
port is read intrinsically, in order to perform some operation and store the value back to the
the port latch is read. This type of operation is called a read-modify-write.

Figure 7.14  How ports are read.

1) The following instructions cause read-modify-
write operations, and read the port latch when a
port or port bit is specified as the destination:

ADD Px, ...
ADDC Px, ...
ADDS Px, ...
AND Px, ...
DJNZ Px, ...
OR Px, ...
SUB Px, ...
SUBB Px, ...
XOR Px, ...

CLR Px.y
JBC Px.y, rel8
MOV Px.y, C
SETB Px.y

2) The following instruction reads the
port pins when a port is specified as
the destination operand:

CMP Px, ...

3) When a port or port bit is specified
as a source in any instruction, the port
pin is always read.
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7.4.2  Port Output Configurations

Standard XA I/O ports provide several different output configurations. One is the 80C51 typ
quasi-bidirectional port output. Others are open drain, push-pull, and high impedance (inpu
only). It is important to note that the port configuration applies to a pin even if that pin is pa
the external bus. Bus pins should normally be configured to push-pull mode. Also, the port
latches for pins that are to be used as part of the external bus must be set to one (which is
reset state). A zero in a port latch will override bus operations and force a zero on the
corresponding bus position.

The port configuration is controlled by settings in two SFRs for each port. One bit in each p
configuration register is associated with a port pin in the corresponding bit position. These 
configuration SFRs are called: PnCFGA and PnCFGB, where "n" is the port number. So, th
configuration registers for port 1 are named P1CFGA and P1CFGB. The table below show
port control bit combinations and the associated port output modes.

7.4.3  Quasi-Bidirectional Output

The default port output configuration for standard XA I/O ports is the quasi-bidirectional ou
that is common on the 80C51 and most of its derivatives. This output type can be used as b
input and output without the need to reconfigure the port. This is possible because when th
outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. Whe
the pin is pulled low, it is driven strongly and able to sink a fairly large current. These featu
are somewhat similar to an open drain output except that there are three pullup transistors
quasi-bidirectional output that serve different purposes.

One of these pullups, called the "very weak" pullup, is turned on whenever the port latch fo
particular pin contains a logic 1. The very weak pullup sources a very small current that wil
the pin high if it is left floating.

A second pullup, called the "weak" pullup, is turned on when the port latch for its associate
contains a logic 1 and the pin itself is a logic 1. This pullup provides the primary source cur
for a pin that is outputting a 1, and can drive several TTL loads. If a pin that has a logic 1 o
pulled low by an external device, the weak pullup turns off, and only the very weak pullup
remains on. In order to pull the pin low under these conditions, the external device has to s
enough current to overpower the weak pullup and pull the voltage on the port pin below its
threshold.

Table 7.1

PnCFGB PnCFGA Port Output Mode

0 0 Open drain.

0 1 Quasi-bidirectional (default).

1 0 High impedance.

1 1 Push-pull.
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The third (and final) pullup is referred to as the "strong" pullup. This pullup is included to sp
up low-to-high transitions on a port pin when the port latch changes from 0 to 1. When this
occurs, the strong pullup turns on for a brief time, two CPU clocks, pulling the port pin high
quickly, then turning off again.

The quasi-bidirectional output structure normally provides a means to have mixed inputs a
outputs on port pins without the need for special configurations. However, it has several
drawbacks that can be problems in certain situations. For one thing, quasi-bidirectional out
have a very small source current and are therefore not well suited to driving certain types o
loads. They are especially unsuited to directly drive the bases of external NPN transistors, 
common method of boosting the current of I/O pins.

Also, since the weak pullup turns off when a port pin is actually low, and the strong pullup t
on only for a brief time, it is possible that under certain port loading conditions, the port pin
get "stuck" low and cannot be driven high. This tends to happen when an external device b
driven by the port pin has some leakage to ground that is larger than the current supplied b
very weak pullup of the quasi-bidirectional port output. If there is also a fairly large capacita
on the pin, from a combination of the wiring itself and the pin capacitance of the device(s)
connected to the pin, the strong pullup may not succeed in pulling the pin high enough while
turned on. When the strong pullup is then turned off, the leakage of the external device pul
pin low again, since only the very weak pullup is turned on at that point and the leakage is
greater than the very weak pullup source current. These issues are the reason for enhanci
port configurations of the XA.

A diagram of the quasi-bidirectional output structure is shown in the figure below.

Figure 7.15  Structure of the Quasi-Bidirectional Output Configuration
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Open Drain Output
Another port output configuration provided by the standard XA I/O ports is open drain. This
configuration turns off all pullups and only drives the pulldown transistor of the port driver wh
the port latch contains a logic 0. To be used as a logic output, a port configured in this man
must have an external pullup, typically a resistor tied to Vdd. The pulldown for this mode is
same as for the quasi-bidirectional mode.

An advantage of the open drain output is that is may be used to create wired AND logic. Se
open drain outputs of various devices can be tied together, and any one of them can drive 
wire low, creating a logical AND function without using a logic gate. The figure below show
structure of the open drain output.

Figure 7.16  Structure of the Open Drain Output Configuration

Push-Pull Output
The push-pull output mode has the same pulldown structure as both the open drain and th
bidirectional output modes, but provides a continuous strong pullup when the port latch con
a logic 1. This mode uses the same pullup as the strong pullup for the quasi-bidirectional m
The push-pull mode may be used when more source current is needed from a port output.
output structure for this mode is shown below.

Figure 7.17  Structure of the Push-Pull Output Configuration
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High Impedance Output
The final XA port output configuration is called high impedance mode. This mode simply tu
all output drivers on a port pin off. Thus, the pin will not source or sink current and may be 
effectively as an input-only pin with no internal drivers for an external device to overcome.

7.4.4  Reset State and Initialization

Upon chip reset, all of the port output configurations are set to quasi-bidirectional, and the 
latches are written with all ones. The quasi-bidirectional output type is a good default at po
up or reset because it does not source a large amount of current if it is driven by an extern
device, yet it does not allow the port pin to float. A floating input pin on a CMOS device can
cause excess current to flow in the pin’s input circuitry, and of course all port pins have inp
circuits in addition to outputs.

7.4.5  Sharing of I/O Ports with On-Chip Peripherals

Since XA on-chip peripheral devices share device pins with port functions, some care mus
taken not to accidentally disable a desired pin function by inadvertently activating another
function on the same pin. A peripheral that has an output on a pin will use the I/O port outp
configuration for that pin (quasi-bidirectional, open drain, push-pull, or high impedance).

The method of sharing multiple functions on a single pin involves a logic AND of all of the
functions on a pin. So, if a port latch contains a zero, it will drive that port pin low, and any
peripheral output function on that pin is overridden. Conversely, an on-chip peripheral outpu
a zero on a pin prevents the contents of the port latch from controlling the output level. It is
usually not an issue to avoid turning on an alternate peripheral function on a pin accidental
since most peripherals must be either explicitly turned on or activated by a write to one of t
SFRs. It is more likely that a user program could erroneously write a zero to a port latch bit
corresponding to a pin with a peripheral function that is being used and therefore disable th
function. The simple rule to follow is: never write a zero to a port bit that is associated with 
active on-chip peripheral, or that should only be used an input.

When an XA I/O port pin is used as an input for a peripheral function, it is sampled at the
oscillator rate divided by 2. For example, if an XA is running at a 20 MHz clock (giving a 50
clock period), an external timer input would have to remain in the same state for at least 10
in order to guarantee that it is sampled correctly. This gives a maximum frequency for such
inputs as the oscillator rate divided by 4. In this example, the maximum external timer inpu
would be 5 MHz.
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8   Special Function Register Bus

The Special Function Register Bus or SFR Bus is the means by which all Special Function
Registers are connected to the XA CPU so that they may be read and written by user prog
This includes all of the registers contained in peripherals such as Timers and UARTs, as w
some CPU registers such as the PSW. CPU registers communicate functionally with the CP
direct connections, but read and write operations performed on them are routed through th
bus.

The SFR bus provides a common interface for the addition of any new functions to the XA 
thus supplying the means for building a large and varied microcontroller derivative family. T
is illustrated in Figure 8.1.

Figure 8.1. Example of peripheral functions connected to the XA SFR bus.

8.1  Implementation and Possible Enhancements
The SFR bus interface is itself not part of the XA CPU core, but a separate functional block
Since the SFR bus controller is a separate block, writes to SFRs may occur simultaneously
the beginning of execution of the next instruction. If the next instruction attempts to access
SFR bus while it is still busy, the instruction execution will stall until the SFR bus becomes
available. SFR bus read and write clocks each take 2 CPU clocks to complete. However, th
starting time of those 2 clocks has a one clock uncertainty, so the time from the SFR bus
controller receiving a request until it is completed can be either 2 or 3 clocks.

XA CPU Core

UART

Timer

I/O Port

I/O Port

SFR bus

Timer
I2C

Interface
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The SFR bus implementation on initial XA derivatives is an 8-bit interface. This means that
word reads and writes are not allowed. In the future, higher performance XA architecture
implementations may expand the capabilities of the SFR bus by supporting 16-bit accesse

One enhancement to the SFR bus would be to have it divide 16-bit access requests into tw
accesses. This leaves the actual SFR bus width at 8 bits, but allows a user program to act 
was 16-bits. The highest performance alternative is a full 16-bit SFR bus. This would requi
extra hardware in the XA to implement, but may eventually become necessary on order to
achieve very high performance with some future enhanced XA core implementation.

8.2  Read-Modify-Write Lockout
Some of the SFRs that are accessed via the SFR bus contain interrupt flags and other stat
that are set directly by the peripheral device. When a read-modify-write operation is done o
such an SFR, there is a possibility that a peripheral write to a flag bit in the same SFR coul
occur in the middle of this process. A standard mechanism is defined for the XA to deal wit
such cases, which is called Read-Modify-Write lockout. A read- modify-write is defined as a
operation where a particular SFR is read, altered and written during the execution of a sing
instruction.

The instructions that fit this description are those that write to bits in SFRs and those that m
an entire SFR, except for the MOV instruction. This happens to be the same operations as
that read port latches rather than port pins as specified in Chapter 7, only the SFRs involve
different.

The mechanism used throughout XA peripherals to avoid losing status flags during a read-
modify-write operation first involves detecting that such an operation is in progress. A signa
from the CPU to the peripherals indicates such a condition. When a peripheral detects this
prevents the CPU write to just those status flags that the peripheral has already updated si
beginning of the read-modify-write operation. This basically makes it look as if the peripher
flag update happened just after the read-modify-write operation completed, rather than dur
Once the read-modify-write operation is completed, a CPU write may affect all bits in these
SFRs.
XA User Guide 8-2 3/24/97
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9  80C51 Compatibility

Many architectural decisions and features were guided by the goal of 80C51 compatibility w
the XA core specification was written. The processor's memory configuration, memory
addressing modes, instruction set, and many other things had to be taken into account.

9.1  Compatibility Considerations
Source code compatibility of the XA to the 80C51 was chosen as a goal for many reasons.
Complete compatibility with an existing processor is not possible if the new processor is to
substantially higher performance.

The XA architecture makes use of a number of rules for 80C51 compatibility. An 80C51 to 
source code translator program is intended to be the means of providing compatibility betw
the architectures. For the translator software to be fairly simple, a one-to-one translation fo
80C51 instructions is a major consideration. The XA instruction set includes many instructi
that are more powerful than 80C51 instructions and yet perform roughly the same function
80C51 instruction can therefore be translated into those XA instructions. When this is not t
case, an 80C51 instruction may be included in its original form in the XA. The XA memory 
and memory addressing modes are also a superset of the 80C51, making source code tran
easy to accomplish. Other CPU features are made compatible to the extent that such is po
In rare cases, when this compatibility could not be provided for some important reason, the
changes were kept to the minimum while maintaining the XA goals of high performance and
cost.

9.1.1  Compatibility Mode, Memory Map, and Addressing

Specific XA registers are reserved for use as 80C51 registers when translating code. The A
register, the B register, and the data pointer all map to a pre-determined place in the XA re
file (see figure 9.1). The accumulator (A) is the only one of these that required special hard
support in the XA, because the accumulator can be read or tested directly by certain instru
and in order to generate the parity flag.

The 4 banks of 8 byte registers that are found in the 80C51 are duplicated in the XA. The o
difference is that in the XA, these registers do not normally overlap the lower 32 bytes of d
memory space as they do in the 80C51. To allow code translation, a special 80C51 compa
mode causes the XA register file to copy the 80C51 mapping to data memory. This mode i
activated by the CM bit in the System Configuration Register (SCR).
3/24/97 9-1 8051 Compatibility
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Figure 9.1. XA Register File

Other important registers of the 80C51 are provided in other ways. The program status wo
(PSW) of the XA is slightly different than the 80C51 PSW, so a special SFR address is res
to provide an 80C51 compatible "view" of the PSW for use by translated code. This alterna
PSW, called PSW51, is shown in the figure 9.2. The F0 flag and the F1 flag are simply rea

and writable bits. The P flag provides an even parity bit for the 80C51 A register and alway
reflects the current contents of that register. Note that the P flag, the F0 flag, and the F1 flag
appear in the PSW51 register.

The 80C51 indirect data memory access mode, using R0 or R1 as pointers, requires speci
support on the XA, where pointers are normally 16 bits in length. The 80C51 compatibility m
also causes the XA to mimic the 80C51 indirect scheme, using the first two bytes of the reg
file as indirect pointers, each zero extended to make a 16-bit address. Due to this and the
previously mentioned register overlap to memory feature, the compatibility mode must be tu
on in order to execute most translated 80C51 code on the XA. Other than the two
aforementioned effects, nothing else about XA functioning is affected by the compatibility m

Figure 9.2. PSW CPU status flags
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SSP
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The 80C51 mapped the special function registers (SFRs) into the direct address space, fro
address 80 hex to FF hex. SFRs were only accessed by instruction that contain the entire 
address, so translation to the XA is fairly simple. Since references to SFRs are normally do
their name in 80C51 source code, the translation just copies the name into the XA code out
an SFR happened to be referred to by its address, its name must be found so that it can be
inserted into the XA code. This would require that an SFR table be available for the 80C51
derivative for which the code was originally written.

The XA has another mode which may be useful for translated 80C51 code. In order to save
space as well as speed up execution, a Page Zero (PZ) mode causes return addresses on
to be saved as 16 bits only, instead of the usual 24 bits (which occupy 32 bits due to word
alignment on the XA stack). All other program and data addresses are also forced to be 16
If an entire 80C51 application program is translated to the XA, it will very likely fit within this
64K limit, allowing the use of this mode.

Other aspects of the processor stack have been altered on the XA. For one, the standard di
of stack growth for 16 bit processors has been adopted. So, the XA stack grows downward
higher to lower addresses in data memory. The stack can now be nearly 64K in size if nece
and begin anywhere in its data segment so may be easily moved to a new location for tran
80C51 applications. This stack direction change is important to match the stack contents to
normal data memory accesses on the XA.

80C51 code translated to run on the XA will also tend to use more stack space for two reas
First, the PSW is automatically saved during interrupt and exception processing on the XA
original 80C51 code should have also saved the PSW explicitly, but the XA PSW is 16 bits
length. Secondly, the initial implementation of the XA allows only word writes to the stack. B
byte and word operations may be performed, but both types of operations use 16 bits of st
space.

The tendency for stack size increase, in addition to the stack growth direction will require s
changes to be made if a complete 80C51 application program is translated to run on the X

9.1.2  Interrupt and Exception Processing

Interrupt handling on the XA is inherently much more powerful than it was on the 80C51. A
with this added power and flexibility comes some difference that must be taken into accoun
80C51 code conversion.

Previously noted was the fact that the XA automatically saves the PSW during interrupt
processing. If an 80C51 program relied on this not being the case somehow, it would not w
without alteration. This type of reliance is not found in code using common programming
practices and should be very rare.

The XA allows up to 15 interrupt priority levels, compared to only 2 in the standard 80C51,
although up to 4 levels are available in a few of the newer 80C51 variations. These prioritie
stored as 4-bit values, with the priority for 2 interrupts found in the same SFR byte. This is
3/24/97 9-3 8051 Compatibility
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different (and much more powerful) than any 80C51 derivative, and will require minor chan
to code that is translated.

The method of entering an interrupt routine in the XA uses a vector table stored in low add
of the code memory. Each interrupt or exception source has a vector which consists of the
address of the handler routine for that event and a new PSW value that is loaded when the
is taken. This differs from the 80C51 approach of fixed addresses for the interrupt service
routines, and again is a much more flexible and powerful method. So, if a complete 80C51
application program is converted for the XA, the interrupt service routines must be re-locat
above the XA vector table and the new address stored in the table, a very simple process.

9.1.3  On-Chip Peripherals

Compatibility with standard on-chip peripherals found in the 80C51 has been kept in the XA
whenever possible and reasonable, but not to the extent that some enhancements are not 
The set of standard peripheral devices includes the UART, Timers 0 and 1, and Timer 2 from
80C52.

The XA UART has been enhanced in a way that does not affect translated 80C51 code. So
additional features are added through the use of a new SFR, such as framing error detectio
overrun detection, and break detection.

Timers 0 and 1 remain the same except for one difference in the function, and a difference
timing. The functional change was to remove the 8048 timer mode (mode 0) and replace it
something much more useful: a 16-bit auto-reload mode. Sixteen bit reload registers (form
RTHn and RTLn) had to be added to Timers 0 and 1 to support the new mode 0. In mode 2
RTLn also replaces THn as the 8-bit reload register.

The relationship of all timer count rates to the microcontroller oscillator has also been chan
This adds flexibility since this is now a programmable feature, allowing oscillator divided by
16, or 64 to be used as the base count rate for all of the timers. Since XA performance is m
higher (on a clock-by clock basis), an application converted to the XA from the 80C51 wou
likely not use the same oscillator frequency anyway.

9.1.4  Bus Interface

The customary 80C51 bus control signals are all found on the standard external XA bus. T
provide the best performance, the details of some of these signals have changed somewha
few new ones have been added. In addition to the well known ALE,PSEN,RD, WR, andEA,
there are now also WAIT andWRH. The WAIT signal causes wait states to be inserted into a
XA bus clock as long as it is asserted. TheWRH signal is used to distinguish writes to the high
order byte when the XA bus is configured to be 16 bits wide.

The multiplexed address/data bus has undergone some renovations on the XA as well. To g
most performance in a system executing code from the external bus, the XA separates the
significant address lines on to their own pins. Since these lines normally change the most o
an ALE clock would be required on every external code fetch if these lines were multiplexe
they are on the 80C51. The 80C51 had time to do this since its performance was not that h
XA User Guide 9-4 3/24/97
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The XA, however, uses only as many clocks as are needed to execute each instruction, so
ALE for every fetch would slow things down considerably. With this change, up to 16 bytes
8 words) of code may be accessed without the need to insert an ALE cycle on the XA bus.

The number of XA clocks used for each type of bus cycle (code read, data read, or data wr
can also be programmed, so that slower peripheral devices can work with the XA without t
need for an external WAIT state generator.

Due to the various changes to the bus just mentioned, an XA device cannot be completely
compatible with an 80C51 derivative if the external bus is used. The changes to application
hardware needed are relatively small and easy to make.

9.1.5  Instruction Set

The simplest goal of the XA for instruction set compatibility was to have every 80C51
instruction translate to one XA instruction. That has been achieved but for a single exceptio
The 80C51 instruction, XCHD or exchange digits, cannot be translated in that manner. XC
an instruction that is rarely used on the 80C51 and could not be implemented on the XA, d
its internal architecture, without adding a great deal of extra circuitry. So, if this instructionis
encountered when 80C51 source code is being translated, a sequence of XA instructions i
to duplicate the function:

PUSH R4H ; Save temporary register.
MOV R4H,(Ri) ; Get second operand.
RR R4H,#4 ; Swap one byte.
RR R4L,#4 ; Swap second byte (the "A" register).
RL R4,#4 ; Swap word.

; Result is swapped nibbles in A and R4H.
MOV (Ri),R4H ; Store result.
POP R4H ; Restore temporary register.

If the application requires this sequence to not be interruptible, some additional instruction 
be added in order to disable and re-enable interrupts. The table at the end of this section s
all of the other XA code replacements for 80C51 instructions.

The XA instruction set is much more powerful than the 80C51 instruction set, and as a dire
consequence, the average number of bytes in an instruction is higher on the XA. In code w
for the XA, the capability of a single instruction is high, so the size of an entire XA program
normally be smaller than the same program written for an 80C51. Of course, this depends 
how much the application can take advantage of XA features. When code is translated from
80C51 source, however, the size change can be an issue.

In the case of a jump table, where the JMP @A+DPTR instruction is used to jump into a ta
other jumps composed of the 80C51 AJMP instruction, the XA cannot always duplicate the
function of the jumps in the table with instructions that are 2 bytes in length, as in the case 
AJMP instruction. An adjustment to the calculation of the table index will be required to ma
the translated code work properly. For a data table, accessed using MOVC @A+PC, the d
to the table may change, requiring a similar index adjustment.
3/24/97 9-5 8051 Compatibility
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Since the XA optimizes the timing of each instruction, there will be very little corresponden
the original 80C51 timing for the same code prior to translation to the XA. If the exact timin
a sequence of instructions is important to the application, the translated code must be alter
perhaps by adding NOPs or delay loops, to provide the necessary timing.

To show how a simple 80C51 to XA source code translator might work, a subroutine was
extracted from a working 80C51 program and translated using the table at the end of this
document and the other rules presented here. The original 80C51 source code was:

;StepCal - Calculates a trip point value for motor movement based on
;  a percent of pointer full scale (0 - 100%).
;  Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,A ; Save step target for later use.
MOV B,#Steplow ; Get low byte of step increment.
MUL AB ; Multiply this by the step target.
MOV StepResult,B ; Save high byte as partial result.
MOV Temp1,A ; Save low byte to use for rounding.

MOV A,Temp2 ; Get back the step target.
MOV B,#StepHigh ; Get high byte of step increment,
MUL AB ; and multiply the two.

ADD A,StepResult ; Add the two partial results.
JNB Temp1.7,Exit ; Least significant byte > 80h?
INC A ; If so, round up the final result.

Exit: ADD A,#MotorBot ; Add in the 0 step displacement.
MOV StepResult,A ; Save final step target.
RET

The same code as translated for the XA is as follows:

;StepCal - Calculates a trip point value for motor movement based on
;  a percent of pointer full scale (0 - 100%).
;  Call with target value in A. Returns result in A and "StepResult".

StepCal: MOV Temp2,R4L ; Save step target for later use.
MOV R4H,#Steplow ; Get low byte of step increment.
MULU.b R4,R4H ; Multiply this by the step target.
MOV StepResult,R4H ; Save high byte as partial result.
MOV Temp1,R4L ; Save low byte to use for rounding.

MOV R4L,Temp2 ; Get back the step target.
MOV R4H,#StepHigh ; Get high byte of step increment,
MULU.b R4,R4H ; and multiply the two.

ADD R4L,StepResult ; Add the two partial results.
JNB Temp1.7,Exit ; Least significant byte > 80h?
ADDS R4L,#1 ; If so, round up the final result.

Exit: ADD R4L,#MotorBot ; Add in the 0 step displacement.
MOV StepResult,R4 ; Save final step target.
RET
XA User Guide 9-6 3/24/97
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In this case, the translated code actually changed very little. Primarily, the 80C51 register n
have been replaced by the new ones reserved for them in the XA. The increment (INC)
instruction became a short add (ADDS), and the mnemonic for multiply (MUL) changed to
MULU8.

Some basic statistical information about these code samples may be found in table 9.1. Th
statistics show a large performance increase for the XA code. This is significant because the
is only simple translated 80C51 code and therefore does not take any advantage of the XA
unique features.

Table 9.1: 80C51 to XA Code Translation Statistics

Statistic 80C51
code

XA
translation Comments

Code bytes 28 40 - one NOP added for branch
alignment on XA

Clocks to execute 300 78 - includes XA pre-fetch queue
analysis, raw execution is 66
clocks

Time to execute
@ 20MHz

15 µsec 3.9 µsec - a nearly 4x improvement
without any optimization
3/24/97 9-7 8051 Compatibility
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9.2  Code Translation
Table 9.2 shows every 80C51 instruction type and the XA instruction that replaces it. An ac
80C51 to XA source code translator can make use of this table, but must also flag the
compatibility exceptions noted in this section, so that any necessary adjustments may be m
the resulting XA source code.

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation

Arithmetic operations

ADD A, Rn
ADD A, #data8
ADD A,dir8
ADD A, @Ri
ADDC A, Rn
ADDC A, #data8
ADDC A,dir8
ADDC A, @Ri

ADD.b R, R
ADD.b R, #data8
ADD.b R, direct
ADD.b R, [R]
ADDC.bR, R
ADDC.bR, #data8
ADDC.bR, direct
ADDC.bR, [R]

SUBB A, Rn
SUBB A, #data8
SUBB A, dir8
SUBB A, @Ri

SUBB.bR, R
SUBB.bR, #data8
SUBB.bR, direct
SUBB.bR, [R]

INC Rn
INC dir8
INC @Ri
INC A
INC DPTR

ADDS.bR, #1
ADDS.bdirect, #1
ADDS.b[R], #1
ADDS.bR, #1
ADDS.wR, #1

DEC Rn
DEC dir8
DEC @Ri
DEC A

ADDS.bR, #-1
ADDS.bdirect, #-1
ADDS.b[R], #-1
ADDS.bR, #-1

MUL AB
DIV AB
DA A

MULU.bR, R
DIVU.b R, R
DA R
XA User Guide 9-8 3/24/97



Logical operations

ANL A, Rn
ANL A, #data8
ANL A, dir8
ANL A, @Ri
ANL dir8, A
ANL dir8, #data8

AND.b R, R
AND.b R, #data8
AND.b R, direct
AND.b R, [R]
AND.b direct, R
AND.b direct, #data8

ORL A, Rn
ORL A, #data8
ORL A, dir8
ORL A, @Ri
ORL dir8, A
ORL dir8, #data8

OR.b R, R
OR.b R, #data8
OR.b R, direct
OR.b R, [R]
OR.b direct, R
OR.b direct, #data8

XRL A, Rn
XRL A, #data8
XRL A, dir8
XRL A, @Ri
XRL dir8, A
XRL dir8, #data8

XOR.b R, R
XOR.b R, #data8
XOR.b R, direct
XOR.b R, [R]
XOR.b direct, R
XOR.b direct, #data8

CLR A
CPL A
SWAP A

MOVS R, #0
CPL.b R
RL.b R, #4

RL A
RLC A
RR A
RRC A

RL.b R, #1
RLC.b R, #1
RR.b R, #1
RRC.b R, #1

CLR C
CLR bit
SETB C
SETB bit
CPL C
CPL bit
ANL C, bit
ANL C, /bit
ORL C, bit
ORL C, /bit
MOV C, bit
MOV bit, C

CLR bit
CLR bit
SETB bit
SETB bit
XOR.b PSWL, #data8
XOR.b direct, #data8
AND C, bit
AND C, /bit
OR C, bit
OR C, /bit
MOV C, bit
MOV bit, C

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
3/24/97 9-9 8051 Compatibility



Data transfer

MOV A, Rn
MOV A, #data8
MOV A, dir8
MOV A, @Ri
MOV Rn, A
MOV Rn, #data8
MOV Rn, dir8
MOV dir8, A
MOV dir8, #data8
MOV dir8, Rn
MOV dir8, dir8
MOV dir8, @Ri
MOV @Ri, A
MOV @Ri, dir8
MOV @Ri, #data8
MOV DPTR, #data16

MOV.b R, R
MOV.b R, #data8
MOV.b R, direct
MOV.b R, [R]
MOV.b R, R
MOV.b R, #data8
MOV.b R, direct
MOV.b direct, R
MOV.b direct, #data8
MOV.b direct, R
MOV.b direct, direct
MOV.b direct, [R]
MOV.b [R], R
MOV.b [R], direct
MOV.b [R], #data8
MOV.w R, #data16

XCH A, Rn
XCH A, dir8
XCH A, @Ri
XCHD A, @Ri

XCH.b R, R
XCH.b R, direct
XCH.b R, R
a sequence (see text)

PUSH dir8
POP dir8

PUSH.bdirect
POP.b direct

MOVX A, @Ri
MOVX A, @DPTR
MOVX @Ri, A
MOVX @DPTR, A

MOVX.bR, [R]
MOVX.bR, [R]
MOVX.b[R], R
MOVX.b[R], R

MOVC A, @A+DPTR
MOVC A, @A+PC

MOVC.bA, [A+DPTR]
MOVC.bA, [A+PC]

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
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9.3  New Instructions on the XA
While the XA instructions that are similar to 80C51 instructions have a larger addressing ra
more status flags, etc., the XA also has many entirely new instructions and addressing mode
make writing new code for the XA much easier and more efficient. The new addressing mo
also make the XA work very well with high level language compilers. A complete list of the n
XA instructions and addressing modes is shown in Table 9.3.

Relative branches

SJMP rel8 BR rel8

CJNE A, dir8, rel
CJNE A, #data8, rel
CJNE Rn, #data8, rel
CJNE @Ri, #data8, rel

CJNE.b R, direct, rel
CJNE.b R, #data8, rel
CJNE.b R, #data8, rel
CJNE.b [R], #data8, rel

DJNZ Rn, rel
DJNZ dir8, rel

DJNZ.b R, rel
DJNZ.b direct, rel

JZ rel
JNZ rel
JC rel
JNC rel

JZ rel
JNZ rel
BCS rel
BCC rel

Jumps, Calls, Returns,
and Misc.

NOP NOP

AJMP addr11
LJMP  addr16
JMP @A+DPTR

JMP rel16
JMP rel16
JUMP [A+DPTR]

ACALL addr11
LCALL addr16

CALL rel16
CALL rel16

RET
RETI

RET
RETI

Table 9.2: 80C51 to XA Instruction Translations

80C51 Instruction XA Translation
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Table 9.3: Instructions and addressing modes new to the XA

New Instructions and Addressing Modes

alu.w ..., ... All of the 80C51 arithmetic and logic instructions
with a 16-bit data size.

SUBB R,... Subtract (without borrow), all addressing modes.

alu [R], R Arithmetic and logic operations (ADD, ADDC,
SUB, SUBB, CMPAND, OR, XOR, and MOV)
from a register to an indirect address.

alu R, [R+] Arithmetic and logic operations from an indirect
address to a register, with the indirect pointer
automatically incremented.

alu R,[R+offset8/16] Arith/Logic operations from an indirect offset
address (with 8 or 16-bit offset) to a register.

alu direct, R The 80C51 has only MOV direct, R.

alu [R], R The 80C51 has only MOV [R], R.

alu [R+], R Arith/Logic operations from a register to an
indirect address, with the indirect pointer
automatically incremented.

alu [R+offset8/16], R Arith/Logic operations from a register to an
indirect offset address (with 8 or 16-bit offset).

alu direct, #data8/16 Arith/Logic operations to a direct address with 8
or 16-bit immediate data.

alu [R], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data.

alu [R+], #data8/16 Arith/Logic operations to an indirect address with
8 or 16-bit immediate data with the indirect
pointer automatically incremented.

alu [R+offset8/16], #data8/16 Arith/Logic operations to an indirect offset
address (with 8 or 16-bit offset), with 8 or 16-bit
immediate data.

MOV direct, [R] Move data from an indirect to a direct address.

ADDS R, #data4 The 80C51 can only increment or decrement a
register by 1. ADDS has a range of +7 to -8.

ADDS [R], #data4 Add a short value to an indirect address.
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ADDS [R+], #data4 Add a short value to an indirect offset address,
with the indirect pointer automatically
incremented.

ADDS [R+offset8/16], #data4 Add a short value to an indirect offset address
(with 8 or 16-bit offset).

ADDS direct, #data4 Add a short value to a direct address.

MOVS ..., #data4 Move short data to destination using any of the
same addressing modes as ADDS.

ASL R, R Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from register.

ASR R, R Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from register.

LSR R, R Logical shift right a byte, word, or double word,
up to 31 places, shift count read from register.

ASL R, #DATA4/5 Arithmetic shift left a byte, word, or double word,
up to 31 places, shift count read from instruction.

ASR R, #DATA4/5 Arithmetic shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

LSR R, #DATA4/5 Logical shift right a byte, word, or double word,
up to 31 places, shift count read from instruction.

DIV R, R Signed divide of 32 bits register by 16 bit register,
or 16 bit register by 8 bit register.

DIVU R, R Unsigned divide of 32 bit register by 16 bit
register, or 16 bit register by 8 bit register.

MUL R, R Signed multiply of 16 bit register by 16 bit
register, or 8 bit register by 8 bit register.

MULU R, R Unsigned multiply of 16 bit register by 16 bit
register.

DIV R, #data8/16 Signed divide of 32 bits register by 16 bit
immediate, or 16 bit register by 8 bit immediate.

DIVU R, #data8/16 Unsigned divide of 32 bit register by 16 bit
immediate, or 16 bit register by 8 bit immediate.

MUL R, #data8/16 Signed multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.

Table 9.3: Instructions and addressing modes new to the XA
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MULU R, #data8/16 Unsigned multiply of 16 bit register by 16 bit
immediate, or 8 bit register by 8 bit immediate.

LEA R, R+offset8/16 Load effective address, duplicates the offset8 or
16-bit addressing mode calculation but saves the
address in a register.

NEG R Negate, performs a twos complement operation
on a register.

SEXT R Sign extend, copies the sign flag from the last
operation into an 8 or 16-bit register.

NORM R, R Normalize. Shifts a byte, word, or double word
register left until the MSB becomes a 1. The
number of shifts used is stored in a register.

RL, RR, RLC, RRC  R,#data4 All of the 80C51 rotate modes with 16-bit data
size and a variable number of bit positions (up to
15 places).

MOV [R+], [R+] Block move. Move data from an indirect address
to another indirect address, incrementing both
pointers.

MOV R, USP and USP, R Allows system code to move a value to or from
the user stack pointer. Handy in multi-tasking
applications.

MOVC R, [R+] Move data from an indirect address in the code
space to a register, with the indirect pointer
automatically incremented.

PUSH and POP Rlist PUSH and POP up to 8 word registers in one
instruction.

PUSHU and POPU  Rlist or direct Allows system code to write to or read the user
stack. Handy in multi-tasking applications.

conditional branches A complete set of conditional branches, including
BEQ, BNE, BG, BGE, BGT, BL, BLE, BMI, BPL,
BNV, and BOV.

CALL [R] Call indirect, to an address contained in a
register.

CALL rel16 Call anywhere in a +/- 64K range.
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FCALL addr24 Far call, anywhere within the XA 16Mbyte code
address space.

JMP [R] Jump indirect, to an address contained in a
register.

JMP rel16 Jump anywhere in a +/- 64K range.

FJMP addr24 Far jump, anywhere within the XA 16Mbyte code
address space.

JMP [[R+]] Jump double indirect with auto-increment. Used
to branch to a sequence of addresses contained
in a table.

BKPT Breakpoint, a debugging feature.

RESET Allows software to completely reset the XA in one
instruction.

TRAP #data4 Call one of up to 16 system services. Acts like an
immediate interrupt.

Table 9.3: Instructions and addressing modes new to the XA
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